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In this article we apply proper splittings of matrices to develop an iterative process 
to approximate solutions of matrix equations of the form TX = W . Moreover, 
by using the partial order induced by positive semidefinite matrices, we obtain 
equivalent conditions to the convergence of this process. We also include some speed 
comparison results of the convergence of this method. In addition, for all matrix T
we propose a proper splitting based on the polar decomposition of T .
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1. Introduction

The theory of splittings of matrices is a useful tool for the construction of iterative methods for solv-
ing systems of linear equations. Roughly speaking, a splitting of a matrix T ∈ Mm×n(C) is a partition 
of T of the form: T = U − V with U, V ∈ Mm×n(C). A pioneering work regarding splitting of matrices 
is due to Varga [37] where the concept of regular splitting for invertible matrices T ∈ Mn(R) was intro-
duced to approximate the unique solution T−1w of the system Tx = w by means of the following iterative 
process:

xi+1 = U−1V xi + U−1w. (1)

The scheme (1) converges for every x0 if and only if the spectral radius of U−1V is less than one (in 
symbols, ρ(U−1V ) < 1) and, in such case, it converges to T−1w. Later, Berman and Plemmons [6] extended 
the notion of regular splitting for T ∈ Mm×n(R). They called a proper splitting of T ∈ Mm×n(R) to a 
partition T = U −V where U, V ∈ Mm×n, R(U) = R(T ) and N (U) = N (T ). Here, R(T ) and N (T ) denote 
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the range and nullspace of T , respectively. Based on this concept, Berman and Plemmons proved that the 
next iterative process

xi+1 = U†V xi + U†w (2)

converges to the best least square approximate solution T †w of Tx = w for every x0 if and only if 
ρ(U†V ) < 1.

In view of the above, during the last years several authors dealt with the problems of finding conditions on 
the matrices U, V (of the splitting) which ensure that ρ(U−1V ) < 1 (or, ρ(U†V ) < 1) and of comparing the 
speed of convergence of these methods for different classes of splittings and matrices. Let us mention some 
of these classes: regular splitting [37], [17], nonnegative splitting with first and second type [34], [35], weak 
regular splitting with first and second type [38], [13], [19], proper splitting [29], [6], P -regular splitting [21], 
[22], P -proper splitting [23], weak nonnegative splitting of the first and the second type [14], T monotone 
[37], [38], [14], T positive definite [30], T positive semidefinite [23], among many others. All these articles 
are based on working with nonnegative matrices or positive definite matrices and the usual partial orders 
induced by them. In the case of considering nonnegative matrices, the results follow by the Perron-Frobenius 
theory. In [12], the authors unified the theory for these two partial orders and for the scheme (1) by using 
the partial order induced by positivity cone of matrices. However, the theory for the scheme (2) requires a 
deeper analysis. A first approach is given in [6], where under the idea of proper splitting and considering 
matrices that leave a cone invariant, many results as those of Varga [37], Ortega and Rheinboldt [33], 
Mangasarian [27] and Vandergraft [36] are extended to scheme (2). In fact, nonnegative matrices leave the 
cone Rn

+ invariant and so applying the ideas of [6] many of the results about scheme (1) and nonnegative 
matrices are immediately extended for (2). However, these ideas can not be applied when the partial order 
induced by positive semidefinite matrices, also known as Löwner order, is considered. One of our goal in 
this article is to fill this gap. Moreover, we observe that proper splitting can also be applied to solve matrix 
equations of the form TX = W and to get their so-called reduced solutions. This sort of solutions emerges 
as a generalization of the well-known Douglas’ solutions [18] and is useful, for example, in many problems 
of engineering and physic in which it is needed to separate signals from noise (see [5], [8], among others). In 
this article, given a proper splitting T = U − V , we propose the iterative method (4) and we prove that it 
converges to a reduced solution of TX = W if and only if ρ(U†V ) < 1. In addition, equivalent conditions for 
(4) to converge to an Hermitian or positive definite reduced solution are provided. Motivated by all these 
facts, the remain of the paper is devoted to provide, for a proper splitting T = U −V , equivalent conditions 
to ρ(U†V ) < 1 and some speed comparison results, considering the Löwner order. Furthermore, a proper 
splitting which is based on the polar decomposition of matrices is proposed.

We briefly describe the contents of the paper. In Section 2, we fix the notation and give some results 
that are needed in the following sections. In Section 3, we study some spectral properties of the so-called 
reduced solutions of matrix equations TX = W and we analyse the existence of Hermitian and positive 
semidefinite reduced solutions. In Section 4, some properties of proper splitting that will be used in the 
next sections are studied. Section 5 is entirely devoted to explore the relationship between proper splitting 
and reduced solutions. In this sense, the iterative process (4) is proposed with the aim of approximating the 
reduced solutions of TX = W by means of the use of a proper splitting of T . In addition, the convergence 
of this iterative process to Hermitian and positive definite solutions is studied. Here the main result is 
Theorem 5.1. In Section 6, the main results regarding convergence and speed comparison for the iterative 
method (4) considering the Löwner order are presented. The main results are Propositions 6.1 and 6.3 and 
Theorems 6.6 and 6.7. Finally, in Section 7, we present a particular proper splitting for T ∈ Mm×n(C) based 
on the polar decomposition of T . In Proposition 7.3 the convergence of this particular splitting is analysed. 
In Theorem 7.4 and Proposition 7.6 this splitting is studied for the class of matrices T ∈ Mn×n(C) that 
can be factorized as the product of two orthogonal projections and for normal matrices.
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2. Preliminaries

Along this article the set of n-uples of complex numbers is denoted by Cn and Mm×n(C) denotes the 
set of m ×n-matrices with coefficients in C. If m = n we abbreviate Mn(C). Throughout, we shall consider 
the canonical inner product, 〈 , 〉, on Cn and ‖ · ‖ = 〈·, ·〉1/2 the norm induced by it. The spectral norm in 
Mn(C) will be denoted by ‖ ‖. Given T ∈ Mm×n(C) the symbols σ(T ) and ρ(T ) stand for the spectrum (set 
of eigenvalues) of T and spectral radius of T , respectively. In addition, given T ∈ Mm×n(C) we denote by 
R(T ), N (T ), r(T ), T ∗, the range, the nullspace, the rank and complex conjugate transpose of T , respectively. 
The Moore Penrose inverse of T ∈ Mm×n(C) is denoted by T † and it is the unique matrix in Mn×m(C)
which satisfies the four “Moore-Penrose equations”

TXT = T, XTX = X, XT = (XT )∗, TX = (TX)∗. (3)

The next classical result of Greville [20] related to the reverse order law for the Moore-Penrose inverse 
will be used along the article.

Theorem 2.1. Let T1, T2 ∈ Mn(C). Then, (T1T2)† = T †
2T

†
1 if and only if R(T ∗

1 T1T2) ⊆ R(T2) and 
R(T2T

∗
2 T

∗
1 ) ⊆ R(T ∗

1 ).

Henceforth, we denote by Mn
H(C) the set of Hermitian matrices of Mn(C) and by Mn

+(C) the set of 
positive semidefinite matrices, i.e., T ∈ Mn

+(C) if 〈Tx, x〉 ≥ 0 for all x ∈ Cn. Moreover, given T1, T2 ∈
Mn

H(C), we say that T1 ≤ T2 if T2 − T1 ∈ Mn
+(C), i.e., ≤ denotes the Löwner order of matrices.

The following result will be frequently used in these notes. The proof can be found in [4, Corollary 2].

Theorem 2.2. Let T1, T2 ∈ Mn
+(C) and consider the following conditions

a) T1 ≤ T2;
b) T †

2 ≤ T †
1 ;

c1) r(T1) = r(T2);
c2) R(T2 − T1) ∩N (T2) = R(T †

1 − T †
2 ) ∩N (T1) = {0}.

Then any of two the conditions a), b) and ci) imply the third condition, i = 1, 2.

3. Reduced solutions of matrix equations

In this section we focus on the study of matrix equations of the form TX = W for T ∈ Mm×n(C) and 
W ∈ Mm×r(C). More precisely, we are interested on the so-called “reduced solutions” of these equations 
introduced in the next result.

Theorem 3.1. Let T ∈ Mm×n(C) and W ∈ Mm×r(C). There exists X0 ∈ Mn×r(C) such that TX0 = W if 
and only if R(W ) ⊆ R(T ). In such case, for each subspace M such that M 

.
+ N (T ) = Cn there exists a 

unique XM ∈ Mn×r(C) such that TXM = W and R(XM) ⊆ M. Moreover, N (XM) = N (W ). We called 
XM the reduced solution for M of TX = W . In particular, it holds that XR(T∗) = T †W .

Proof. See [1] and [18]. �
The previous result also holds for T, W and X0 bounded linear operators on Hilbert spaces, see [18].

Remark 3.2. In this remark we comment some advantages of working with reduced solutions:
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a) Reduced solutions and oblique projections are two concepts closely related. Indeed, the set of oblique 
projections with a fixed nullspace T coincides with the set of reduced solutions of the equation (I −
PT )X = I − PT , where PT denotes the orthogonal projection onto T . In a more general context, given 
T, W ∈ Mm×n(C) such that R(W ) ⊆ R(T ) and M, N two algebraic complements of N (T ), then it is 
easy to verify that XN = QN//N (T )XM where QN//N (T ) is the projection with range N and nullspace 
N (T ). This relationship between reduced solutions will be frequently used along the article.

Oblique projections (and so reduced solutions) appear in several problems of engineering, physic, 
chemistry, among other areas. For instance, they are useful for solving a variety of signal processing 
problems where it is needed to separate signals from noise (see [5], [8], [7], among other sources). Fur-
thermore, oblique projections are used in communication problems to remove intersymbol interference 
[5] and for estimation of directions-of-arrival [8].

b) Other class of matrix equations that frequently arises in many applications are those of the form TXS =
W , with T ∈ Mm×n(C) and S ∈ Mr×s(C). Let us observe that this class of equations can be transformed 
into two-steps matrix equations of the previous form by means of reduced solutions. More precisely, if 
YM is a reduced solution of TX = W then N (YM) = N (W ) or, equivalently, R(Y ∗

M) = R(W ∗) and so 
R(Y ∗

M) ⊆ R(S∗). Thus, there exists Y ∗ such that S∗Y ∗ = Y ∗
M. Hence, TY S = TYM = W , i.e., Y solves 

TXS = W . We shall return to this idea in Section 5.
c) Reduced solutions can also be applied to fully describe the generalized inverses of a matrix T ∈ Mm×n(C), 

see [1]. For instance, T † coincides with the reduced solution of TX = PR(T ) for M = R(T ∗).

Lemma 3.3. Let T, W ∈ Mm×n(C) such that R(W ) ⊆ R(T ) and N (T ) ⊆ N (W ). Then the following 
assertions hold:

a) σ(XM) = σ(T †W ) for all reduced solution XM of TX = W .
b) ρ(XM) = ρ(T †W ) for all reduced solution XM of TX = W .
c) Let XM be the reduced solution for M of TX = W and λ ∈ σ(XM). Hence, if vλ is an eigenvector of 

XM associated to λ then QN//N (T )vλ is an eigenvector of XN associated to λ for all reduced solution 
XN of TX = W .

Proof. a) Since XM = QM//N (T )T
†W we get that σ(XM) = σ(QM//N (T )T

†W ) = σ(T †WQM//N (T )) =
σ(T †W ), since N (T ) ⊆ N (W ).

b) It follows from the above item.
c) Again, it follows from the fact that XN = QN//N (T )XM. �
As we have already said, matrix equations of the form TX = W arise in many problems of engineering, 

statistics, physics, among other areas. However, in many of these applications the only relevant solutions 
are those where the solution matrix is Hermitian or positive semidefinite. This occurs, for example, in many 
statistical problems (see [9], [28], just to mention a few). Evidently, not every solvable matrix equation 
TX = W admits a positive semidefinite nor Hermitian solution. The following result due to Khatri and 
Mitra [24] provides equivalent conditions to the existence of such kind of solutions.

Theorem 3.4. Let T, W ∈ Mm×n(C). The following assertions hold:

a) If R(W ) ⊆ R(T ) then there exists X0 ∈ Mn
H(C) such that TX0 = W if and only if TW ∗ ∈ Mm

H (C).
b) There exists X0 ∈ Mn

+(C) such that TX0 = W if and only if TW ∗ ∈ Mm
+ (C) and r(TW ∗) = r(W ).

As previously mentioned, we are interested on the reduced solutions of the matrix equation TX = W . 
In the following results we study Hermitian and positive semidefinite reduced solutions:
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Proposition 3.5. Let T, W ∈ Mm×n(C) such that R(W ) ⊆ R(T ). The following conditions are equivalent:

a) There exists an Hermitian reduced solution of TX = W .
b) TW ∗ ∈ Mm

H (C) and R(W ∗) ∩N (T ) = {0}.

Proof. a) → b) Let XM be an Hermitian reduced solution of TX = W . Hence, as N (XM) = N (W ), we 
get that R(XM) = R(W ∗) and so R(W ∗) ∩N (T ) = {0}. The proof is completed applying Theorem 3.4.

b) → a) By Theorem 3.4, there exists X0 ∈ Mn
H(C) such that TX0 = W . On the other hand, 

since R(W ∗) ∩ N (T ) = {0}, then M := R(W ∗) + (R(W ∗) + N (T ))⊥ is an algebraic complement 
of N (T ) in Cn. Therefore, the projection QM//N (T ) is well-defined and TQM//N (T )X0Q

∗
M//N (T ) =

WQ∗
M//N (T ) = W because R(W ∗) ⊆ M. Thus, by the uniqueness of the reduced solution for M, we 

get that QM//N (T )X0Q
∗
M//N (T ) ∈ Mn

H(C) is the reduced solution for M of TX = W . The proof is con-
cluded. �

If T and W are bounded operators defined on Hilbert spaces, then the condition “R(W ∗)
.
+ N (T ) is a 

closed subspace” should be added in item b) of Proposition 3.5 in order to get the result. This condition is 
equivalent to an angle condition between the subspaces R(W ∗) and N (T ), see [2].

Proposition 3.6. Let T, W ∈ Mm×n(C) such that R(W ) ⊆ R(T ) and let M be a subspace of Cn such that 
M 

.
+N (T ) = Cn. If TW ∗ ∈ Mm

H (C) and XM is the reduced solution for M of TX = W then the following 
conditions are equivalent:

a) XM is Hermitian;
b) XM is normal;
c) R(W ∗) ⊆ M.

In particular, T †W ∈ Mn
H(C) if and only if T †W is normal if and only if R(W ∗) ⊆ R(T ∗).

Proof. a) → b) It is immediate.
b) → c) If XMX∗

M = X∗
MXM then R(XM) = R(X∗

M). So that R(W ∗) = N (W )⊥ = N (XM)⊥ =
R(XM) ⊆ M.

c) → a) By Theorem 3.4, there exists X0 ∈ Mn
H(C) such that TX0 = W . Therefore,

TQM//N (T )X0Q
∗
M//N (T ) = WQ∗

M//N (T ) = W because R(W ∗) ⊆ M. Thus, by the uniqueness of the 
reduced solution for M, we get that XM = QM//N (T )X0Q

∗
M//N (T ), i.e., XM ∈ Mn

H(C). �
Corollary 3.7. Let T, W ∈ Mm×n(C) such that R(W ) ⊆ R(T ). If T †W ∈ Mn

H(C) then ρ(XM) = ρ(T †W )
for all reduced solution for M of TX = W .

Proof. It follows from Lemma 3.3 and Proposition 3.6. �
The proofs of the next results concerning positive semidefinite reduced solutions of TX = W follow 

proceeding as in the proofs of Propositions 3.5 and 3.6.

Proposition 3.8. Let T, W ∈ Mm×n(C) such that R(W ) ⊆ R(T ). The following conditions are equivalent:

a) There exists a positive semidefinite reduced solution of TX = W .
b) TW ∗ ∈ Mm

+ (C), r(TW ∗) = r(W ) and R(W ∗) ∩N (T ) = {0}.
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Proposition 3.9. Let T, W ∈ Mm×n(C) such that TW ∗ ∈ Mn
+(C) and r(TW ∗) = r(W ), and let M be a 

subspace of Cn such that M 
.
+ N (T ) = Cn. If XM is the reduced solution for M of TX = W then the 

following conditions are equivalent:

a) XM is positive semidefinite;
b) XM is normal;
c) R(W ∗) ⊆ M.

In particular, T †W ∈ Mn
+(C) if and only if T †W is normal if and only if R(W ∗) ⊆ R(T ∗).

4. Proper splitting of matrices

Given a matrix T ∈ Mm×n(C), a splitting of T is a partition of T in the following form: T = U −V with 
U, V ∈ Mm×n(C). In [6], Berman and Plemmons introduced the concept of proper splitting for rectangular 
matrices with the aim of developing an iterative process that converges to the best least squares approximate 
solution of the system Tx = w. Let us formally introduce this concept:

Definition 4.1. Let T ∈ Mm×n(C). The decomposition

T = U − V,

where U, V ∈ Mm×n(C) is called a proper splitting of T if R(U) = R(T ) and N (U) = N (T ).

In the following result we gather some properties of proper splittings. Many of these properties can be 
found in [6].

Proposition 4.2. If T = U − V is a proper splitting of T then the following assertions hold:

a) N (T ) ⊆ N (V ) and R(V ) ⊆ R(T ).
b) T = U(I − U†V ) and I − U†V is invertible.
c) T † = (I − U†V )−1U†.
d) (T †U)† = U†T .

Proof. Let T = U − V be a proper splitting of T .
a) If x ∈ N (T ) then Tx = 0 and so Ux = 0. Then V x = 0. Therefore N (T ) ⊆ N (V ). In addition, since 

V = U − T and R(U) = R(T ) then R(V ) ⊆ R(T ).
b), c) The proofs can be found in [6, Theorem 1].
d) Since R(U) = R(T ) and N (U) = N (T ) the assertion follows from Theorem 2.1. �
The following results will be useful in the next section.

Proposition 4.3. Let T = U − V be a proper splitting of T . The following assertions are equivalent:

a) V T ∗ ∈ Mn
H(C);

b) UT ∗ ∈ Mn
H(C);

c) V U∗ ∈ Mn
H(C);

d) U†V ∈ Mn
H(C);

e) T †U ∈ Mn
H(C);

f) T †V ∈ Mn
H(C).
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Proof. a) ↔ b) It is obvious since UT ∗ = TT ∗ + V T ∗.
b) ↔ c) It is obvious since V U∗ = UU∗ − TU∗.
c) ↔ d) If V U∗ ∈ Mn

H(C) then, by Theorem 3.4, the equation UX = V admits an hermitian solution. 
Since R(V ∗) ⊆ R(U∗) we can apply Proposition 3.6, and we get that U†V ∈ Mn

H(C). Conversely, if U†V ∈
Mn

H(C) then the equation UX = V admits an hermitian solution and, by Theorem 3.4, V U∗ ∈ Mn
H(C).

Similarly, the equivalences b) ↔ e) and a) ↔ f) follow from Proposition 3.6 and Theorem 3.4. �
Proposition 4.4. Let T = U − V be a proper splitting of T . The following assertions are equivalent:

a) U†V ∈ Mn
+(C);

b) V U∗ ∈ Mn
+(C) and r(V U∗) = r(V );

c) U†T ∈ Mn
H(C) and U†T ≤ PT∗ .

Proof. a) ↔ b) It follows by Theorem 3.4 and Proposition 3.9.
a) ↔ c) Suppose that U†V ∈ Mn

+(C). Then U†T = U†U − U†V ∈ Mn
H(C). In addition, U†V =

U†U − U†T ≥ 0. Therefore, U†T ≤ PT∗ . Conversely, if U†T ∈ Mn
H(C) and U†T ≤ PT∗ = U†U then 

U†V = U†U − U†T ≥ 0. �
Proposition 4.5. Let T = U − V be a proper splitting of T . The following assertions are equivalent:

a) U†T ∈ Mn
+(C);

b) TU∗ ∈ Mn
+(C) and r(TU∗) = r(T );

c) U†V ∈ Mn
H(C) and U†V ≤ PT∗ .

Proof. a) ↔ b) It follows by Theorem 3.4 and Proposition 3.9.
a) ↔ c) If U†T ∈ Mn

+(C) then U†V = U†U − U†T ∈ Mn
H(C). Furthermore U†T = U†U − U†V ≥ 0. 

Then PT∗ ≥ U†V . Conversely, if U†V ∈ Mn
H(C) and PT∗ ≥ U†V then U†T = U†U − U†V ≥ 0. �

5. Reduced solutions and proper splittings of matrices

In [6] the concept of proper splitting of a matrix T is applied to approximate the best minimum square 
solution of a system Tx = w. In this section, we shall observe that this class of splitting can also be used to 
get the reduced solution for M of a matrix equation TX = W . To be more specific, let T ∈ Mm×n(C) and 
W ∈ Mm×r(C) such that R(W ) ⊆ R(T ) and let M be a subspace of Cn such that M 

.
+ N (T ) = Cn. Let 

T = U − V be a proper splitting of T . Let YM ∈ Mn(C) and ZM ∈ Mn×r(C) be the reduced solutions for 
M of UY = V and UZ = W , respectively. Define the iterative process:

Xi+1 = YMXi + ZM. (4)

We call (4), the iterative process for M of the proper splitting T = U − V with respect to W .
In the next theorem, we prove that whether the iteration (4) converges, then it converges to the reduced 

solution for M of TX = W . Furthermore, an equivalent condition for its convergence is provided.

Theorem 5.1. Let T ∈ Mm×n(C) and W ∈ Mm×r(C) such that R(W ) ⊆ R(T ) and let M be a subspace of 
Cn such that M 

.
+N (T ) = Cn. Consider the proper splitting T = U−V of T . Then the iterative process (4)

converges for all X0 to XM, the reduced solution for M of the equation TX = W , if and only if ρ(YM) < 1.

Proof. It is clear that if the iterative process (4) converges to X ∈ Mn×r(C) then TX = W and R(X) ⊆ M, 
i.e., X = XM. Now, UXM = V XM +W and so U(Xi+1 −XM) = V (Xi−XM) = UYM(Xi−XM). Then, 
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Xi+1 −XM = YM(Xi −XM) = Y i+1
M (X0 −XM) since M 

.
+ N (U) = Cn. Thus, the iterative process (4)

is convergent for all X0 if and only if ρ(YM) < 1. �
It should be mentioned that the iterative process (4) emerges as a generalization of the iteration intro-

duced in [6] to obtain the best minimum square solution of Tx = b. Indeed, notice that choosing W = PT b

and M = R(T ∗) then the iteration (4) can be used to obtain the best minimum square error solution of 
Tx = b. Furthermore, we stress that the iteration (4) is practical when it is easier to solve the equations 
that involve U than the equation that involves T .

Remarks 5.2.

a) Taking into account Remark 3.2, we observe that the iterative process (4) can also be used for solving 
matrix equations of the form TXS = W . Evidently, in this case a proper splitting for T and a proper 
splitting for S are needed. We recommend [25] and [26] for other applications of splitting of matrices for 
solving matrix equations of the form TXS = W .

b) As it was pointed out in Remark 3.2, the generalized inverses of a matrix T can be described by means 
of reduced solutions of certain matrix equations. Therefore, the iterative process (4) can be applied to 
approximate generalized inverses of a matrix. We recommend [10] and [31] for other perspective of the 
use of splitting of matrices or operators to get generalized inverses.

c) Notice that our goal is to apply the iterative process (4) to approximate the reduced solution for M of the 
matrix equation TX = W . This leads to requiring that ρ(YM) < 1 or, equivalently, that limi→∞ Y i

M = 0. 
If instead we were interested in approximating a solution of TX = W by (4), then a different condition on 
YM is required. For more details, we recommend [32] and [11] where this problem is solved by considering 
YM semi-convergent, i.e., limi→∞ Y i

M exists.

By Lemma 3.3, Proposition 4.2 and Theorem 5.1 we get the next result:

Corollary 5.3. Let T = U − V be a proper splitting of T ∈ Mm×n(C) and let W ∈ Mm×r(C) such that 
R(W ) ⊆ R(T ). Then, the iterative process of the proper splitting T = U − V converges for some M such 
that M 

.
+ N (T ) = Cn if and only if the iterative process of the proper splitting T = U − V converges 

for all M such that M 
.
+ N (T ) = Cn. In particular, the iterative process (4) is convergent if and only if 

ρ(U†V ) < 1.

The following result follows from Propositions 3.6, 3.9 and Theorem 5.1.

Corollary 5.4. Let T, W ∈ Mm×n(C) such that R(W ) ⊆ R(T ) and let M be a subspace of Cn such that 
M 

.
+ N (T ) = Cn. Consider the iterative process for M of the proper splitting T = U − V with respect to 

W , given by (4). Then the following assertions hold:

a) If WT ∗ ∈ Mm
H (C) and ρ(YM) < 1 then the iterative process (4) converges to an Hermitian reduced 

solution of TX = W if and only if R(W ∗) ⊆ M.
b) If WT ∗ ∈ Mm

H (C), r(WT ∗) = r(W ) and ρ(YM) < 1 then the iterative process (4) converges to a positive 
semidefinite reduced solution of TX = W if and only if R(W ∗) ⊆ M.

6. Convergence of proper splittings

In the previous section, the iterative process (4) was defined on the basis of a proper splitting T = U −V

and it was proven that this iterative process is convergent (in which case it converges to the reduced solution 
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for M of TX = W ) if and only if ρ(U†V ) < 1. Accordingly, this section is devoted to provide conditions 
that guarantee ρ(U†V ) < 1. Most of the results in this section are inspired by [6], [14], [34]. In order to 
compare our results with those of the previously mentioned articles, in what follows:

• by K we denote a full cone in Rn and given A ∈ Mm×n(R), by A ∈ IK we mean that A leaves the full 
cone K invariant, i.e., AK ⊂ K;

• by A ∈ Mn
+(C) we mean A ≥ 0 where ≥ denotes the Löwner order in Mn(C);

• by A ∈ Mn
�0(R) we mean that A has nonnegative entries and by 
 we denote the usual order in 

Mm×n(R) induced by nonnegative matrices.

Evidently, Mn
�0(R) = IK with K = Rn

+. In this section, we work with the Löwner order. Theorems 2.1
and 2.2 play a key role for proving the main results of this section.

Proposition 6.1. Let T = U − V be a proper splitting of T . Then the following assertions are equivalent:

a) T †V ∈ Mn
+(C);

b) TV ∗ ∈ Mn
+(C) and r(TV ∗) = r(V );

c) 0 ≤ U†V ≤ PV ∗ ;

d) U†V ∈ Mn
+(C) and ρ(U†V ) = ρ(T †V )

1 + ρ(T †V ) < 1.

Proof. a) ↔ b) It follows from Theorem 3.4 and Proposition 3.9.
a) ↔ c) Let T = U − V be a proper splitting of T . Since T † = (I − U†V )−1U† then

0 ≤ T †V ↔ 0 ≤ (I − U†V )−1U†V ↔ 0 ≤
(
(I − U†V )−1U†V

)†
↔ 0 ≤

(
U†V

)† (I − U†V ) ↔ 0 ≤
(
U†V

)† − PN (U†V )⊥

↔ 0 ≤ PV ∗ ≤
(
U†V

)†
. (5)

Now, if 0 ≤ PV ∗ ≤
(
U†V

)† then R(PV ∗) ⊆ R((U†V )†). So, R((U†V )† −PV ∗) ∩N ((U†V )†) ⊆ R((U†V )†) ∩
N ((U†V )†) = {0}. On the other hand, if 0 ≤ PV ∗ ≤

(
U†V

)† then R(PV ∗) ⊆ R((U†V )†) = R(U†V ). 
Now, R(PV ∗ − U†V ) ∩ N (PV ∗) ⊆ R(U†V ) ∩ N (V ) = R(V ∗(U∗)†) ∩ N (V ) ⊆ R(V ∗) ∩ N (V ) = {0}. 
So that, by Theorem 2.2, we get 0 ≤ U†V ≤ PV ∗ . Conversely, if 0 ≤ U†V ≤ PV ∗ then R((U†V )†) =
R(U†V ) ⊆ R(V ∗). In addition, as N (U†V ) = N (V ) then it holds that R(PV ∗ −U†V ) ∩N (PV ∗) = {0} and 
R((U†V )† − PV ∗) ∩N (U†V ) = {0}. Therefore, applying again Theorem 2.2, 0 ≤ PV ∗ ≤

(
U†V

)†. Then, by 
the equivalences (5), the assertion follows.

a) ↔ d) First, let us prove that λ ∈ σ(T †V ) if and only if μ = λ
1+λ ∈ σ(U†V ). In fact,

T †V x = λx ↔ (I − U†V )−1U†V x = λx ↔ U†V x = (I − U†V )λx

↔ U†V (1 + λ)x = λx ↔ U†V x = λ

1 + λ
x.

Assume that T †V ∈ Mn
+(C). Then ρ(T †V ) ∈ σ(T †V ) and μ = λ

1 + λ
achieves its maximum when λ =

ρ(T †V ). Therefore ρ(U†V ) = ρ(T †V )
1 + ρ(T †V ) < 1. Conversely, if U†V ∈ Mn

+(C) and ρ(U†V ) = ρ(T †V )
1 + ρ(T †V ) < 1

then ‖U†V ‖ = ρ(U†V ) < 1. Then (I−U†V )−1 =
∞∑
k=0

(U†V )k. So that T †V = (I−U†V )−1U†V =
∞∑
k=1

(U†V )k. 

Thus, T †V ∈ Mn
+(C). �
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Remark 6.2. Similar results to Proposition 6.1 are disseminated in the literature in different contexts. For 
example, in [6, Theorem 2], Berman and Plemmons proved that:

If T = U − V is a proper splitting of T ∈ Mm×n(R) with U†V ∈ IK then, T †V ∈ IK if and only if 

ρ(U†V ) = ρ(T †V )
1 + ρ(T †V ) < 1.

Evidently, the result holds if IK is replaced by Mn
�0(R). The particular case IK = Mn

�0(R) together with 
other equivalent conditions can be found in [34, Lemma 2.6] and [29, Lemma 3.5].

Later, Climent and Perea proved that Berman and Plemmons’ result holds if IK is replaced by Mn
+(C)

and T, U are non singular matrices (see [14, Theorem 2.5]). Finally, in [12, Theorem 3], Climent et al. 
unified [14, Theorem 2.5] and [34, Lemma 2.6] by considering a partial order induced by a positivity cone 
of matrices.

Nevertheless, all these results include the general hypotheses U†V ∈ IK or U−1V ∈ Mn
+(C). Notice that 

in Proposition 6.1 we relaxed this general assumption. However, let us observe that this condition can not 
be omitted in the context of nonnegative matrices. In fact, T−1V 
 0 does not imply U−1V 
 0, in general. 

For example, consider the proper splitting of T =
(

3 −1
0 2

)
given by T =

(
4 2
1 2

)
−

(
1 3
1 0

)
. Then, 

T−1V =
(

1/2 1
1/2 0

)

 0, but U−1V =

(
0 1

1/2 −1/2

)
� 0.

Proposition 6.3. Let T = U − V be proper splitting of T . Then the following assertions are equivalent:

a) 0 ≤ U†T ≤ PT∗ ;

b) U†V ∈ Mn
+(C) and ρ(U†V ) = ρ(T †U) − 1

ρ(T †U) < 1.

Proof. Suppose that 0 ≤ U†T ≤ PT∗ = U†U . Then, 0 ≤ U†(U −T ) = U†V and so ρ(U†V ) ∈ σ(U†V ). Then 
there exists 0 �= x ∈ Cn such that U†V x = ρ(U†V )x. So that x ∈ R(U∗) and then x = U†Ux. Therefore 

we get that T †Ux = (I − U†V )−1U†Ux = (I − U†V )−1x = 1
1 − ρ(U†V )x. Then 0 ≤ 1

1 − ρ(U†V ) ≤

ρ(T †U) and so ρ(U†V ) ≤ ρ(T †U) − 1
ρ(T †U) . On the other hand, since T †U ≥ 0 then ρ(T †U) ∈ σ(T †U). Hence, 

there exists 0 �= y ∈ Cn such that T †Uy = ρ(T †U)y. In consequence, y ∈ R(T ∗) and so y = U†Uy. 
Therefore, ρ(T †U)y = T †Uy = (I − U†V )−1U†Uy = (I − U†V )−1y. After some computations we get 

U†V y = ρ(T †U) − 1
ρ(T †U) y. Then 

ρ(T †U) − 1
ρ(T †U) ≤ ρ(U†V ). Therefore, ρ(U†V ) = ρ(T †U) − 1

ρ(T †U) < 1. Conversely, if 

item b) holds then ‖U†V ‖ = ρ(U†V ) < 1. Then I − U†V is invertible. So that (I − U†V )−1 =
∞∑
k=0

(U†V )k. 

Then, by Proposition 4.2, we get that T †U = (I−U†V )−1U†U =
∞∑
k=0

(U†V )kU†U = PU∗+
∞∑
k=1

(U†V )k ≥ 0, or 

equivalently, U†T = (T †U)† ≥ 0. Moreover, 0 ≤ U†V = U†(U−T ) = PT∗ −U†T . The proof is complete. �
Remark 6.4. We recommend [34], [29] and [14] for similar results to Proposition 6.3 but for the partial order 

. On the other hand, a similar result to the previous one but considering T ∈ Mn(C) non singular and 
under the general hypothesis that U−1V > 0, can be found in [14, Theorem 2.5].

Let us observe that in the context of nonnegative matrices if T = U − V is a proper splitting of T then 

U†T 
 0 does not imply U†V 
 0, in general. For example, consider the proper splitting of T =
(

1 0
1 2

)

given by T =
(

1 0
0 2

)
−

(
0 0
−1 0

)
. Then, U†T =

(
1 0

1/2 1

)

 0 but U†V =

(
0 0

−1/2 0

)
� 0.
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Proposition 6.5. Let T = U − V be a proper splitting of T . If there exists X̃ ∈ Mn
H(C) such that UX̃ = V

and ρ(X̃) < 1 then ρ(U†V ) ≤ ρ(X̃) < 1.

Proof. Let X̃ ∈ Mn
H(C) such that UX̃ = V and ρ(X̃) < 1. Then, by Theorem 3.4 and Proposition 4.3, it 

holds that U†V ∈ Mn
H(C) and so ρ(U†V ) = ‖U†V ‖. Now, since X̃ = U†V + Z for some Z ∈ Mn(C) with 

R(Z) ⊆ N (U), we get that ρ(U†V ) = ‖U†V ‖ ≤ ‖X̃‖ = ρ(X̃) < 1. �
Once the converge of the iterative process is guaranteed, then the second problem to be addressed is to 

improve the speed of convergence of the method. To this end, we provide two comparison results.

Theorem 6.6. Let T = U1 − V1 = U2 − V2 be two proper splittings of T such that 0 ≤ T †V1 ≤ T †V2 and 
N (V1) = N (V2). Then ρ(U†

1V1) ≤ ρ(U†
2V2) < 1.

Proof. Since 0 ≤ T †V1 ≤ T †V2 and N (V1) = N (V2) we get that N (T †V1) = N (V1) = N (V2) = N (T †V2)
and R(T †V1) = R(T †V2). Now, observe that R(T †V2 − T †V1) ∩N (T †V2) ⊆ R(T †V2) ∩N (T †V2) = {0}. On 
the other hand, R((T †V1)† − (T †V2)†) ∩N (T †V1) ⊆ N (V1)⊥ ∩N (T †V1) = N (V1)⊥ ∩N (V1) = {0}. So that, 
by Theorem 2.2 it holds that 0 ≤ (T †V2)† ≤ (T †V1)†. Now, since T † = (I − U†

1V1)−1U†
1 = (I − U†

2V2)−1U†
2

it holds that

0 ≤
(
T †V2

)† ≤ (
T †V1

)† ↔ (
(I − U†

2V2)−1U†
2V2

)†
≤

(
(I − U†

1V1)−1U†
1V1

)†

↔ 0 ≤
(
U†

2V2

)† (
I − U†

2V2

)
≤ (U†

1V1)†(I − U†
1V1)

↔ 0 ≤
(
U†

2V2

)†
− PN (U†

2V2)⊥ ≤
(
U†

1V1

)†
− P

N
(
U†

1V1

)⊥

↔ 0 ≤
(
U†

2V2

)†
− PV ∗

1 ≤
(
U†

1V1

)†
− PV ∗

1

↔ 0 ≤
(
U†

2V2

)†
≤

(
U†

1V1

)†

↔ 0 ≤ U†
1V1 ≤ U†

2V2.

Then, by Proposition 6.1, we get that ρ(U†
1V1) ≤ ρ(U†

2V2) < 1. �
Theorem 6.7. Let T = U1 − V1 = U2 − V2 be two proper splittings of T . If 0 ≤ T †U1 ≤ T †U2 ≤ PT∗ then 
ρ(U†

1V1) ≤ ρ(U†
2V2) < 1.

Proof. By Proposition 6.3, it holds that ρ(U†
1V1) < 1 and ρ(U†

2V2) < 1. Now, observe that

0 ≤ T †U1 ≤ T †U2 ≤ PT∗ ↔ 0 ≤ (I − U†
1V1)−1U†

1U1 ≤ (I − U†
2V2)−1U†

2U2 ≤ PT∗

↔ 0 ≤ (I − U†
1V1)−1PT∗ ≤ (I − U†

2V2)−1PT∗ ≤ PT∗

↔ 0 ≤
(
(I − U†

2V2)−1PT∗

)†
≤

(
(I − U†

1V1)−1PT∗

)†
≤ PT∗

↔ 0 ≤ PT∗(I − U†
2V2) ≤ PT∗(I − U†

1V1) ≤ PT∗

↔ 0 ≤ PT∗ − U†
2V2 ≤ PT∗ − U†

1V1 ≤ PT∗

↔ 0 ≤ U†
1V1 ≤ U†

2V2 ≤ PT∗ ,

where the third equivalence holds because r((I−U†
1V1)−1PT∗) = r(PT∗) and r((I −U†

2V2)−1PT∗) = r(PT∗)
(see Theorem 2.2). Therefore, ρ(U†

1V1) ≤ ρ(U†
2V2) < 1. �
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Remark 6.8. Comparison results similar to those above but for the partial order 
, can be found in [34], 
[29]. When contrasting our results with those for the partial order 
, it can be observed that we require 
extra conditions on the matrices of the splittings in order to get the conclusions. More precisely, we require 
that N (V1) = N (V2) in Theorem 6.6 and that T †U1 ≤ T †U2 ≤ PT∗ in Theorem 6.7. We leave as an open 
problem to determine if these conditions can be relaxed.

7. Some examples of proper splittings

Recall that every T ∈ Mm×n(C) can be factorized as T = U |T |, where U ∈ Mm×n(C) is a partial 
isometry and |T | = (T ∗T )1/2. Such a factorization is called a polar decomposition of T and the matrix U is 
unique if R(U) = R(T ). In what follows, we call the polar decomposition of T to the unique factorization 
T = UT |T | where UT ∈ Mm×n(C) is a partial isometry with R(UT ) = R(T ). Notice that it also holds 
that N (UT ) = N (T ). Therefore, the partial isometry UT can be used to define a proper splitting of T , 
T = UT −V . This proper splitting has the advantage that U†

T = U∗
T . The aim in this section is to study this 

particular proper splitting. We study equivalent conditions to guarantee the convergence of this particular 
proper splitting and we compare it with some proper splittings defined for certain classes of matrices.

Proposition 7.1. Let T ∈ Mm×n(C). Then T = UT − V is a proper splitting of T such that U∗
TV ∈ Mn

H(C).

Proof. Since R(UT ) = R(T ) and N (UT ) = N (T ) then T = UT − V is a proper splitting. Now, as U∗
TV =

U∗
T (UT − T ) = PT∗ − |T | then U∗

TV is Hermitian. �
The next result due to Baksalary, Liski and Trenkler [3] will be used to prove Proposition 7.3. We present 

an alternative proof.

Lemma 7.2. Let A, B ∈ Mn
+(C). Then, A ≤ B if and only if ρ(B†A) ≤ 1 and R(A) ⊆ R(B).

Proof. Let A, B ∈ Mn
+(C). If A ≤ B then, by Douglas’ theorem [18, Theorem 1], R(A) ⊆ R(B) and 

‖(B1/2)†A1/2‖ = inf{λ : A ≤ λB}. Thus, ‖(B1/2)†A1/2‖ ≤ 1. Therefore, ρ(B†A) = ρ(A1/2B†A1/2) =
‖A1/2B†A1/2‖ = ‖(B1/2)†A1/2‖2 ≤ 1.

Conversely, suppose that ρ(B†A) ≤ 1 and R(A) ⊆ R(B). Hence, since σ(A1/2B†A1/2) = σ(B†A) we get 
that ‖(B1/2)†A1/2‖2 = ‖A1/2B†A1/2‖ = ρ(A1/2B†A1/2) = ρ(B†A) ≤ 1. Then, applying again [18, Theorem 
1], inf{λ : A ≤ λB} = ‖(B1/2)†A1/2‖ ≤ 1. Therefore A ≤ B. �

In the next proposition we provide sufficient conditions for the convergence of the proper splitting T =
UT − V .

Proposition 7.3. Let T ∈ Mm×n(C) and consider the proper splitting T = UT − V of T . The following 
conditions are equivalent:

a) T †V ∈ Mn
+(C);

b) U∗
TV ∈ Mn

+(C);
c) ‖T‖ ≤ 1.

If any of the above conditions holds then the proper splitting T = UT − V is convergent.

Proof. a) ↔ b) Suppose that T †V ∈ Mn
+(C). Since T †V = |T |† − PT∗ ≥ 0 then, by Theorem 2.2, it holds 

|T | ≤ PT∗ . Therefore, U∗
TV = U∗

T (UT − T ) = PT∗ − |T | ∈ Mn
+(C). The converse is similar.
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b) ↔ c) If U∗
TV = PT∗ − |T | ≥ 0 then |T | ≤ PT∗ and so ‖T‖ = ‖|T |‖ ≤ 1. Conversely, if ‖T‖ ≤ 1 we get 

that ‖PT∗ |T |‖ = ‖|T |‖ = ‖T‖ ≤ 1. Thus, ρ(PT∗ |T |) ≤ 1. So that, as R(|T |) = R(PT∗), by Lemma 7.2 we 
get that |T | ≤ PT∗ . Therefore, U∗

TV ∈ Mn
+(C).

The last part follows from Proposition 6.1. �
The remaining of this section is devoted to study proper splittings for normal matrices and for matrices 

that can be factorized as the product of two orthogonal projections.
To this end, we denote by P · P = {T ∈ Mn(C) : T = P1P2 with P1, P2 ∈ P}, where P = {Q ∈

Mn(C) : Q = Q2 = Q∗}. This set was studied by Corach and Maestripieri in [16] in the more general 
context of bounded linear operators defined on a Hilbert space. In the finite dimensional case, they proved 
that if T ∈ P · P then T = PTPT∗ and R(T )+̇N (T ) = Cn (see [16, Theorem 3.2]). In such case, notice 
that the projection Q := QR(T )//N (T ) is well-defined and it can be used to define a proper splitting of T , 
T = Q − V1. In the next proposition we study the convergence of this proper splitting and we compare it 
with T = UT − V .

Proposition 7.4. Let T ∈ P · P and Q = QR(T )//N (T ). Then the following assertions hold:

a) The proper splitting T = Q − V1 is convergent.
b) The proper splitting T = UT − V is convergent.
c) ρ(U∗

TV ) ≤ ρ(Q†V1) < 1.

Proof. a) By Proposition 6.1, it suffices to prove that T †V1 ∈ Mn
+(C). Now, by [15, Theorem 4.1], it holds 

that T † = Q∗. Then T †V1 = T †(Q − T ) = Q∗Q − PT∗ ≥ 0. Thus, T †V1 ∈ Mn
+(C) and the splitting 

T = Q − V1 is convergent.
b) Since T ∈ P · P then T ∗ ∈ P · P. So that 0 ≤ T ∗T = PT∗PTPT∗ = PT∗T ≤ PT∗ . Therefore, |T | ≤ PT∗

and so, U∗
TV = PT∗ − |T | ≥ 0. Therefore, by Proposition 7.3 we get that the proper splitting T = UT − V

is convergent.
c) By the above items, the proper splittings T = Q −V1 and T = UT −V are convergent. As Q† = PT∗PT

(see [15, Theorem 4.1]) we get that

Q†V1 = PT∗PTV1 = PT∗PT (Q− T )

= PT∗(Q− T ) = PT∗ − PT∗PTPT∗ ,

and

U†
TV = U†

T (UT − T ) = PT∗ − |T |

= PT∗ − |PTPT∗ |.

Since 0 ≤ PT∗PTPT∗ ≤ I then 0 ≤ PT∗PTPT∗ ≤ (PT∗PTPT∗)1/2 ≤ I and so PT∗PTPT∗ ≤ |PTPT∗ |. Hence, 
0 ≤ U†

TV ≤ Q†V1, where 0 ≤ U†
TV holds by the proof of item b). Therefore, ρ(U∗

TV ) ≤ ρ(Q†V1) < 1. �

Example 7.5. Observe that the inequality ρ(U∗
TV ) ≤ ρ(Q†V1) can be strict. Take T =

(
1/2 0
−1/2 0

)
=(

1/2 −1/2
−1/2 1/2

)(
1 0
0 0

)
∈ P · P.
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Consider the proper splitting T = UT − V =
( √

2/2 0
−
√

2/2 0

)
. Now, since U∗

TV =
(

2−
√

2
2 0
0 0

)
then 

ρ(U∗
TV ) = 2−

√
2

2 . On the other hand, consider the proper splitting T = Q − V1 =
(

1 0
−1 0

)
− V1. Then, 

Q†V1 =
(

1/2 0
0 0

)
and so ρ(Q†V1) = 1

2 . Therefore ρ(U∗
TV ) < ρ(Q†V1) < 1.

We end this section by studying proper splittings of normal matrices. More precisely, given a normal 
matrix T we study the proper splitting T = PT − V2 and we compare it with T = UT − V .

Proposition 7.6. Let T ∈ Mn(C) be a normal matrix. Then, the following assertions hold:

a) The proper splitting T = PT − V2 is convergent if and only if ‖PT − T‖ < 1.
b) If T ∈ Mn

H(C), PT − |T | ∈ Mn
+(C) and ‖PT − T‖ < 1 then the proper splittings T = PT − V2 and 

T = UT − V are convergent and ρ(U∗
TV ) ≤ ρ(V2) < 1.

Proof. a) Observe that if T is normal then V2 = PT − T is also normal. Therefore, ρ(PTV2) = ρ(V ) =
‖PT − T‖. Thus, T = PT − V is convergent if and only if ‖PT − T‖ < 1.

b) Let T ∈ Mn
H(C) and consider the proper splittings T = PT − V = UT − V1. Since ‖PT − T‖ < 1 and 

U∗
TV = PT − |T | ∈ Mn

+(C) then both splittings are convergent. Moreover, as T ∈ Mn
H(C) then T ≤ |T |. 

Thus, 0 ≤ U∗
TV = U∗

T (UT − T ) = PT − |T | ≤ PT − T = V2 = PTV2. Therefore, ρ(U∗
TV ) = ‖PT − |T |‖ ≤

‖PT − T‖ = ρ(V2) < 1. �
Given a normal matrix T ∈ Mn(C), then a natural proper splitting to be considered is: T = |T | − V3. 

However, it can be proved that if ρ(|T |†V3) < 1 then T ∈ Mn
+(C). Thus, T = |T | and the proposed splitting 

has not any sense.
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