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In this paper, we suggest and analyze some new classes of three-step iterative
algorithms for solving multivalued quasi variational inclusions by using the resol-
vent equations technique. New iterative algorithms include the Ishikawa, Mann,
and Noor iterations for solving variational inclusions (inequalities) and optimization
problems as special cases. The results obtained in this paper represent an improve-
ment and a significant refinement of previously known results. © 2001 Academic Press
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1. INTRODUCTION

Multivalued quasi variational inclusion, which was introduced and studied
by Noor [15, 20, 21, 23, 24], is a useful and important extension of the vari-
ational principles with a wide range of applications in industry, physical,
regional, social, pure, and applied sciences. Some special cases have been
studied by many authors including Ding [4], Noor [12-16], and Noor and
Noor [25]. Quasi variational inclusions provide us with a unified, natural,
novel, innovative, and general technique to study a wide class of problems
arising in different branches of mathematical and engineering sciences. It
is well known that the projection methods, Wiener-Hopf equation tech-
niques, and auxiliary principle techniques cannot be extended and mod-
ified for solving variational inclusions. This fact motivated us to develop
another technique, which involves the use of the resolvent operator associ-
ated with the maximal monotone operator. Using this technique, one shows
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that the variational inclusions are equivalent to the fixed point problem.
This alternative formulation was used to develop numerical methods for
solving various classes of variational inclusions and related problems; see
[4, 9-26]. In recent years, three-step forward-backward splitting methods
have been developed by Glowinski and Le Tallec [7] and Noor [13, 14, 22]
for solving various classes of variational inequalities by using the Lagrangian
multiplier, updating the solution and the auxiliary principle techniques. It
has been shown in [7] that the three-step schemes give better numerical
results than the two-step and one-step approximation iterations. For the
applications of the splitting methods in partial differential equations, see
Ames [1] and the references therein. Equally important is the area of the
resolvent equations, which is mainly due to Noor [18]. Using the resol-
vent operator methods, it can be shown that the variational inclusions are
equivalent to the resolvent equations. It has been shown in [9, 11-16, 20,
21, 25, 26] that the resolvent equations technique can be used effectively
to develop some powerful iterative algorithms for various classes of varia-
tional inclusions (inequalities) as well as to study the sensitivity analysis for
variational inclusions. It is well known that the resolvent equations include
the Wiener-Hopf equations as a special case. The Wiener-Hopf equations
were introduced and studied by Shi [30] and Robinson [29] in relations
with classical variational inequalities. For the recent state-of-the-art, see,
for example, [10] and the references therein. In this paper, we again use
the resolvent equations technique to suggest and analyze a new class of
three-step iterative schemes for solving multivalued quasi variational inclu-
sions. Our results include the Ishikawa, Mann, and Noor [13, 14] itera-
tions for solving variational inclusions (inequalities) as special cases. We
also study the convergence criteria of these new methods. Since multival-
ued quasi variational inclusions include mixed quasi variational inequali-
ties, complementarity problems, and nonconvex programming problems as
special cases, our results continue to hold for these problems. Our results
extend and generalize the previously known results.

2. PRELIMINARIES

Let H be a real Hilbert space whose inner product and norm are denoted
by (-, -} and ||-||, respectively. Let C(H) be a family of all nonempty compact
subsets of H. Let T,V : H — C(H) be the multivalued operators and
g : H — H be a single-valued operator. Let A(-,): H x H — H be a
maximal monotone operator with respect to the first argument. For a given
nonlinear operator N(-,-) : H x H — H, consider the problem of finding
ueH,we T(u), y € V(u) such that

0 N(w,y)+ A(g(u), u), 2.1
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which is called the multivalued quasi variational inclusions; see Noor
[15, 20, 21, 23, 24]. Some special cases of (2.1) have been studied by
Noor [14-22], Ding [4], Noor and Noor [25], and Noor et al. [26] recently.
A number of problems arising in structural analysis, mechanics, and eco-
nomics can be studied in the framework of the multivalued quasi variational
inclusions; see for example, [3, 26, 28].

Special Cases

O If A(,u) =9d¢(-,u): Hx H— RU{+o0}, is the subdiffer-
ential of a convex, proper, and lower semi-continuous function ¢(-, u) with
respect to the first argument, then problem (2.1) is equivalent to finding
ueH,we T(u), y € V(u) such that

(N(w, ), 8(v) — g(w)) + b(8(v), g(w))
—b(g(u), g(u)) =0, for all v € H, (2.2)
which is called the set-valued mixed quasi variational inequality. Problem

(2.2) has been studied by Noor [11, 12] using the resolvent equations
technique.

1) If A(g(u,v) = A(g(u)), for all v € H, then problem (2.1) is
equivalent to finding u € H, w € T(u), y € V' (u) such that
0€ N(w,y) + A(g(w)), (2.3)

a problem considered and studied by Noor [16] using the resolvent equa-
tions technique. Some special cases have been studied by Robinson [28]
and Uko [32].

1) 1If A(g(u)) = dd(g(u)) is the subdifferential of a proper,
convex, and lower, semicontinuous function ¢ : H — R U {400}, then
problem (2.1) reduces to finding u € H, w € T(u), y € V' (u) such that

(N(w, y), g(v) = g(w)) + b(8(v)) — d(g(w)) = 0. (2.4)
Problem (2.4) is known as the set-valued mixed variational inequality and
has been studied by Noor et al. [26].

(IV) If the function ¢(-,-) is the indicator function of a closed
convex-valued set K(u) in H, that is,

) = Ko u) = |

then problem (2.2) is equivalent to finding u € H, w € T(u), y € V(u),
g(u) € K(u) such that

(N(w, y), g(v) — g(u)) =0, for all v € K(u), (2.5)

a problem considered and studied by Noor [19], using the projection
method and the implicit Wiener—Hopf equations technique.

0, if ueK(u)
400, otherwise,
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(V) If K*(u)={ueH, (u,v)>0,forall ve K(u)} is a polar cone
of the convex-valued cone K(u) in H, then problem (2.5) is equivalent to
finding u €, w € T(u), y € V(u) such that

g(”) GK(H), N(w’ y) EK*(M)’ and <N(w’ Y), g(”)) =0,

which is called the generalized multivalued implicit complementarity
problem.

For special choices of the operators T, N(-, -), g, and the convex set K,
one can obtain a large number of variational inclusions (inequalities) and
implicit (quasi) complementarity problems; see, for example, [2-28] and the
references therein. We would like to mention that the problem of finding
a zero of the sum of two maximal monotone operators [31], the location
problem min, 5 {f(«) + g(u)}, where f, g are both convex functions, var-
ious classes of variational inequalities, and the complementarity problems
are very special cases of problem (2.1). Thus it is clear that problem (2.1)
is a general and unifying one and has numerous applications in pure and
applied sciences.

We now recall some basic concepts and results.

DEeFINITION 2.1 [2]. If T is a maximal monotone operator on H, then,
for a constant p > 0, the resolvent operator associated with T is defined by

Jr(u) =+ pT) 1(u), for all u € H,

where I is the identity operator. It is known that the monotone operator T
is maximal monotone if and only if the resolvent operator J; is defined
everywhere on the space. Furthermore, the resolvent operator Jp is single-
valued and nonexpansive.

Remark 2.1.  Since the operator A(-, -) is a maximal monotone operator
with respect to the first argument, for a constant p > 0, we denote by

Tawy = (I + pA(u))_l(u), for all u € H,

the resolvent operator associated with A(-, u) = A(u). For example, if
A(, u) = dp(-, u), for all u € H, and ¢(-,-) : H x H — R U {+o0} is
proper, convex, and lower semicontinuous with respect to the first argu-
ment, then it is well known that d¢ (-, u) is a maximal monotone opera-
tor with respect to the first argument. In this case, the resolvent operator

Taw = o) 18
Jow = (I + padb(-,w)) "' (u) = (I + pad(w)) '(w),  forallu e H,

which is defined everywhere on the space H, where d¢(u) = dd(-, u). For
recent state-of-the-art of the nonconvex analysis, see Gao [5].
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Let R 44y = I —J 4, where [ is the identity operator and J 4,y = ({ +
pA(u))~! is the resolvent operator. For given T,V : H — C(H) and
N(-,-) : Hx H — H, consider the problem of finding z,u, € H,w €
T(u),y € V(u) such that

N(w7 y) + pilRA(u)Z =0, (26)

where p > 0 is a constant. Equations (2.6) are called the implicit resol-
vent equations introduced and studied by Noor [21, 23]. In particular, if
A(g(u), u) = A(u), then J 4,y = (I + pA)~' =J 4 and the implicit resol-
vent equations (2.6) are equivalent to finding z, u, € H, w € T(u), y € V(u)
such that

N(wa y) + pilRAZ =0, (27)

which are called the resolvent equations; see Noor [16]. It has been shown
in [16] that the problems (2.3) and (2.7) are equivalent by using the gen-
eral duality principle. This equivalence was used to suggest and analyze
some iterative methods for solving the generalized set-valued variational
inclusions. For formulation and applications of the resolvent equations, see
[11-13, 16, 17, 21-26].

If A(-,) = ¢(-,-) is the indicator function of a closed convex set K(u)
in H, then the resolvent operator J ) = Pg(u), the projection of H
onto K(u). Consequently, problem (2.6) is equivalent to finding z, u € H,
w € T(u), y € V(u) such that

N(w9 y) + pQK(u)Z = 0’ (28)

where Og(,) = I — Pk, and [ is the indentity operator. The equations
of the type (2.8) are called the implicit Wiener—-Hopf equations introduced
and studied by Noor [19]. For recent applications and numerical methods of
the Wiener-Hopf equations, see [10, 18, 19, 27, 29, 30] and the references
therein.

DErFINITION 2.2.  For all uy, u, € H, the operator N(-,-) is said to be
strongly monotone and Lipschitz continuous with respect to the first argu-
ment, if there exist constants & > 0, 8 > 0 such that

(N(wy, ) = N(wy, ), uy — up) = alluy — us|?,
for all w; € T(uy), w, € T(uy)
[IN(uy, ) = N(uy, )|l < Blluy — us -

In a similar way, we can define strong monotonicity and Lipschitz continuity
of the operator N(-, -) with respect to the second argument.
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DEeFINITION 2.3. The set-valued operator V' : H — C(H) is said to be
M-Lipschitz continuous, if there exists a constant ¢ > 0 such that

MV (u),V(v)) < éllu—nl, for all u,v € H,
where M (-, -) is the Hausdorff metric on C(H).

We also need the following condition.

Assumption 2.1.  For all u, v, w € H, the resolvent operator J 4, satis-
fies the condition

I ayw — T gmywll < vlu— vl
where v > 0 is a constant.

Assumption 2.1 is satisfied when the operator 4 is monotone jointly with
respect to two arguments. In particular, this implies that 4 is monotone
with respect to the first argument.

3. MAIN RESULTS

In this section, we use the resolvent operator technique to establish the
equivalence between the multivalued quasi variational inclusions and the
implicit resolvent fixed points. This equivalence is used to suggest an iter-
ative method for solving the quasi variational inclusions. For this purpose,
we need the following well known result; see Noor [20, 21]. However, we
include its proof for the sake of completeness.

LemMA 3.1 (u, w, y) is a solution of (2.1) if and only if (u, w, y) satisfies
the relation

8(u) = J4ulg(u) — pN(w, )], G.D)

where p > 0 is a constant and J 4,y = (I + pA(u))~" is the resolvent oper-
ator.

Proof. Letu e H, w e T(u), y € V(u) be a solution of (2.1). Then, for
a constant p > 0,

(2.1) < 0€ pN(w,y)+ pA(g(u), u)
= 0e —(g(u) — pN(w, y)) + (I + pA(u))g(u)
— g(u) = ']A(M)[g(u) — pN(w, Y)],

the required result. |
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From Lemma 3.1, we conclude that the multivalued quasi variational
inclusions (2.1) are equivalent to the implicit fixed-point problem (3.1). This
alternative formulation is very useful from both the theoretical and numer-
ical analysis points of view. We use this equivalence to propose some three-
step iterative algorithms for solving multivalued quasi variational inclusions
(2.1) and related optimization problems.

The relation (3.1) can be written as

Uu=u-— g(u) + JA(u)[g(u) - pN(w’ Lt)], (32)

where p > 0 is a constant.
This fixed-point formulation allows us to suggest the following unified
three-step iterative algorithm.

ALGORITHM 3.1 [24]. Assume that T,V : H — C(H), g: H — H,
and N(-,-), A(-,-) : H x H — H are operators. For a given u, € H,

compute the sequences {v,}, {x,}, {u,}, {w,} , {y.}> {w,}, M} {nahs
and {¢,} by the iterative schemes

w, € T(uy) : 1w, = W, = M(T(ty 1), T(w,))
B € V) s = 3all = MV (i), V ()
@, € T(x,) [Ty = Wyl| = M(T(x0), T(,))
T € V(&) Ty = Tall = MV (), V()
1 € T(0,) s = mall = M(T(0,0), T(v,))
b € VW) léner = &4ll < MV (0,01), V()
X = (1= 9ty + ¥ {1t = 8(00,) + L agu [8Ct) = PN, 3] |
vy = (1= Bty + Bl % = 8(5,) + L [8(x,) — PN (7, 7)1}

Upp1 = (1—a,)u, + an{vn - g(vn) +JA(U,,)[g(vn) - PN(”fln, fn)]]?
n=0,1,2,...,

where 0 < «,,, B,,, v, < 1; for all n > 0, and }_72 , @, diverges. For v, =0,
Algorithm 3.1 is the Ishikawa iterative scheme for solving multivalued
quasi variational inclusions; see Noor [15]. For 8, =0 = v, and «, = A,
Algorithm 3.1 has been studied by Noor [20, 21].

If A(-,v) = ¢(-,v), for all v € H, is an indicator function of a closed
convex-valued set K(u) in H, then J ) = P, the projection of H
onto the convex-valued set K(u) in H. Consequently, Algorithm 3.1
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collapses to:

ALGORITHM 3.2. For given uy € H, wy € T(ugy), yo € V(uy), g(uy) €

K(up), compute the sequences {v,}, {x,}, {u,}, {w,}, {ys}, {n4}, and
{¢,} from the iterative schemes

w, € T(uy,) : |w,pq — w,| < M(T(u1q), T(uy))
Yn € V(W) 1 Yns1 = Yall = M(V (1), V ()
w, € T(x,) : [ Wy — W, < M(T(x,11), T(x,))
Yo € V() ¥t = Ial = MV (x,10), V(%))
Ny € T(vy) 2 1Musy = Mall < M(T(v,41), T(v,,))
£ € V(W) i 1€nir = Enll < M(V (0331), V (V)

Xp = (1 - ’Yn)un + ’Yn{un - g(un) + PK(u,,)[g(un) - pN(wm yn)]

Uy, = (1 - Bn)un + :Bn{xn - g(xn) + PK(x,,)[g(xn) - pN(w_na E)]}
Up1 = (1 - an)un + an[vn - g(vn) + PK(vn)[g(Un) - PN(”’lm é:n)] }7
n=0,1,2,...,

where 0 < e, B,,, ¥, < 1foralln > 0and Y, e, diverges. Algorithm 3.2
appears to be a new one for multivalued variational inequalities (2.5).

Let {A"(.,u)},cy be a sequence of maximal monotone operators
with respect to the first argument, which approximates A(, .u) = A(u) on
H x H. We now suggest and analyze some perturbed type algorithms for
multivalued quasi variational inclusions (2.1).

ALGORITHM 3.3 [24]. For given uy € H, wy € T(uy), y € V' (up), com-

pute the sequences {v, }, {x,}, {u,}, {w,}, {y.}; {wi}, {¥.}s {m,}, and {,,}
from the iterative schemes

w, € T(u,) 2wy — w,l < M(T (1), T(n,))
Yo € V() 1yss = Yall = MV (t41), V (w,))
w, € T(x,) : [W,r =, < M(T(x,11), T(x,))
Yo € V(x,) 2 137 = Vull = MV (x,41), V()
Ny € T(,) M1 = Mall < M(T(v,11), T(v,))
€ € V() 1 €1 — &ll = MV (V,0), V()

Xn = (1 - yn)un + Yn{un - g(un) + JAE’U”)[g(un) - pN(wn’ yn)]} + ynhn
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U, = (1 - Bn)un + Bn[xn - g(xn) +JA:’X”)[g(xn) - pN(w_n’ .)Tn)]} + ann

Upp1 = (1 - an)un + an[vn - g(vn) +JAE'vn)[g(vn) - PN(nn, ‘fn)]} + a,€y,
n=0,1,2,...,

where 0 < e, B,, v, < 1;forall n > 0, and ), , diverges and p > 0 is
a constant. Here {e,}, {f,}, and {A,} are sequences of the elements of H
to take into account possible inexact computations.

For vy, = 0, Algorithm 3.3 is two-step perturbed iterative method for
solving multivalued quasi variational inclusions, which appears to be a new
one. For e, = f, = h, = 0 and A"(u) = A(u), Algorithm 3.3 is exactly the
Algorithm 3.1. which has been studied by Noor [24].

We now suggest and analyze another class of three-step iterative schemes
using the resolvent equations technique. For this purpose, we need the
following result, which is due to Noor [21].

LEMMA 3.2.  The multivalued quasi variational inclusion (2.1) has a solu-
tionue HyweT(u),yeV(u)ifand only if z,u,e H,w e T(u),y € V(u)
is a solution of the implicit resolvent equations (2.6), where

g(u) =J 42 (3.3)
z=g(u) — pN(w, y), (34)

and p > 0 is a constant.

Lemma 3.2 implies that the problems (2.1) and (2.6) are equivalent. This
equivalent interplay between these problems plays an important and crucial
role in suggesting and analyzing various iterative methods for solving multi-
valued quasi variational inclusions and related optimization problems. By a
suitable and appropriate rearrangement of the implicit resolvent equations
(2.6), we suggest and analyze a class of three-step iterative methods for the
multivalued quasi variational inclusions (2.1).

Equations (2.6) can be written as

RA(u)Z = —pN(w, y),
which implies that
z=J uz—pN(w,y)=g(u) — pN(w, y),  using (3.3).

We use this fixed-point formulation to suggest the following three-step
iterative scheme for solving multivalued quasi variational inclusions (2.1).
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ALGORITHM 3.4. For given z,, u, € H, wy € T(uy), yy € V(uy),

compute the sequences {z,}, {u,}, {w,}, {yu}, {0}, {Vu}s {n,}, and {,}
by the iterative schemes

g(u,) = J A(u,)%n (3.5)
g(x,) = JA(xn)xn (3.6)
g8(vy) = J 4@, Vn (3.7
w, € T(uy) t wey —w,ll < M(T(,11), T(u,)) (3.8)
Yo € V() 1Yss = yall = MV (41), V() (3.9)
w, € T(x,) : [[w, 7 —w,]| < M(T(x,11), T(x,)) (3.10)
Yo € V(%) 31 = Vull = M(V(x,41), V(%)) (3.11)
My € T(0,) ¢ 100 = Mall = M(T(v,11), T(v,)) (3.12)
£ €V (W)t €n — &l = MV (0,41), V (v,)) (3.13)
Xy = (1= v0)z, + vul8(u,) — pN(w,, y,)} (3.14)
Vo = (1= Bp)z, + Bu{g(x,) — pN(W,, 3)} (3.15)

zyp1 = (1 = @)z, + a,{g(v,) = pPN(n,.6,)},
n=0,1,2,..., (3.16)

where 0 < a,,, B,,, v, < 1; for all n > 1 and }_32 , @, diverges.

For A, = 0, Algorithms 3.4 is known as the two-step iterative method
for solving multivalued quasi variational inequalities (2.1); see Noor [23].
In brief, for suitable and appropriate choice of the operators 7, V, g, and
the spaces H, K, one can obtain a number of new and previously known
algorithms for solving variational inclusions (inequalities) and related opti-
mization problems.

We now study the convergence criteria of Algorithm 3.4. using the
method of Noor [23, 24].

THEOREM 3.1. Let the operator N (-, -) be strongly monotone with constant
a > 0 and Lipschitz continuous with constant B > 0 with respect to the first
argument. Let g : H — H be strongly monotone with constant o > 0 and be
Lipschitz continuous with constant 8 > 0. Assume that the operator N(-, -) is
Lipschitz continuous with constant A > 0 with respect to the second argument
and V' is M-Lipschitz continuous with constant { > 0. Let T : H — C(H)
be a M-Lipschitz continuous with constant u > 0. If Assumption 2.1 holds
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and
a—(1-k)AL
=B Np

_Vla— = AT — k(B2 - 222~ k)

e (3.17)
a> (1= kA + Jk(B2u2 — X2 2)(2 — k) (3.18)
pAL<1—k (3.19)
k=2(V1-20+8) +, (3.20)

then there exist z,u € H, w € T(u), y € V(u) satisfying the implicit resolvent
equations (2.6) and the sequences {u,}, {w,}, {y.}, {w,.}, {3}, {n.}, and
{¢,}, generated by Algorithm 3.1 converge to u, w, y, w, ¥, n, and & strongly
in H, respectively.

Proof. 1f Assumption 2.1 and the conditions (3.17)-(3.19) hold, then it
has been shown in [20, Theorem 3.1, p. 106] that there exists a solution
ueH, weT(u), yeV(u)satisfying the multivalued quasi variational
inclusion (2.1). Let u € H be the solution of (2.1). Then from Lemma 3.2,
it follows that z, u € H is also a solution of the resolvent equations (2.6)
and

g(u) =J 402 (3.21)
z=(1-a,)z+a,{gu) — pN(w, y)} (3:22)

= (1= Bz + Bafg(u) — pN(w, y)} (3:23)

= (1= )z + Ya{8(w) — pN(w, y)}, (3:24)

where 0 < «,, B,,, v, < 1 are constants.
From (3.14) and (3.24), we have

X, =zl < (A= v)lz, — =
+ Vullg () — g(u) — p{N(w,, y,) — N(w, )}l
< (= v)llzw = zll + Yalluy — u — (8(u,) — g(w)||
+Yulltty — = p(N(wy, y,) = N(w, y,))|
+pY,IN(w, y,) — N(w, y)|. (3.25)
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Since g is a strongly monotone and Lipschitz continuous operator with
constants o > 0, 8 > 0, it follows that

et — 1 = (g(u,) — g(w)) |

= llu, — ull* = 2(u, — u, g(u,) — g(u)) + lg(u,) — g(w)|I*
< (1 =20+ 8)|u, —ul?

_ (k ; ”) lu, —ull,  using (3.20). (3.26)

Using the strong monotonicity and Lipschitz continuity of the operator
N(-, -) with respect to the first argument, we have

= 1= p(N(w,, y,) = N(w, y,)) I
= llup = ull® = 2p{N (wy, y,) = N(w, ,), u, — u)
+p?IN(w,, y,) = N(w, ,)|°
< (1-2pa+ p*B2u?)u, — ull*. (3.27)

From the Lipschitz continuity of the operator N(, -) with respect to the
second argument and the M-Lipschitz continuity of V', we have

< AM(V(u,), V(u))

< ALlluy — ul. (3.28)
Combining (3.25)-(3.28), we obtain
I = 21 = (= )z =l mf 557 AL+ 00y =l 329)
where
t(p) = /1 - 2pa + p?B2u?. (330)

From (3.5) and (3.3), we have

luy — ull < N, — u — (8(n) = )| + 1 aqu,)Zn — T a2l
= ”un —u- (g(un) - g(u))” + ”‘IA(un)Zn - ‘,A(u,,)Z”
+ 1 aqu,)z = T aw)zll

k—v
=\ =l —ull + vl —ul + ]|z, - 2|
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which implies that

1
iy =l = (1= yyz ) Jon = 21 (331

Combining (3.29) and (3.31), we obtain

(k = v)/2+ pAL + 1(p)
1—(k+v)/2 }”Z" ==l

= (1 - ’Yn)”Zn - Z” + yn0||zn - Z”
=1 =70-0)lz, -zl < |z, -z, (3:32)

= 2 = (1= )20 — 2l + v,,{

where

) k=024 pAe+ i(p)
N 1—-(k+v)/2

(3.33)

In a similar way, from (3.6) and (3.3), we obtain

”xn - l/t” = ”xn —u- (g(xn) - g(u))” + ”JA(xn)xn - ]A(x,,)Z”
+ 1 acx,)z2 = L awyzll

k—v
=\—5— X, —ull +vllx, —ull + [lx, — 2|,

which implies that

I ¢ = z][- (3.34)

1
ol = a2

Also from (3.15), (3.23), (3.32), (3.33), and (3.34), we obtain
k—v
o = 21 = (1= By = =1+ Ba| S5 4 oo+ 1)y
= (1 - Bn)”zn - Z” + ﬁnonzn - Z”
=(1-B,(1=0)lz, -zl = |z, — 2. (3.35)

Similarly, from (3.37), (3.3), and (3.35), we can have

1 1
v, —ul < m”vn —z| = mllz" —z[.  (3:36)



602 MUHAMMAD ASLAM NOOR

From (3.22), (3.16), (3.26)~(3.28), and (3.30), we have

251 = 2l = (1 = @)z, — 2]
+a,llg(v,) — 8(u) = p(N(,, £,) = N(w, )|
< (1= a)lz, =zl + a,llv, — u— (g(v,) — (W)l
+ pa,[IN(w, &,) = N(w, y)|
tayllv, —u—p(N(n,, £,) — N(w, &,))|

k+v

< (1= a)lz = 2l + a3+ v+ 19| I, -l
f(1—01n)||2n—2||+an0||Zn—Z||,

using (3.33), (3.35), and (3.36),
=[1{1 -1~ 0)a;} ]z — zl|. (3.37)
i=0

From (3.17), (3.18), and (3.19), it follows that 6 < 1. Since }_32 , «,, diverges
and 1 — 6 > 0, we have > 2,{1 — (1 — 68)a;} = 0. Hence the sequence
{z,} converges strongly to z. Also from (3.32) and (3.31), we see that the
sequences {x, } and {u,} converge to z and u strongly, respectively. Using
the technique of Noor [15], one can easily show that the sequences {w, },
O} {0}, {3} {n, ), and {,} converge strongly to w, y, @, y, 7, and &,
respectively. Now by using the continuity of the operators 7', V', g, J 4.,
and Lemma 3.2, we have

z=g(u) — pN(w, y) ZJA(u)Z_pN(w>y) €H.

We now show that w € T(u),y € V(u),w e T(x),y e V(x),ne T(v), &€
V (v). In fact,

d(w, T(w)) < |w—w,|| + d(w,, T(u))
< llw—w,|| + M(T(u,), T(u))
< |lw—w,|| + plu, —ul| — 0 as n — oo,

where d(w, T(u)) = inf{||lw — z|| : z € T(u)}. Since the sequences {w,}
and {u,} are the Cauchy sequences, it follows that d(w, T(u)) = 0. This
implies that w € T'(u). In a similar way, one show that y € V(u),w €
T(x),y e V(x),n € T(v), and ¢ € V(v). By invoking Lemma 3.2, we have
zyue Hywe T(u),y € V(u),y € V(u), which satisfy the implicit resolvent
equations (2.6) and the sequences {z,}, {u,}, {w,}, {¥.}> {w,.}, {I:}> {n.}>
and {¢,} converge strongly to z, u, w, y, w, y, n, and ¢ in H, respectively,
the required result. 1
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Remark 3.1. It is worth mentioning that Assumption 2.1 and the

conditions (3.9)—(3.11), which play an important part in the derivation of
the main result, that is, Theorem 3.1, are very convenient and reasonably
easy to verify in practical problems; see Noor [14, 20, 21]. For a differ-
ent choice of the operators T, V, g, N(.,.), and A(.,.), these conditions
are well known and have been already used in the existence of solutions
of variational inequalities and inclusions. It is worth mentioning that the
concept of fuzzy mappings can be extended fro multivalued quasi varia-
tional inclusions (2.1) by using the technique of Noor [33] and Noor and
Al-Said [34].
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