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1. Introduction

The dynamic relationship between predators and their preys has long been a
continue to be one of the dominant themes in both ecology and mathematical ecolo
to its universal existence and importance [6]. At first sight, these problems may appea
simple mathematically. However, in fact, they are often very challenging and complic

Recently, many authors have explored the dynamics of a class of the so-called
ratio-dependent predator–prey systems with functional responses

x ′ = x[a − bx] − c(x)y,

y ′ = y

[
d − e

y

x

]
, (1.1)

wherex andy stand for the population (or density) of the prey and the predator, re
tively. c(x) is the so-called predator functional response to prey.

In (1.1), it has been assumed that the prey grows logistically with growth raa
and carrying capacitya/b in the absence of predation. The predator consumes the
according to the functional responsec(x) and grow logistically with growth rated and
carrying capacityx(t)/e proportional to the population size of prey (or prey abundan
The parametere is a measure of the food quality that the prey provides for conversion
predator birth.

The form of the predator equation in (1.1) was first proposed by Leslie [33]. In (
the functional responsec(x) can be classified into five types.

When the functional responsec(x) is of type 1, i.e.,c(x) = mx, then we have the
following Leslie–Gower model [25,26,33]

x ′ = x[a − bx] −mxy,

y ′ = y

[
d − e

y

x

]
, (1.2)

where the predation is assumed to be proportional to the population size of the prey
When the functional responsec(x) is of type 2, in particular,c(x)=mx/(A+ x), then

we have the following model of R.M. May also known as the so-called Holling–Ta
predator–prey model [3,5,6,11,13,18,20,23–27,35,37–40,45,46,48], which takes th
of

x ′ = x[a − bx] − mx

A+ x
y,

y ′ = y

[
d − e

y

x

]
. (1.3)

The saturating functional responsemx/(A+ x) is of Michaelis–Menten type in enzyme
substrate kinetics. The parameterm is the maximum specific rate of product formatio
x is the substrate concentration, andA (the half-saturation constant) is the substr
concentration at which the rate of product formation is half maximal. The funct
responsemx/(A + x) was also proposed by Holling [25] for “nonlearning” predato
which is also called a functional response of the predator of Holling type II. The
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nonlearning is a bit misleading because even predators capable of learning should
this type of response when given only one type of prey for which to search. In pred
prey interaction,m is the maximal predator per capita consumption rate, i.e., the maxi
number of prey that can be eaten by a predator in each time unit andA is the number
of prey necessary to achieve one-half of the maximum ratem. For the derivation of the
functional responsec(x) of type 2, one can refer to [25,27,39] and references cited the
for details. According to Hassell [22,23], type 2 functional response is the most com
type of functional response among arthropod predators. The May model has bee
by Wollkind et al. [48] to investigate numerically the dynamics of a predator–prey sy
for a pest in fruit-bearing trees, under the hypothesis that the parameters depend
temperature.

When the functional responsec(x) is of type 3, in particular,c(x) = mxn/(A + xn)

(n� 2), then we have

x ′ = x[a − bx] − mxn

A+ xn
y,

y ′ = y

[
d − e

y

x

]
. (1.4)

The functional responsec(x) of type 3 is sigmoid and it tends to an asymptotic value
the prey density increases. If we take into account the time a predator used in hand
prey it has captured, we find the predator has a functional response of type 3. The fu
c(x)= x2/(A+x2) is also referred to as a function response of Holling type III, which
suggested by the biologist Holling [25]. The general form of function response of this
was introduced by Kazarinov and van den Driessche [31]. One can refer [23,25,30–
46,48] for related studies.

When the functional responsec(x) is of type 4, in particular,c(x)=mx2/((A+ x)×
(B + x)) [12,35,42,44,46,48], then we have

x ′ = x[a − bx] − mx2

(A+ x)(B + x)
y,

y ′ = y

[
d − e

y

x

]
. (1.5)

The functionc(x) = mx2/((A + x)(B + x)) is anS-shaped curve. The sigmoidal-typ
curves are indicative of predator which show some form of learning behavior in w
below a certain level of threshold density, the predator will not utilize the prey for foo
any great intensity. However, above that density level, the predators increase their f
rates until some saturation level is reached. Holling [25] reasoned that these anima
both to learn slowly and to forget the value of a food unless they encounter it fairly o
Holling [25] gave some field evidence that anS-shaped functional response is typical
veterbrate predators with alternative prey available. One can refer to [12] for details
derivation ofc(x)=mx2/((A+x)(B+x)). In fact, the domed functional response, wh
has been termed type 4, incorporates prey interference with predation in that the pe
predation rate increases with prey density to a maximum at a critical prey density b
which it decreases. When the prey species is a spider mite, such asT. mcdanieli, an possible
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source of interference is the webbing produced by these mites [12,13,42]. This we
is known to interfere with predators by decreasing their walking speed and reducin
chances of contacting the prey [42]. In extreme cases predatory mites that are not a
to walking on webbing can starve in the presence of spider mite prey.

When the functional responsec(x) is of type 5 (also Ivlev’s functional response),
particular,c(x)=m(1− e−Ax) [8,17,26,27,29,33,38], then we have

x ′ = x[a − bx] −m(1− e−Ax)y,

y ′ = y

[
d − e

y

x

]
. (1.6)

For details of derivation, one can refer to [29].
Experimental results on the functional response of predators can be found, for ex

in [1,2,12,14,20,25]. It should be pointed out that the expressions are used to defin
1–5 functional responses (e.g., see [12–14,23,32,46]), rather than they are used f
simplicity.

Although much progress has been seen in the predator–prey theories, such s
are not well studied in the sense that most results are autonomous cases related i
time t has not appeared explicitly in the equations. That is to say, in most of the pred
prey systems considered so far, it has been assumed that all biological and environ
parameters are constant in time. However, any biological or environmental paramet
naturally subject to fluctuation in time and if a model is desired which takes into ac
such fluctuation it must be nonautonomous, which is, of course, more difficult to
in general. One must of course ascribe some properties to the time dependence
parameters in the models, for only then can the resulting dynamic be studied accor
One might assume they are periodic or almost periodic, etc.

To consider the fluctuative environmental factors in real populations, we will co
ourselves here to the case that timet appears explicitly in the biological and environmen
parameters.

Although the autonomous case of (1.1) has been studied extensively in the lite
[1–3,5,6,11–14,18,20–48], few works have been done on the nonautonomous pre
prey systems of type (1.1) with functional response of type 1–5 [7].

The principle aim of this paper is to perform systematic analysis on the dynamics
nonautonomous semi-ratio-dependent predator–prey systems with functional respo
form (1.1).

For the sake of generality and conveniences in the following discussion, we pre
study the following semi-ratio-dependent predator–prey system in a more general fo

x ′ = x
[
a(t)− b(t)x

] − c(t, x)y,

y ′ = y

[
d(t)− e(t)

y

x

]
,

x(t0) > 0, y(t0) > 0, t0 ∈ R. (1.7)

Specially, we will establish sufficient criteria for the boundedness of solutions, the p
nence and globally asymptotic stability of systems and the uniqueness of positive p
solution and almost periodic solution to be globally asymptotically stable.
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The tree of this paper is the following:

1. Introduction.
2. General nonautonomous case: boundedness, permanence and globally asy

stability.
3. Periodic case: existence, uniqueness and globally asymptotic stability of po

periodic solutions.
4. Almost periodic case: existence, uniqueness and globally asymptotic stability o

itive almost periodic solutions.
5. Conclusive discussion.
6. References.

2. General nonautonomous case

In this section, we shall consider the general nonautonomous case and presen
preliminaries results, including the boundedness of solutions, the permanence and g
asymptotic stability of system (1.7). First, we shall introduce some notations that w
used throughout this paper.

Let R2+ := {(x, y)T ∈ R2 | x � 0, y � 0} andf (t) be a bounded continuous functio
onR. Define

f u := sup
t∈R

f (t), f l := inf
t∈Rf (t).

Particularly, iff (t), g(t, x) areω periodic functions with respect tot , then

f̄ := 1

ω

ω∫
0

f (t) dt, ḡ(x) := 1

ω

ω∫
0

g(t, x) dt.

Consider the nonautonomous predator–prey system (1.7) together with the foll
assumptions:

(A1) a(t), b(t), d(t), e(t) are continuous onR and are bounded below and above
positive constants;

(A2) c(t, x) is continuous with respect to the first variable and is differentiable
respect to the second variable, andc(t,0) = 0, (∂c/∂x)(t, x) > 0 for any t ∈ R,
x > 0, and(∂c/∂x)(t, x) is bounded with respect tot ;

(A3) there exists a constantC0 > 0, such thatc(t, x)� C0x for any t ∈ R, x > 0;
(Â3) there exists a constantĈ0 > 0, such thatc(t, x)� Ĉ0 for anyt ∈R, x > 0;
(A4) a

l −C0M2 > 0;
(Â4) (a

l)2 − 4buĈ0M̂2 > 0, wheremi,Mi, m̂i, M̂i , i = 1,2, are positive constants su
that

M1 >
au

bl
:=M∗

1 , M2 >
du

el
M1 :=M∗

2 ,

m1<
al −C0M2 :=m∗

1, m2<
dl
m1 :=m∗

2, (2.1)

bu eu
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M̂1 >
au

bl
, M̂2 >

du

el
M̂1,

m̂1<
al +

√
(al)2 − 4buĈ0M̂2

2bu
, m̂2 <

dl

eu
m̂1. (2.2)

Define

Γ := {
(x, y)T ∈ R2 |m1 � x �M1, m2 � y �M2

}
, (2.3)

Γ̂ := {
(x, y)T ∈ R2 | m̂1 � x � M̂1, m̂2 � y � M̂2

}
. (2.4)

Theorem 2.1. Both the nonnegative and positive cones ofR2 are positively invariant with
respect to system(1.7).

Proof. Note that system (1.7) is equivalent to

x(t)= x(t0)exp

{ t∫
t0

[
a(s)− b(s)x(s)− c(s, x(s)

x(s)
y(s)

]
ds

}
,

y(t)= y(t0)exp

{ t∫
t0

[
d(s)− e(s)

y(s)

x(s)

]
ds

}
.

The assertion of the lemma follows immediately for allt � t0. The proof is complete. ✷
Theorem 2.2. Assume that(A1)–(A4) hold. Then the setΓ defined by(2.3) is positively
invariant with respect to system(1.7).

Proof. Let (x(t), y(t))T be the solution of(1.7) through(x(t0), y(t0))T withm1 � x(t0)�
M1 andm2 � y(t0)�M2.

From the prey’s equation of(1.7) and the positivity of the solution of(1.7), it follows
that

x ′(t)� x(t)
[
au − blx(t)

] = blx(t)
[
M∗

1 − x(t)
]
� blx(t)

[
M1 − x(t)

]
.

A standard comparison argument shows that

0< x(t0)�M1 ⇒ x(t)�M1, t � t0.

Similarly, by the predator’s equation of(1.7), we have

y ′(t)� y(t)

[
du − el

M1
y(t)

]
= el

M1
y(t)

[
M∗

2 − y(t)
]
� el

M1
y(t)

[
M2 − y(t)

]
,

and hence,

0< y(t0)�M2 ⇒ y(t)�M2, t � t0.

The first equation of (1.7) and the above results together lead to

x ′(t)� x(t)
[
al − bux(t)−C0M2

] = bux(t)
[
m∗

1 − x(t)
]
� bux(t)

[
m1 − x(t)

]
,
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then we have

x(t0)�m1 ⇒ x(t)�m1, t � t0.

By the second equation of(1.7), we have

y ′(t)� y(t)

[
dl − eu

m1
y(t)

]
= eu

m1
y(t)

[
m∗

2 − y(t)
]
� eu

m1
y(t)

[
m2 − y(t)

]
,

which implies

y(t0)�m2 ⇒ y(t)�m2, t � t0.

Now we can claim thatΓ is positively invariant with respect to (1.7). The proof is co
plete. ✷

Carrying out similar arguments as above, we can prove

Theorem 2.3. If (A1), (A2), (Â3) and (Â4) hold, then the set̂Γ defined by(2.4) is pos-
itively invariant with respect to system(1.7).

Definition 2.1. The solutions of system (1.7) are said to be ultimately bounded if there
B > 0 andT > 0 such that every solution(x(t), y(t))T of (1.7) through(x(t0), y(t0))T ∈
R2 satisfies‖(x(t), y(t))T ‖ � B, for all t � t0 + T , whereB is independent of particula
solution whileT may depend on each solution.

Definition 2.2 [29]. System (1.7) is said to be permanent if there exists a compact r
Γ ⊂ IntR2+ such that for every solution(x(t), y(t))T of (1.7) with positive initial value
(x(t0), y(t0))

T , there exists aT > 0 such that(x(t), y(t))T ∈ Γ for all t � t0 + T .

Theorem 2.4. If (A1)–(A4) hold, then the setΓ defined by(2.3) is an ultimately bounde
region(or absorbing and positively invariant set) of system(1.7).

Proof. Let (x(t), y(t))T be the solution of(1.7) with any positive initial value(x(t0),
y(t0))

T .
If x(t) >M1 for all t � t0, thenx(t)−M∗

1 >M1 −M∗
1 := δ1 > 0 for all t � t0, which,

together with the first equation of (1.7), implies

x ′(t)� x(t)
[
au − blx(t)

]
� x(t)

[
au − bl(M∗

1 + δ1)
] = −blδ1x(t), t � t0.

Thus,x(t)� x(t0)exp{−blδ1(t − t0)} → 0 ast → +∞, which contradicts the factx(t) >
M1 for all t � t0. Hence, there must exist aT1> 0 such thatx(t)�M1 for all t � t0 + T1.

If y(t) >M2 for all t � t0, theny(t)−M∗
2 >M2 −M∗

2 := δ2 > 0 for all t � t0. By the
second equation of (1.7), we have

y ′(t)� y(t)

[
du − el

M1
y(t)

]
� y(t)

[
du − el

M1
(M∗

2 + δ2)

]

= − el
δ2y(t), t � t0 + T1.
M1
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Therefore,

y(t)� y(t0 + T1)exp

{
− el

M1
δ2(t − t0 − T1)

}
→ 0 ast → +∞,

which contradicts the facty(t) >M2 for all t � t0. Hence, there exists aT2 > T1 such that
y(t)�M2 for all t � t0 + T2.

If x(t) < m1 for all t � t0, thenm∗
1 − x(t) > m∗

1 −m1 := δ3 > 0 for all t � t0. From the
first equation of(1.7), it follows

x ′(t)� x(t)
[
al − bux(t)−C0M2

]
� x(t)

[
al −C0M2 − bu(m∗

1 − δ3)
]

= buδ3x(t), t � t0 + T2.

Thus,

x(t)� x(t0 + T2)exp
{
buδ3(t − t0 − T2)

} → +∞ ast → +∞,

which contradicts the factx(t) < m1 for all t � t0. Hence, there exists aT3 > T2 such that
x(t)�m1 for all t � t0 + T3.

If y(t) < m2 for all t � t0, thenm∗
2 − y(t) > m∗

2 −m2 := δ4 > 0 for all t � t0. By the
second equation of (1.7), we have

y ′(t)� y(t)

[
dl − eu

m1
y(t)

]
� y(t)

[
dl − el

m1
(m∗

2 − δ4)

]
= el

m1
δ4y(t), t � t0 + T3.

Therefore,

y(t)� y(t0 + T3)exp

{
eu

m1
δ4(t − t0 − T3)

}
→ +∞ ast → +∞,

which contradicts the facty(t) < m2 for all t � t0. Hence, there exists aT4 > T3 such that
y(t)�m2 for all t � t0 + T4.

Hence, the above arguments imply that(x(t), y(t))T ∈ Γ for anyt � t0+T4. Therefore,
Γ is an ultimately bounded region of system(1.7). The proof is complete. ✷

By the similar arguments, we can establish the following result:

Theorem 2.5. Assume that(A1), (A2), (Â3) and(Â4) hold. Then the set̂Γ defined by(2.4)
is an ultimately bounded region(or absorbing and positively invariant set) of system(1.7).

The above arguments show that

Theorem 2.6. If (A1)–(A4) or (A1), (A2), (Â3) and (Â4) hold, then system(1.7) is per-
manent.

Remark 2.1. Practical persistence [8–10], in which seems to have been some
interest, refers to determining specific estimates in terms of model date for the asym
distance to the boundary of the feasible region for uniformly persistent popu
interaction models. In fact, the scenarios of the approach to Theorem 2.6 is a par
case of the so-called “practical persistence” approach to permanence.
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Definition 2.3. System(1.7) is said to be globally asymptotically stable if any two so
tions(xi(t), yi(t))T , i = 1,2, of (1.7) with positive initial values have the property

lim
t→+∞

(∣∣x1(t)− x2(t)
∣∣ + ∣∣y1(t)− y2(t)

∣∣) = 0.

In order to explore the globally asymptotic stability, we introduce below a lemma
to Barb̆alat.

Lemma 2.1 [4]. Let f be a nonnegative function defined on[0,+∞) such thatf is inte-
grable on[0,+∞) and is uniformly continuous on[0,+∞). Thenlimt→+∞ f (t)= 0.

Lemma 2.2. Leth be a real number andf be a nonnegative function defined on[h,+∞)

such thatf is integrable on[h,+∞) and is uniformly continuous on[h,+∞). Then
limt→+∞ f (t)= 0.

Theorem 2.7. Assume(A1)–(A4) hold. Moreover, if

(A5) bl − C0 +C1

m1
M2 − eu

m2
1

M2 > 0,
el

M1
−C0 > 0,

wheremi,Mi , i = 1,2, are defined in(2.1) and

C1 = sup
t∈[0,+∞)

{
max

x∈[m1,M1]

{
∂c

∂x
(t, x)

}}
> 0,

then system(1.7) is globally asymptotically stable.

Proof. Let (xi(t), yi(t))T , i = 1,2, be any two solutions of(1.7) with positive initial
values(xi(t0), yi(t0))T . Theorem 2.2 implies that there exists aT1 > 0 such that(xi(t),
yi(t))

T ∈ Γ , i = 1,2, for all t � t0 + T1.
Consider a Lyapunov function defined by

V (t)= ∣∣ln{
x1(t)

} − ln
{
x2(t)

}∣∣ + ∣∣ln{
y1(t)

} − ln
{
y2(t)

}∣∣, t � t0.

A direct calculation of the right derivativeD+V (t) of V (t) along the solutions of(1.7)
leads to

D+V (t)=
[
−b(t)(x1(t)− x2(t)

) −
(
c(t, x1(t))

x1(t)
y1(t)− c(t, x2(t))

x2(t)
y2(t)

)]
× sgn

(
x1(t)− x2(t)

)
+

[
−e(t)

(
y1(t)

x1(t)
− y2(t)

x2(t)

)]
sgn

(
y1(t)− y2(t)

)
=

[
−b(t)(x1(t)− x2(t)

) −
(
c(t, x1(t))

x1(t)
y1(t)− c(t, x1(t))

x1(t)
y2(t)

+ c(t, x1(t))

x1(t)
y2(t)− c(t, x2(t))

x2(t)
y2(t)

)]
sgn

(
x1(t)− x2(t)

)
+

[
−e(t)

(
y1(t) − y2(t) + y2(t) − y2(t)

)]
sgn

(
y1(t)− y2(t)

)

x1(t) x1(t) x1(t) x2(t)
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4,
� −bl∣∣x1(t)− x2(t)
∣∣ +C0

∣∣y1(t)− y2(t)
∣∣

+M2

∣∣∣∣ 1

ξ(t)

∂c

∂x

(
t, ξ(t)

) − 1

(ξ(t))2
c
(
t, ξ(t)

)∣∣∣∣∣∣x1(t)− x2(t)
∣∣

− el

M1

∣∣y1(t)− y2(t)
∣∣ + eu

m2
1

M2
∣∣x1(t)− x2(t)

∣∣
� −

[
bl − C0 +C1

m1
M2 − eu

m2
1

M2

]∣∣x1(t)− x2(t)
∣∣

−
[
el

M1
−C0

]∣∣y1(t)− y2(t)
∣∣

� −µ(∣∣x1(t)− x2(t)
∣∣ + ∣∣y1(t)− y2(t)

∣∣),
t � max{t0 + T1,0} := T , (2.5)

whereξ(t) is betweenx1(t) andx2(t), and

C1 = sup
t∈[0,+∞)

{
max

x∈[m1,M1]

{
∂c

∂x
(t, x)

}}
> 0,

µ= min

{
bl − C0 +C1

m1
M2 − eu

m2
1

M2,
el

M1
−C0

}
> 0.

Obviously,

V (T )= ∣∣ln{
x1(T )

} − ln
{
x2(T )

}∣∣ + ∣∣ln{
y1(T )

} − ln
{
y2(T )

}∣∣<+∞.

Integrating fromT to t on both sides of(2.5) produces

V (t)+µ

t∫
T

(∣∣x1(s)− x2(s)
∣∣ + ∣∣y1(s)− y2(s)

∣∣)ds � V (T ) <+∞, t � T .

Then
+∞∫
T

(∣∣x1(s)− x2(s)
∣∣ + ∣∣y1(s)− y2(s)

∣∣)ds � V (T )

µ
<+∞.

Hence,|x1(t)−x2(t)|+ |y1(t)−y2(t)| ∈L1([T ,+∞)). By system (1.7) and Theorem 2.
we getxi(t), yi(t), i = 1,2, and their derivatives are bounded on[T ,+∞), which implies
that|x1(t)− x2(t)| + |y1(t)− y2(t)| is uniformly continuous on[T ,+∞). By Lemma 2.2,
we reach

lim
t→+∞

(∣∣x1(t)− x2(t)
∣∣ + ∣∣y1(t)− y2(t)

∣∣) = 0.

The proof is complete. ✷
Theorem 2.8. Assume that(A1), (A2), (Â3) and(Â4) hold. If

(Â5) bl − Ĉ0 + m̂1Ĉ1

m̂2 M̂2 − eu

m̂2M̂2 > 0,
el

ˆ − Ĉ0

m̂
> 0,
1 1 M1 1
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wherem̂i , M̂i , i = 1,2, are defined in(2.2) and

Ĉ1 = sup
t∈[0,+∞)

{
max

x∈[m̂1,M̂1]

{
∂c

∂x
(t, x)

}}
,

then system(1.7) is globally asymptotically stable.

The proof is similar to that of Theorem 2.7, hence the details are omitted here.

3. Periodic case

In this section, we investigate the existence, uniqueness and stability of positive pe
solutions of(1.7) under the assumption that

(A6) the parameters in system(1.7) areω periodic with respect tot .

In addition to the assumptions in Section 2, it is clear that Theorems 2.2–2.8 r
valid for system (1.7) with the additional assumption(A6).

Lemma 3.1 (Brouwer fixed point theorem).Suppose that a continuous operatorσ maps
a closed, bounded, convex subsetΩ̄ ⊂ Rn into itself. ThenΩ̄ contains at least one fixe
point of the operatorσ , i.e., there exists anx∗ ∈ Ω̄ such thatσ(x∗)= x∗.

Theorem 3.1. If (A1)–(A4) and (A6) hold, then system(1.7) has at least one positiveω
periodic solution, say(x∗(t), y∗(t))T , andm1 � x∗(t) � M1, m2 � y∗(t) � M2, where
mi,Mi , i = 1,2, are defined in(2.1).

Proof. First, we define a shift operator, which is also known as a Poincaré ma
σ :R2 →R2 by

σ
(
(x0, y0)

T
) = (

x
(
ω, t0, (x0, y0)

T
)
, y

(
ω, t0, (x0, y0)

T
))T

, (x0, y0)
T ∈ R2,

where(x(t, t0, (x0, y0)
T ), y(t, t0, (x0, y0)

T ))T denotes the solution of (1.7) through t
point (t0, x0, y0)

T . Theorem 2.2 tells us that the setΓ defined by(2.3) is positive invariant
with respect to system(1.7), that is to say, the operatorσ defined above mapsΓ into
itself, i.e.,σ(Γ ) ⊂ Γ . Since the solution of(1.7) is continuous with respect to the initi
value, the operatorσ is continuous. It is not difficult to show thatΓ is a bounded, closed
convex set inR2. By Lemma 3.1,σ has at least one fixed point inΓ , i.e., there exists a
(x∗, y∗)T ∈ Γ such that

(x∗, y∗)T = (
x
(
ω, t0, (x

∗, y∗)T
)
, y

(
ω, t0, (x

∗, y∗)T
))T

.

Hence, there exists at least one strictly positiveω periodic solution of(1.7) in Γ . The rest
of the proof follows directly. ✷

Similarly, we can easily prove that
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Theorem 3.2. If (A1), (A2), (Â3), (Â4) and(A6) hold, then system(1.7) has at least one
positiveω periodic solution, say(x̂∗(t), ŷ∗(t))T , and m̂1 � x̂∗(t) � M̂1, m̂2 � ŷ∗(t) �
M̂2, wherem̂i, M̂i , i = 1,2, are defined in(2.2).

Remark 3.1. It is fairly widely known that in an autonomous system of ODEs, perman
implies the existence of a componentwise positive equilibrium. Some authors have re
that, in a periodic setting, there are also results asserting that permanence imp
existence of a componentwise positive periodic orbit. Comparing Theorem 2.6 with
rems 3.1 and 3.2, one can easily observe that our results fairly support the claim.

The conditions in Theorems 3.1 and 3.2 are given in terms of supremum and in
of the parameters. Next, we will employ an alternative approach to establish some c
for the same problem but in terms of the averages of the related parameters over an
of the common period. That is a continuation theorem in coincidence degree theory,
have been successfully used to establish sufficient criteria for the existence of p
periodic solutions of Lotka–Volterra type multi-species competition systems and pred
prey systems with time delays; for example, one can consult [15–17,34] for details.

To this end, we shall first summarize below a few concepts and results from
borrowing notations and terminologies there.

Let X,Z be normed vector spaces,L : DomL ⊂ X → Z be a linear mapping
N :X →Z be a continuous mapping. The mappingL will be called a Fredholm mappin
of index zero if dimKerL = codimImL < +∞ and ImL is closed inZ. If L is
a Fredholm mapping of index zero and there exist continuous projectorsP :X → X

andQ :Z → Z such that ImP = KerL, ImL = KerQ = Im(I − Q), it follows that
L|DomL ∩ KerP : (I − P)X → ImL is invertible. We denote the inverse of that m
byKP . If Ω is an open bounded subset ofX, the mappingN will be calledL-compact on
Ω̄ if QN(Ω̄) is bounded andKP (I −Q)N : Ω̄ →X is compact. Since ImQ is isomorphic
to KerL, there exists an isomorphismJ : ImQ→ KerL.

Lemma 3.2 (Continuation theorem).LetL be a Fredholm mapping of index zero andN
beL-compact onΩ̄ . Suppose

(a) for eachλ ∈ (0,1), every solutionx ofLx = λNx is such thatx /∈ ∂Ω;
(b) QNx �= 0 for eachx ∈ ∂Ω ∩ KerL and

deg{JQN,Ω ∩ KerL,0} �= 0.

Then the operator equationLx =Nx has at least one solution lying inDomL∩ Ω̄ .

Theorem 3.3. Assume(A1)–(A3) and(A6) hold. Moreover, if

(A7)
C0d̄

b̄ē
exp

{
2(ā+ d̄)ω

}
< 1,

then system(1.7) has at least one positiveω periodic solution, say(x∗(t), y∗(t))T , and
there exist positive constantsα∗, β∗, i = 1,2, such thatα∗ � x∗(t)� β∗, α∗ � y∗(t)� β∗.
i i 1 1 2 2
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that
Proof. Making the change of variables

x(t)= exp
{
x̃(t)

}
, y(t)= exp

{
ỹ(t)

}
,

system(1.7) is reformulated as

x̃ ′(t)= a(t)− b(t)exp
{
x̃(t)

} − c
(
t,exp

{
x̃(t)

})
exp

{
ỹ(t)− x̃(t)

}
,

ỹ ′(t)= d(t)− e(t)exp
{
ỹ(t)− x̃(t)

}
. (3.1)

Let

X =Z = {
(x̃, ỹ)T ∈ C(R,R2) | x̃(t +ω)= x̃(t), ỹ(t +ω)= ỹ(t)

}
,∥∥(x̃, ỹ)T ∥∥ = max

t∈[0,ω]
∣∣x̃(t)∣∣ + max

t∈[0,ω]
∣∣ỹ(t)∣∣, (x̃, ỹ)T ∈X (orZ).

ThenX,Z are both Banach spaces when they are endowed with the above norm‖ · ‖.
Let

N

[
x̃

ỹ

]
=

[
N1(t)

N2(t)

]
=

[
a(t)− b(t)exp{x̃(t)} − c(t,exp{x̃(t)})exp{ỹ(t)− x̃(t)}
d(t)− e(t)exp{ỹ(t)− x̃(t)}

]
,

L

[
x̃

ỹ

]
=

[
x̃ ′
ỹ ′

]
, P

[
x̃

ỹ

]
=Q

[
x̃

ỹ

]
=

[
1
ω

∫ ω
0 x̃(t) dt

1
ω

∫ ω
0 ỹ(t) dt

]
,

[
x̃

ỹ

]
∈X.

Then

KerL= {
(x̃, ỹ)T ∈X | (x̃, ỹ)T = (h1, h2)

T ∈R2},
ImL=

{
(x̃, ỹ)T ∈ Z

∣∣∣
ω∫

0

x̃(t) dt = 0,

ω∫
0

ỹ(t) dt = 0

}
,

and

dimKerL= 2 = codimImL.

Since ImL is closed inZ, L is a Fredholm mapping of index zero. It is easy to show
P,Q are continuous projectors such that

ImP = KerL, ImL= KerQ= Im(I −Q).

Furthermore, the generalized inverse (toL) KP : ImL → DomL ∩ KerP exists and is
given by

KP

[
x̃

ỹ

]
=

[ ∫ t
0 x̃(s) ds − 1

ω

∫ ω
0

∫ t
0 x̃(s) ds dt∫ t

0 ỹ(s) ds − 1
ω

∫ ω
0

∫ t
0 ỹ(s) ds dt

]
.

Thus

QN

[
x̃

ỹ

]

=
[

1
ω

∫ ω
0

(
a(s)− b(s)exp{x̃(s)} − c(s,exp{x̃(s)})exp{ỹ(s)− x̃(s)})ds

1 ∫ ω(
d(s)− e(s)exp{ỹ(s)− x̃(s)})ds

]
,

ω 0
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KP (I −Q)N

[
x̃

ỹ

]

=
[ ∫ t

0 N1(s) ds − 1
ω

∫ ω
0

∫ t
0 N1(s) ds dt −

(
t
ω

− 1
2

) ∫ ω
0 N1(t) dt∫ t

0 N2(s) ds − 1
ω

∫ ω
0

∫ t
0 N2(s) ds dt −

(
t
ω

− 1
2

) ∫ ω
0 N2(t) dt

]
.

Obviously,QN andKP (I −Q)N are continuous. Using the Arzela–Ascoli theorem, i

not difficult to show thatKP (I −Q)N(Ω̄) is compact for any open bounded setΩ ⊂ X.
Moreover,QN(Ω̄)is bounded. Thus,N is L-compact onΩ̄ with any open bounded se
Ω ⊂X.

Now we reach the position to search for an appropriate open, bounded subΩ

for the application of the continuation theorem. Corresponding to the operator eq
Lx̃ = λNx̃, λ ∈ (0,1), we have

x̃ ′(t)= λ
[
a(t)− b(t)exp

{
x̃(t)

} − c
(
t,exp

{
x̃(t)

})
exp

{
ỹ(t)− x̃(t)

}]
,

ỹ ′(t)= λ
[
d(t)− e(t)exp

{
ỹ(t)− x̃(t)

}]
. (3.2)

Suppose that(x̃, ỹ)T ∈X is a solution of system(3.2) for a certainλ ∈ (0,1). Integrating
on both sides of (3.2) from 0 toω, we obtain

āω =
ω∫

0

b(t)exp
{
x̃(t)

}
dt +

ω∫
0

c
(
t,exp

{
x̃(t)

})
exp

{
ỹ(t)− x̃(t)

}
dt,

d̄ω=
ω∫

0

e(t)exp
{
ỹ(t)− x̃(t)

}
dt. (3.3)

It follows from (3.2) and(3.3) that

ω∫
0

∣∣x̃ ′(t)
∣∣dt � λ

[ ω∫
0

a(t) dt +
ω∫

0

b(t)exp
{
x̃(t)

}
dt

+
ω∫

0

c
(
t,exp

{
x̃(t)

})
exp

{
ỹ(t)− x̃(t)

}
dt

]
< 2āω,

ω∫
0

∣∣ỹ ′(t)
∣∣dt � λ

[ ω∫
0

d(t) dt +
ω∫

0

e(t)exp
{
ỹ(t)− x̃(t)

}
dt

]
< 2d̄ω. (3.4)

Since(x̃, ỹ)T ∈X, there existξi, ηi ∈ [0,ω], i = 1,2, such that

x̃(ξ1)= min
t∈[0,ω] x̃(t), x̃(η1)= max

t∈[0,ω]
x̃(t),

ỹ(ξ2)= min
t∈[0,ω] ỹ(t), ỹ(η2)= max

t∈[0,ω] ỹ(t). (3.5)

From(3.3) and(3.5), we obtain
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āω �
ω∫

0

b(t)exp
{
x̃(ξ1)

}
dt = b̄ωexp

{
x̃(ξ1)

}
,

d̄ω�
ω∫

0

e(t)exp
{
ỹ(ξ2)− x̃(η1)

}
dt = ēωexp

{
ỹ(ξ2)− x̃(η1)

}
,

and hence,

x̃(ξ1)� ln

{
ā

b̄

}
, ỹ(ξ2)� ln

{
d̄

ē

}
+ x̃(η1). (3.6)

From(3.4) and(3.6), we obtain

x̃(t)� x̃(ξ1)+
ω∫

0

∣∣x̃ ′(t)
∣∣dt < ln

{
ā

b̄

}
+ 2āω :=H1,

ỹ(t)� ỹ(ξ2)+
ω∫

0

∣∣ỹ ′(t)
∣∣dt < ln

{
d̄

ē

}
+H1 + 2d̄ω :=H2. (3.7)

On the other hand, by(3.3) and(3.5), we also have

āω �
ω∫

0

b(t)exp
{
x̃(η1)

}
dt +

ω∫
0

C0 exp
{
ỹ(η2)

}
dt

= b̄ωexp
{
x̃(η1)

} +C0ωexp
{
ỹ(η2)

}
,

d̄ω�
ω∫

0

e(t)exp
{
ỹ(η2)− x̃(ξ1)

}
dt = ēωexp

{
ỹ(η2)− x̃(ξ1)

}
,

and hence,

x̃(η1)� ln

{
1

b̄

[
ā −C0 exp

{
ỹ(η2)

}]}
> ln

{
1

b̄

[
ā −C0 exp{H2}

]}

= ln

{
ā

b̄

[
1− C0d̄

b̄ē
exp

{
2(ā + d̄)ω

}]}
:=H3,

ỹ(η2)� ln

{
d̄

ē

}
+ x̃(ξ1). (3.8)

From(3.4) and(3.8), we have

x̃(t)� x̃(η1)−
ω∫

0

∣∣x̃ ′(t)
∣∣dt > H3 − 2āω,

ỹ(t)� ỹ(η2)−
ω∫ ∣∣ỹ ′(t)

∣∣dt > ln
d̄

ē
+H3 − 2(ā + d̄)ω :=H4, (3.9)
0
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which, together with(3.7), implies

max
t∈[0,ω]

∣∣x̃(t)∣∣<max
{|H1|, |H3 − 2āω|} :=H5,

max
t∈[0,ω]

∣∣ỹ(t)∣∣<max
{|H2|, |H4|

} :=H6.

Clearly,H5 andH6 are independent ofλ.
By assumption(A2), it is easy to show that

QN

[
x̃

ỹ

]
=

[
ā − b̄exp{x̃} − c̄(exp{x̃})exp{ỹ − x̃}
d̄ − ēexp{ỹ − x̃}

]
=

[
0
0

]
(3.10)

has a unique solution(x̃∗, ỹ∗)T in IntR2. SetH =H5+H6+C, which is taken sufficiently
large such that the unique solution of(3.10) satisfies‖(x̃∗, ỹ∗)T ‖ = |x̃∗| + |ỹ∗|<H .

LetΩ = {(x̃, ỹ)T ∈X | ‖(x̃, ỹ)T ‖<H }, then it is clear thatΩ verifies the requiremen
(a) of Lemma 3.2. When(x̃, ỹ)T ∈ ∂Ω ∩ KerL= ∂Ω ∩R2, (x̃, ỹ)T is a constant vector in
R2 with ‖(x̃, ỹ)T ‖ = |x̃| + |ỹ| =H . Then

QN

[
x̃

ỹ

]
=

[
ā − b̄exp{x̃} − c̄(exp{x̃})exp{ỹ − x̃}
d̄ − ēexp{ỹ − x̃}

]
�=

[
0
0

]
.

In view of Theorem 3.3, direct calculation produces

deg(JQN,Ω ∩ KerL,0)

= sgn




∣∣∣∣∣∣
−b̄exp{x̃∗} − ∂c

∂x
(exp{x̃∗})exp{ỹ∗} −c̄(exp{x̃∗})exp{ỹ∗ − x̃∗}

+ c̄(exp{x̃∗})exp{ỹ∗ − x̃∗}
ēexp{ỹ∗ − x̃∗} −ēexp{ỹ∗ − x̃∗}

∣∣∣∣∣∣



= sgn

{
d̄

[
b̄exp{x̃∗} + ∂c

∂x

(
exp{x̃∗})exp{ỹ∗} − c̄

(
exp{x̃∗})exp{ỹ∗ − x̃∗}

+ c̄
(
exp{x̃∗})exp{ỹ∗ − x̃∗}

]}

= sgn

{
d̄

[
b̄exp{x̃∗} + ∂c

∂x

(
exp{x̃∗})exp{ỹ∗}

]}
> 0, (3.11)

where the degree is Brouwer degree, and the isomorphismJ of ImQ onto KerL can be
chosen to be the identity mapping, since ImQ = KerL. By now we have proved thatΩ
verifies all requirements of Lemma 3.2, then

L

[
x̃

ỹ

]
=N

[
x̃

ỹ

]

has at least one solution in DomL ∩ Ω̄ , i.e., (3.1) has at least oneω periodic solution
in DomL ∩ Ω̄ , say (x̃∗(t), ỹ∗(t))T . Set x∗(t) = exp{x̃∗(t)}, y∗(t) = exp{ỹ∗(t)}, then
(x∗(t), y∗(t))T is one positiveω periodic solution of system(1.7). The existence o
positive constantsα∗

1, α
∗
2, β

∗
1, β

∗
2 are obvious. The proof is complete.✷

Carrying out similar arguments, we have
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7)
Theorem 3.4. Assume(A1), (A2), (Â3) and(A6) hold. Moreover, if

(Â7) ā − d̄

el
Ĉ0 > 0,

then system(1.7) has at least one positiveω periodic solution, say(x̂∗(t), ŷ∗(t))T , and
there exist positive constantsα̂∗

i , β̂
∗
i , i = 1,2, such that̂α∗

1 � x̂∗(t)� β̂∗
1 , α̂∗

2 � ŷ∗(t)� β̂∗
2 .

Definition 3.1. Let (x∗(t), y∗(t))T , i = 1,2, be a positiveω periodic solution of system
(1.7) with positive initial value. We say that(x∗(t), y∗(t))T is globally asymptotically
stable if any other solution(x(t), y(t))T of (1.7) has the property

lim
t→+∞

(∣∣x(t)− x∗(t)
∣∣ + ∣∣y(t)− y∗(t)

∣∣) = 0.

It is immediate that if(x∗(t), y∗(t))T is globally asymptotically stable, then(x∗(t),
y∗(t))T is in fact unique.

From Theorems 2.7 and 3.1, it follows that

Theorem 3.5. If (A1)–(A5) and (A6) hold, then system(1.7) has a unique positiveω
periodic solution inΓ which is globally asymptotically stable.

Theorem 3.6. Assume(A1)–(A4), (A6) and(A7) hold. Moreover, if

bl − C0 +C2

m1
β2 − eu

m1α1
β2 > 0,

el

M1
−C0 > 0,

or

bl − C0 +C2

m1
β2 − eu

m1α1
M2 > 0,

el

β1
−C0 > 0,

whereαi = max{α∗
i ,mi}, βi = min{β∗

i ,Mi},mi,Mi , i = 1,2, are defined in(2.1), α∗
i , β

∗
i ,

i = 1,2, are defined in Theorem3.3 and

C2 = max
t∈[0,ω]

{
max

x∈[m1,β1]

{
∂c

∂x
(t, x)

}
, max
x∈[α1,M1]

{
∂c

∂x
(t, x)

}}
> 0,

then system(1.7) has a unique positiveω periodic solution, say(x∗(t), y∗(t))T , which is
globally asymptotically stable andα1 � x∗(t)� β1, α2 � y∗(t)� β2.

Proof. Theorem 3.3 implies that system(1.7) has at least one positiveω periodic solution,
say (x∗(t), y∗(t))T , and there exist positive constantsα∗

i , β
∗
i , i = 1,2, such thatα∗

1 �
x∗(t)� β∗

1 , α∗
2 � y∗(t)� β∗

2 . In addition, sinceΓ is an ultimately bounded region of (1.
and(x∗(t), y∗(t))T is a periodic solution, it follows thatα1 � x∗(t)� β1, α2 � y∗(t)� β2.
To complete the proof, we only need to show that(x∗(t), y∗(t))T is globally asymptotically
stable.

Let (x(t), y(t))T be any other solution of(1.7) with initial value (x(t0), y(t0))T . By
Theorem 2.2, we have that there exists aT1 > 0 such thatm1 � x(t)�M1, m2 � y(t)�
M2, for all t � t0 + T1, wheremi,Mi , i = 1,2, are defined in(2.1). We denoteT :=
max{t0 + T1,0}.
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scuss
Consider a Lyapunov function defined by

V (t)= ∣∣ln{
x(t)

} − ln
{
x∗(t)

}∣∣ + ∣∣ln{
y(t)

} − ln
{
y∗(t)

}∣∣.
Obviously,

V (T )= ∣∣ln{
x(T )

} − ln
{
x∗(T )

}∣∣ + ∣∣ln{
y(T )

} − ln
{
y∗(T )

}∣∣<+∞.

A direct calculation of the right derivativeD+V (t) of V (t) along the solutions of(1.7)
leads to

D+V (t)=
[
−b(t)(x(t)− x∗(t)

) −
(
c(t, x(t))

x(t)
y(t)− c(t, x∗(t))

x∗(t)
y∗(t)

)]
× sgn

(
x(t)− x∗(t)

)
+

[
−e(t)

(
y(t)

x(t)
− y∗(t)
x∗(t)

)]
sgn

(
y(t)− y∗(t)

)
. (3.12)

Just because the different intersections will lead to different estimations, we will di
D+V (t) in the following four cases.

Case1:

D+V (t)=
[
−b(t)(x(t)− x∗(t)

) −
(
c(t, x(t))

x(t)
y(t)− c(t, x(t))

x(t)
y∗(t)

+ c(t, x(t))

x(t)
y∗(t)− c(t, x∗(t))

x∗(t)
y∗(t)

)]
sgn

(
x(t)− x∗(t)

)

+
[
−e(t)

(
y(t)

x(t)
− y∗(t)

x(t)
+ y∗(t)

x(t)
− y∗(t)
x∗(t)

)]
sgn

(
y(t)− y∗(t)

)
� −bl∣∣x(t)− x∗(t)

∣∣ +C0
∣∣y(t)− y∗(t)

∣∣
+ β2

∣∣∣∣ 1

ξ(t)

∂c

∂x

(
t, ξ(t)

) − 1

(ξ(t))2
c
(
t, ξ(t)

)∣∣∣∣∣∣x(t)− x∗(t)
∣∣

− el

M1

∣∣y(t)− y∗(t)
∣∣ + eu

m1α1
β2

∣∣x(t)− x∗(t)
∣∣

� −bl∣∣x(t)− x∗(t)
∣∣ +C0

∣∣y(t)− y∗(t)
∣∣ + C0 +C2

m1
β2

∣∣x(t)− x∗(t)
∣∣

− el

M1

∣∣y(t)− y∗(t)
∣∣ + eu

m1α1
β2

∣∣x(t)− x∗(t)
∣∣

� −
[
bl − C0 +C2

m1
β2 − eu

m1α1
β2

]∣∣x(t)− x∗(t)
∣∣

−
[
el

M1
−C0

]∣∣y(t)− y∗(t)
∣∣, t � T , (3.13)

whereξ(t) is betweenx(t) andx∗(t), and

C2 = max

{
max

{
∂c
(t, x)

}
, max

{
∂c
(t, x)

}}
> 0.
t∈[0,ω] x∈[m1,β1] ∂x x∈[α1,M1] ∂x
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Case2:

D+V (t)=
[
−b(t)(x(t)− x∗(t)

) −
(
c(t, x(t))

x(t)
y(t)− c(t, x(t))

x(t)
y∗(t)

+ c(t, x(t))

x(t)
y∗(t)− c(t, x∗(t))

x∗(t)
y∗(t)

)]
sgn

(
x(t)− x∗(t)

)
+

[
−e(t)

(
y(t)

x(t)
− y(t)

x∗(t)
+ y(t)

x∗(t)
− y∗(t)
x∗(t)

)]
sgn

(
y(t)− y∗(t)

)
� −bl∣∣x(t)− x∗(t)

∣∣ +C0
∣∣y(t)− y∗(t)

∣∣
+ β2

∣∣∣∣ 1

ξ(t)

∂c

∂x

(
t, ξ(t)

) − 1

(ξ(t))2
c
(
t, ξ(t)

)∣∣∣∣∣∣x(t)− x∗(t)
∣∣

− el

β1

∣∣y(t)− y∗(t)
∣∣ + eu

m1α1
M2

∣∣x(t)− x∗(t)
∣∣

� −bl∣∣x(t)− x∗(t)
∣∣ +C0

∣∣y(t)− y∗(t)
∣∣ + C0 +C2

m1
β2

∣∣x(t)− x∗(t)
∣∣

− el

β1

∣∣y(t)− y∗(t)
∣∣ + eu

m1α1
M2

∣∣x(t)− x∗(t)
∣∣

� −
[
bl − C0 +C2

m1
β2 − eu

m1α1
M2

]∣∣x(t)− x∗(t)
∣∣

−
[
el

β1
−C0

]∣∣y(t)− y∗(t)
∣∣, t � T . (3.14)

Case3:

D+V (t)=
[
−b(t)(u(t)− u∗(t)

) −
(
c(t, x(t))

x(t)
y(t)− c(t, x∗(t))

x∗(t)
y(t)

+ c(t, x∗(t))
x∗(t)

y(t)− c(t, x∗(t))
x∗(t)

y∗(t)
)]

sgn
(
x(t)− x∗(t)

)
+

[
−e(t)

(
y(t)

x(t)
− y∗(t)

x(t)
+ y∗(t)

x(t)
− y∗(t)
x∗(t)

)]
sgn

(
y(t)− y∗(t)

)
� −bl∣∣x(t)− x∗(t)

∣∣ +C0
∣∣y(t)− y∗(t)

∣∣
+M2

∣∣∣∣ 1

ξ(t)

∂c

∂x

(
t, ξ(t)

) − 1

(ξ(t))2
c
(
t, ξ(t)

)∣∣∣∣∣∣x(t)− x∗(t)
∣∣

− el

M1

∣∣y(t)− y∗(t)
∣∣ + eu

m1α1
β2

∣∣x(t)− x∗(t)
∣∣

� −bl∣∣x(t)− x∗(t)
∣∣ +C0

∣∣y(t)− y∗(t)
∣∣ + C0 +C2

m1
M2

∣∣x(t)− x∗(t)
∣∣

− el ∣∣y(t)− y∗(t)
∣∣ + eu

β2
∣∣x(t)− x∗(t)

∣∣

M1 m1α1
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� −
[
bl − C0 +C2

m1
M2 − eu

m1α1
β2

]∣∣x(t)− x∗(t)
∣∣

−
[
el

M1
−C0

]∣∣y(t)− y∗(t)
∣∣, t � T . (3.15)

Case4:

D+V (t)=
[
−b(t)(x(t)− x∗(t)

) −
(
c(t, x(t))

x(t)
y(t)− c(t, x∗(t))

x∗(t)
y(t)

+ c(t, x∗(t))
x∗(t)

y(t)− c(t, x∗(t))
x∗(t)

y∗(t)
)]

sgn
(
x(t)− x∗(t)

)
+

[
−e(t)

(
y(t)

x(t)
− y(t)

x∗(t)
+ y(t)

x∗(t)
− y∗(t)
x∗(t)

)]
sgn

(
y(t)− y∗(t)

)
� −bl∣∣x(t)− x∗(t)

∣∣ +C0
∣∣y(t)− y∗(t)

∣∣
+M2

∣∣∣∣ 1

ξ(t)

∂c

∂x

(
t, ξ(t)

) − 1

(ξ(t))2
c
(
t, ξ(t)

)∣∣∣∣∣∣x(t)− x∗(t)
∣∣

− el

β1

∣∣y(t)− y∗(t)
∣∣ + eu

m1α1
M2

∣∣x(t)− x∗(t)
∣∣

� −bl∣∣x(t)− x∗(t)
∣∣ +C0

∣∣y(t)− y∗(t)
∣∣ + C0 +C2

m1
M2

∣∣x(t)− x∗(t)
∣∣

− el

β1

∣∣y(t)− y∗(t)
∣∣ + eu

m1α1
M2

∣∣x(t)− x∗(t)
∣∣

� −
[
bl − C0 +C2

m1
M2 − eu

m1α1
M2

]∣∣x(t)− x∗(t)
∣∣

−
[
el

β1
−C0

]∣∣y(t)− y∗(t)
∣∣, t � T . (3.16)

It is easy to know that cases 1 and 2 give weaker conditions. And by the assumption(A8),
we have

D+V (t)� −µ1
(∣∣x(t)− x∗(t)

∣∣ + ∣∣y(t)− y∗(t)
∣∣), t � T , or

D+V (t)� −µ2
(∣∣x(t)− x∗(t)

∣∣ + ∣∣y(t)− y∗(t)
∣∣), t � T , (3.17)

where

µ1 = min

{
bl − C0 +C0

m1
β2 − eu

m1α1
β2,

el

M1
−C0

}
> 0,

µ2 = min

{
bl − C0 +C2

m1
β2 − eu

m1α1
M2,

el

β1
−C0

}
> 0.

Integrating on both sides of(3.17) from T to t produces

V (t)+µi

t∫ (∣∣x(s)− x∗(s)
∣∣ + ∣∣y(s)− y∗(s)

∣∣)ds � V (T ) <+∞, t � T .
T
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by
d

Then
t∫

T

(∣∣x(s)− x∗(s)
∣∣ + ∣∣y(s)− y∗(s)

∣∣)ds � V (T )

µi
<+∞, t � T ,

and hence,|x(t)−x∗(t)|+ |y(t)−y∗(t)| ∈L1([T ,+∞)). By (3.12) and(3.17), we obtain∣∣ln{
x(t)

} − ln
{
x∗(t)

}∣∣ � V (T ) <+∞, t � T ,∣∣ln{
y(t)

} − ln
{
y∗(t)

}∣∣ � V (T ) <+∞, t � T .

Therefore,

min
t∈[0,ω]

{
x∗(t)

}
exp

{−V (T )} � x(t)� max
t∈[0,ω]

{
x∗(t)

}
exp

{
V (T )

}
<+∞, t � T ,

min
t∈[0,ω]

{
y∗(t)

}
exp

{−V (T )} � v(t)� max
t∈[0,ω]

{
y∗(t)

}
exp

{
V (T )

}
<+∞, t � T .

The boundedness ofx∗(t), y∗(t) implies thatx(t), y(t) are bounded above and below
positive constants for allt � T . Sincex(t), y(t), x∗(t), y∗(t) are bounded with bounde
derivatives (from the equations satisfied by them), it will follow that|x(t)−x∗(t)|+|y(t)−
y∗(t)| is uniformly continuous on[T ,+∞). By Lemma 2.2, we get

lim
t→+∞

(∣∣x(t)− x∗(t)
∣∣ + ∣∣y(t)− y∗(t)

∣∣) = 0.

Now the proof is complete. ✷
Combining Theorem 2.8 with Theorem 3.2, we conclude:

Theorem 3.7. Assume that(A1), (A2), (Â3), (Â4), (Â5) and(A6) hold. Then system(1.7)
has a unique positiveω periodic solution inΓ̂ , which is globally asymptotically stable.

Similarly, we can prove the following theorem.

Theorem 3.8. Assume that(A1), (A2), (Â3), (Â4), (A6) and (Â7) hold. Moreover, if one
of the following conditions holds

bl − Ĉ0 + m̂1Ĉ2

m̂2
1

β̂2 − eu

m̂1α̂1
β̂2 > 0,

el

M̂1
− Ĉ0

m̂1
> 0,

bl − Ĉ0 + m̂1Ĉ2

m̂2
1

β̂2 − eu

m̂1α̂1
M̂2 > 0,

el

β̂1
− Ĉ0

m̂1
> 0,

bl − Ĉ0 + m̂1Ĉ2

m̂2
1

M̂2 − eu

m̂1α̂1
M̂2 > 0,

el

β̂1
− Ĉ0

α̂1
> 0,

bl − Ĉ0 + m̂1Ĉ2

m̂2 M̂2 − eu

m̂ α̂
β̂2 > 0,

el

ˆ − Ĉ0

α̂
> 0,
1 1 1 M1 1
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ositive

emain

tem

y

tion.
whereα̂i = max{α̂∗
i , m̂i}, β̂i = min{β̂∗

i , M̂i}, i = 1,2, m̂i, M̂i , i = 1,2, are defined in(2.2),
α̂∗
i , β̂

∗
i , i = 1,2, are defined in Theorem3.4 and

Ĉ2 = max
t∈[0,ω]

{
max

x∈[m̂1,β̂1]

{
∂c

∂x
(t, x)

}
, max
x∈[α̂1,M̂1]

{
∂c

∂x
(t, x)

}}
> 0,

then system(1.7) has a unique positiveω periodic solution, say(x̂∗(t), ŷ∗(t))T , which is
globally asymptotically stable and̂α1 � x̂∗(t)� β̂1, α̂2 � ŷ∗(t)� β̂2.

4. Almost periodic case

In this section, we devote ourselves to the existence, uniqueness and stability of p
almost periodic solution of(1.7) under the assumption that

(A8) a(t), b(t), d(t), e(t) are almost periodic functions,c(t, x) is almost periodic int
uniformly with respect tox ∈ [0,+∞).

In addition to the assumptions in Section 2, it is clear that Theorems 2.2–2.8 r
valid for system (1.7) with assumption(A8).

Let

x(t)= exp
{
x̃(t)

}
, y(t)= exp

{
ỹ(t)

}
.

Then system(1.7) becomes

x̃ ′(t)= a(t)− b(t)exp
{
x̃(t)

} − c
(
t,exp

{
x̃(t)

})
exp

{
ỹ(t)− x̃(t)

}
,

ỹ ′(t)= d(t)− e(t)exp
{
ỹ(t)− x̃(t)

}
. (4.1)

By Theorems 2.2–2.5, it is not difficult to show that

Theorem 4.1. If (A1)–(A4) hold, then the setΓ ∗ := {(x, y)T ∈R2 | ln{m1} � x � ln{M1},
ln{m2} � y � ln{M2}} is the positively invariant and ultimately bounded region of sys
(4.1), wheremi,Mi , i = 1,2, are defined in(2.1).

Theorem 4.2. If (A1), (A2), (Â3), and (Â4) hold, then the setΓ̂ ∗ := {(x, y)T ∈ R2 |
ln{m̂1} � x � ln{M̂1}, ln{m̂2} � y � ln{M̂2}} is the positively invariant and ultimatel
bounded region of system(4.1), wherem̂i, M̂i , i = 1,2, are defined in(2.2).

In order to prove the main result of this section, we shall first make some prepara
Consider

x ′ = f (t, x), f (t, x) ∈ C(R×D,Rn), (4.2)

whereD is an open set inRn, f (t, x) is almost periodic int uniformly with respect to
x ∈D.

To discuss the existence of an almost periodic solution of(4.2), we investigate the
product system of(4.2)

x ′ = f (t, x), y ′ = f (t, y). (4.3)
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Lemma 4.1 [49]. Suppose that there exists a Lyapunov function V(t,x,y) define
[0,+∞)×D ×D which satisfies the following conditions:

(i) a(‖x − y‖)� V (t, x, y)� b(‖x − y‖), wherea(γ ), b(γ ) are continuous, increasin
and positive definite;

(ii) |V (t, x1, y1)−V (t, x2, y2)| �K{‖x1 −x2‖+‖y1−y2‖}, whereK > 0 is a constant;
(iii) V ′

(2)(t, x, y)� −cV (|x − y|), wherec > 0 is a constant.

Moreover, suppose that system(4.2) has a solution in a compact setS for all t � t0 � 0,
S ⊂D. Then system(4.2) has a unique almost periodic solution inS, sayp(t), which is
uniformly asymptotically stable inD. Furthermore,mod(p)⊂ mod(f ).

Theorem 4.3. If (A1)–(A5) and(A8) hold, then system(1.7) has a unique positive almo
periodic solution which is uniformly asymptotically stable inΓ and is globally asymptot
ically stable.

Proof. For (x, y)T ∈ IntR2+, we define‖(x, y)T ‖ = x + y. In order to prove that system
(1.7) has a unique positive almost periodic solution, which is uniformly asymptotic
stable inΓ , it is equivalent to show that system(4.1) has a unique almost periodic solutio
to be uniformly asymptotically stable inΓ ∗.

Consider the product system of(4.1)

x̃ ′
1(t)= a(t)− b(t)exp

{
x̃1(t)

} − c
(
t,exp

{
x̃1(t)

})
exp

{
ỹ1(t)− x̃1(t)

}
,

ỹ ′
1(t)= d(t)− e(t)exp

{
ỹ1(t)− x̃1(t)

}
,

x̃ ′
2(t)= a(t)− b(t)exp

{
x̃2(t)

} − c
(
t,exp

{
x̃2(t)

})
exp

{
ỹ2(t)− x̃2(t)

}
,

ỹ ′
2(t)= d(t)− e(t)exp

{
ỹ2(t)− x̃2(t)

}
. (4.4)

Now we define a Lyapunov function on[0,+∞)× Γ ∗ × Γ ∗ as

V (t, x̃1, ỹ1, x̃2, ỹ2)= ∣∣x̃1(t)− x̃2(t)
∣∣ + ∣∣ỹ1(t)− ỹ2(t)

∣∣.
Set

a
(∥∥(x̃1, ỹ1)

T − (x̃2, ỹ2)
T
∥∥) = b

(∥∥(x̃1, ỹ1)
T − (x̃2, ỹ2)

T
∥∥)

= ∥∥(x̃1, ỹ1)
T − (x̃2, ỹ2)

T
∥∥ = |x̃1 − x̃2| + |ỹ1 − ỹ2|.

It is clear that the condition (i) of Lemma 4.1 is satisfied. Moreover,∣∣V (t, x̃1, ỹ1, x̃2, ỹ2)− V (t, x̃3, ỹ3, x̃4, ỹ4)
∣∣

=
∣∣∣(∣∣x̃1(t)− x̃2(t)

∣∣ + ∣∣ỹ1(t)− ỹ2(t)
∣∣) − (∣∣x̃3(t)− x̃4(t)

∣∣ + ∣∣ỹ3(t)− ỹ4(t)
∣∣)∣∣∣

�
∣∣x̃1(t)− x̃3(t)

∣∣ + ∣∣ỹ1(t)− ỹ3(t)
∣∣ + ∣∣x̃2(t)− x̃4(t)

∣∣ + ∣∣ỹ2(t)− ỹ4(t)
∣∣, (4.5)

which shows that the condition (ii) of Lemma 4.1 is satisfied.
Let (x̃i(t), ỹi (t))T , i = 1,2, be any two solutions of(4.1) defined on[0,+∞)× Γ ∗

× Γ ∗.
Calculating the right derivativeD+V (t) of V (t) along the solutions of(4.1), we have
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on
,
is
D+V (t)=
[
−b(t)(exp

{
x̃1(t)

} − exp
{
x̃2(t)

}) − (
c
(
t,exp

{
x̃1(t)

})
exp

{
ỹ1(t)− x̃1(t)

}
− c

(
t,exp

{
x̃2(t)

})
exp

{
ỹ2(t)− x̃2(t)

})]
sgn

(
x̃1(t)− x̃2(t)

)
+

[
−e(t)(exp

{
ỹ1(t)− x̃1(t)

} − exp
{
ỹ2(t)− x̃2(t)

})]
sgn

(
ỹ1(t)− ỹ2(t)

)
� −

[
bl − C0 +C1

m1
M2 − eu

m2
1

M2

]∣∣exp
{
x̃1(t)

} − exp
{
x̃2(t)

}∣∣
−

[
el

M1
−C0

]∣∣exp
{
ỹ1(t)

} − exp
{
ỹ2(t)

}∣∣, (4.6)

where

C1 = sup
t∈[0,+∞)

{
max

x∈[m1,M1]

{
∂c

∂x
(t, x)

}}
> 0.

By Theorem 4.1 and∣∣exp
{
x̃1(t)

} − exp
{
x̃2(t)

}∣∣ � exp
{
ξ(t)

}∣∣x̃1(t)− x̃2(t)
∣∣,∣∣exp

{
ỹ1(t)

} − exp
{
ỹ2(t)

}∣∣ � exp
{
η(t)

}∣∣ỹ1(t)− ỹ2(t)
∣∣, (4.7)

whereξ(t) is betweeñx1(t) andx̃2(t), η(t) is betweeñy1(t) andỹ2(t), we have

D+V (t)� −
[
bl − C0 +C1

m1
M2 − eu

m2
1

M2

]
m1

∣∣x̃1(t)− x̃2(t)
∣∣

−
[
el

M1
−C0

]
m2

∣∣ỹ1(t)− ỹ2(t)
∣∣

= −µ(∣∣x̃1(t)− x̃2(t)
∣∣ + ∣∣ỹ1(t)− ỹ2(t)

∣∣), (4.8)

where

µ= min

{[
bl − C0 +C1

m1
M2 − eu

m2
1

M2

]
m1,

[
el

M1
−C0

]
m2

}
> 0.

Hence, the condition (iii) of Lemma 4.1 is satisfied.
Therefore, from Theorem 4.1 and Lemma 4.1, it follows that system(4.1) has a unique

almost periodic solution inΓ ∗, say (x̃∗(t), ỹ∗(t))T , which is uniformly asymptotically
stable in Γ ∗. Hence, system(1.7) has a unique positive almost periodic soluti
(x∗(t), y∗(t))T in Γ , which is uniformly asymptotically stable inΓ . By Theorem 2.7
one can easily show that(x∗(t), y∗(t))T is globally asymptotically stable. The proof
complete. ✷

By similar arguments, we also have

Theorem 4.4. If (A1), (A2), (Â3), (Â4), (Â5) and (A8) hold, then system(1.7) has a
unique positive almost periodic solution which is uniformly asymptotically stable inΓ̂ and
is globally asymptotically stable.
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Table 1
Applicability of general theorems to nonautonomous systems of form (1.2)–(1.6)

c(t, x) PI UB P GAS EPS GAS of PS APS

m(t)x Th2.1, Th2.2 Th2.4 Th2.6 Th2.7 Th3.1, Th3.3 Th3.5, Th3.6 Th4.3
m(t)x
A+x Th2.1–2.3 Th2.4, Th2.5 Th2.6 Th2.7, Th2.8 Th3.1–3.4 Th3.5–3.8 Th4.3, T

m(t)xn

A+xn Th2.1, Th2.3 Th2.5 Th2.6 Th2.8 Th3.2, Th3.4 Th3.7, Th3.8 Th4.4

m(t)x2

(A+x)(B+x) Th2.1–2.3 Th2.4, Th2.5 Th2.6 Th2.7, Th2.8 Th3.1–3.4 Th3.5–3.8 Th4.3, T

m(t)(1− e−Ax) Th2.1, Th2.3 Th2.5 Th2.6 Th2.8 Th3.2, Th3.4 Th3.7, Th3.8 Th4.4

P: permanence, PI: positive invariance, GAS: globally asymptotic stability, APS: almost periodic sol
Th: theorem, UB: ultimate boundedness, PS: periodic solutions, EPS: existence of periodic solutions.

5. Conclusive discussion

In this paper, we have investigated the dynamical behavior of a class of nonauton
semi-ratio-dependent predator–prey systems, which incorporates a number of p
terms for the predator’s functional responses to the prey. In order to enhanc
applicability of the general results established previously, we shall go back to so
the particular forms for the functional responses and interpret the general results in
of the particular cases. One can easily see that it is very trivial to apply the general
to nonautonomous predator–prey systems of form (1.2)–(1.6). So we prefer to illust
Table 1 the applicability of such general theorems to systems of form (1.2)–(1.6).

From Table 1, one can easily observe that, for a given predator’s functional res
to prey, different sufficient criteria are established for certain dynamical behavi
such systems. For example, both Theorem 3.1 and Theorem 3.3 assert the exist
componentwise positiveω periodic solutions of system (1.7) when the functional respo
is of type 1, 2 and 4.

Naturally, it is interesting to know how these corresponding theorem actually com
Without loss of generality, as an example, we will talk about this topic based on T
rems 3.1 and 3.3.

Exploring (A4) (from Theorem 3.1) versus (A7) (from Theorem 3.3) is clearly th
heart of the matter, since these are the only hypothesis that vary from Theorem
Theorem 3.3. By (2.1), we can takeM2 = audu/blel + ε, whereε is taken sufficient small
From (A4), one can easily derive that

C0 <
al

M2
= alblel

audu + εblel
<
al

au
× blel

du
, (5.1)

while (A7) can be rewritten as

C0 <
b̄ē

d̄
exp

{−2(ā+ d̄)
}
. (5.2)

It is trivial to show that (5.1) implies (5.2) if and only if

al/au � exp
{−2(ā+ d̄)

}
,
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se.
tence
er the

the
riodic
since

blel

du
� b̄ē

d̄
.

Generally speaking, assumptions (A4) and (A7) cannot contain each other as special ca
That is to say, Theorems 3.1 and 3.3 do provide different sufficient criteria for the exis
of componentwise positive periodic solutions of system (1.7). For example, consid
following predator–prey system of form (1.2):

ẋ = x(0.3− x)− (0.5 sin2πt + δ)xy,

ẏ = y

[
0.2− (cos2πt + 2)

y

x

]
. (5.3)

In system (5.3),

a(t)≡ 0.3, b(t)≡ 1, d(t)≡ 0.2, e(t)= cos2πt + 2,

c(t, x)= (0.5 sin2πt + δ)x.

Then direct calculation shows that

c(t, x)� 0.5+ δ � C0,

al

M2
= alblel

audu + εblel
= 30

6+ 100ε
,

b̄ē

d̄
exp

{−2(ā + d̄)
} = 6 exp{−1} ≈ 2.21,

whereε > 0 can be taken sufficient small.
Takeδ = 3,C0 = 3.5 andε sufficient small; then we have

C0 <
al

M2
,

which shows that for system (5.3) Theorem 3.1 applies. However, for anyC0 � 3.5, we
always have

C0 >
b̄ē

d̄
exp

{−2(ā+ d̄)
}
,

so we can conclude that Theorem 3.3 fails.
Takeδ = 1.5,C0 = 2 andε sufficient small; then we have

C0 <
al

M2
, C0 <

b̄ē

d̄
exp

{−2(ā+ d̄)
}
,

therefore, both Theorem 3.1 and Theorem 3.3 apply.
Takeδ = 6; thenC0 � 6.5, hence

C0 >
al

M2
, C0 >

b̄ē

d̄
exp

{−2(ā+ d̄)
}
,

which implies neither Theorem 3.1 nor Theorem 3.3 applies. In this case, from
criteria established in this paper, we learn nothing about the existence of positive pe
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other
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versa.
nt. For

, we

ponse

lts in
ment
are very
resting
stems

improve

ith cla-
solutions. Stronger and more effective criteria should be established by using
methods.

Also, the above discussion and Table 1 tell us that generally there are no forms o
tional responses for which Theorem 3.1 applies but Theorem 3.3 does not for vice
However, for some concrete predator–prey systems, the answer is completely differe
system (5.3) withδ = 3, which is of form (1.2) and the functional response is of type 1
have proved that Theorem 3.1 applies while Theorem 3.3 does not.

Now let us consider a predator–prey system of form (1.3), where the functional res
is of type 2,

ẋ = x(0.4− 0.5x)− 0.7x

1+ x
y,

ẏ = y

(
0.1− 0.3

y

x

)
; (5.4)

here

a(t)≡ 0.4, b(t)≡ 0.5, d(t)≡ 0.1, e(t)= 0.3 sin2πt + 0.4,

c(t, x)= 0.7x

1+ x
� 0.7� C0.

Then for anyC0 � 0.7, we have

al

M2
= alblel

audu + εblel
<
alblel

audu
<
blel

du
= 0.5<C0,

that is Theorem 3.1 does not apply. However, forC0 = 0.71,

b̄ē

d̄
exp

{−2(ā + d̄)
} = 2 exp{−1} ≈ 0.74>C0,

which implies Theorem 3.3 applies.
Finally, in view of the above discussion, we would like to mention that some resu

Sections 3 and 4 have room for further improvement. However, significant improve
appears to be difficult unless new approaches can be found. The methods used here
powerful and effective and can be used to attack other problems. It also seems inte
but more challenging to derive sufficient and necessary criteria for the dynamics of sy
of form (1.7).
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