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Abstract
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1. Introduction

The dynamic relationship between predators and their preys has long been and will
continue to be one of the dominant themes in both ecology and mathematical ecology due
to its universal existence and importance [6]. At first sight, these problems may appearto be
simple mathematically. However, in fact, they are often very challenging and complicated.

Recently, many authors have explored the dynamics of a class of the so-called semi-
ratio-dependent predator—prey systems with functional responses

x'=x[a—bx]—c(x)y,
y’=y[d—ez] (1.1)
X

wherex andy stand for the population (or density) of the prey and the predator, respec-
tively. c(x) is the so-called predator functional response to prey.

In (1.1), it has been assumed that the prey grows logistically with growtharate
and carrying capacity/b in the absence of predation. The predator consumes the prey
according to the functional responsér) and grow logistically with growth raté and
carrying capacity (r) /e proportional to the population size of prey (or prey abundance).
The parameter is a measure of the food quality that the prey provides for conversion into
predator birth.

The form of the predator equation in (1.1) was first proposed by Leslie [33]. In (1.1),
the functional responsgx) can be classified into five types.

When the functional responsgx) is of type 1, i.e.,c(x) = mx, then we have the
following Leslie—Gower model [25,26,33]

x'=x[a — bx] —mxy,

y’=y[d—ez}, (1.2)

X

where the predation is assumed to be proportional to the population size of the prey.
When the functional responséx) is of type 2, in particularg(x) = mx /(A + x), then

we have the following model of R.M. May also known as the so-called Holling—Tanner

predator—prey model [3,5,6,11,13,18,20,23-27,35,37-40,45,46,48], which takes the form

of

, @ — bx] mx
x'=x[a—bx]— ——y,
A-I—xy

y’=y[d—eﬂ. (1.3)

The saturating functional response /(A + x) is of Michaelis—Menten type in enzyme—
substrate kinetics. The parameteris the maximum specific rate of product formation,

x is the substrate concentration, add(the half-saturation constant) is the substrate
concentration at which the rate of product formation is half maximal. The functional
responsenx/(A + x) was also proposed by Holling [25] for “nonlearning” predators,
which is also called a functional response of the predator of Holling type Il. The label
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nonlearning is a bit misleading because even predators capable of learning should exhibit
this type of response when given only one type of prey for which to search. In predator—
prey interaction is the maximal predator per capita consumption rate, i.e., the maximum
number of prey that can be eaten by a predator in each time uniasdhe number
of prey necessary to achieve one-half of the maximum #at&or the derivation of the
functional response(x) of type 2, one can refer to [25,27,39] and references cited therein
for details. According to Hassell [22,23], type 2 functional response is the most common
type of functional response among arthropod predators. The May model has been used
by Wollkind et al. [48] to investigate numerically the dynamics of a predator—prey system
for a pest in fruit-bearing trees, under the hypothesis that the parameters depend on the
temperature.

When the functional responséx) is of type 3, in particular¢(x) = mx" /(A + x™)
(n > 2), then we have

mxﬂ

/
= —b _ Y,
x =xla x] A—i—x”y
’ y
y =y|:d—e—]. (1.4)
X

The functional respons&x) of type 3 is sigmoid and it tends to an asymptotic value as
the prey density increases. If we take into account the time a predator used in handling the
prey it has captured, we find the predator has a functional response of type 3. The function
c(x) = x2/(A +x?) is also referred to as a function response of Holling type IIl, which was
suggested by the biologist Holling [25]. The general form of function response of this type
was introduced by Kazarinov and van den Driessche [31]. One can refer [23,25,30-32,42,
46,48] for related studies.

When the functional responséx) is of type 4, in particularg(x) = mx2/((A + x) x
(B +x)) [12,35,42,44,46,48], then we have

mx2

x' =x[la—bx]— m)’,
y’=y|:d—621|. (1.5)
X

The functionc(x) = mx?/((A + x)(B + x)) is an S-shaped curve. The sigmoidal-type
curves are indicative of predator which show some form of learning behavior in which,
below a certain level of threshold density, the predator will not utilize the prey for food at
any great intensity. However, above that density level, the predators increase their feeding
rates until some saturation level is reached. Holling [25] reasoned that these animals tend
both to learn slowly and to forget the value of a food unless they encounter it fairly often.
Holling [25] gave some field evidence that &rshaped functional response is typical for
veterbrate predators with alternative prey available. One can refer to [12] for details of the
derivation ofc(x) = mx2/((A+x)(B +x)). In fact, the domed functional response, which

has been termed type 4, incorporates prey interference with predation in that the per capita
predation rate increases with prey density to a maximum at a critical prey density beyond
which it decreases. When the prey species is a spider mite, sicmasdanielian possible
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source of interference is the webbing produced by these mites [12,13,42]. This webbing
is known to interfere with predators by decreasing their walking speed and reducing their
chances of contacting the prey [42]. In extreme cases predatory mites that are not adapted
to walking on webbing can starve in the presence of spider mite prey.

When the functional responséx) is of type 5 (also Ivlev's functional response), in
particular,c(x) =m(1—e~4%) [8,17,26,27,29,33,38], then we have

x' =xla —bx]—m(1—e )y,
y’:y[d—ez:|. (1.6)
X

For details of derivation, one can refer to [29].

Experimental results on the functional response of predators can be found, for example,
in [1,2,12,14,20,25]. It should be pointed out that the expressions are used to define type
1-5 functional responses (e.g., see [12—-14,23,32,46]), rather than they are used for their
simplicity.

Although much progress has been seen in the predator—prey theories, such systems
are not well studied in the sense that most results are autonomous cases related in which
time ¢t has not appeared explicitly in the equations. That is to say, in most of the predator—
prey systems considered so far, it has been assumed that all biological and environmental
parameters are constant in time. However, any biological or environmental parameters are
naturally subject to fluctuation in time and if a model is desired which takes into account
such fluctuation it must be nonautonomous, which is, of course, more difficult to study
in general. One must of course ascribe some properties to the time dependence of the
parameters in the models, for only then can the resulting dynamic be studied accordingly.
One might assume they are periodic or almost periodic, etc.

To consider the fluctuative environmental factors in real populations, we will confine
ourselves here to the case that tinggopears explicitly in the biological and environmental
parameters.

Although the autonomous case of (1.1) has been studied extensively in the literature
[1-3,5,6,11-14,18,20-48], few works have been done on the nonautonomous predator—
prey systems of type (1.1) with functional response of type 1-5 [7].

The principle aim of this paper is to perform systematic analysis on the dynamics of the
nonautonomous semi-ratio-dependent predator—prey systems with functional responses of
form (1.1).

For the sake of generality and conveniences in the following discussion, we prefer to
study the following semi-ratio-dependent predator—prey system in a more general form

x'= x[a(t) — b(t)x] —c(t,x)y,
y’=y[d(t) —e(t)X},
X
x(t0) >0, y(p) >0, froeR. .7

Specially, we will establish sufficient criteria for the boundedness of solutions, the perma-
nence and globally asymptotic stability of systems and the uniqueness of positive periodic
solution and almost periodic solution to be globally asymptotically stable.
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The tree of this paper is the following:

1. Introduction.

2. General nonautonomous case: boundedness, permanence and globally asymptotic
stability.

3. Periodic case: existence, uniqueness and globally asymptotic stability of positive
periodic solutions.

4. Almost periodic case: existence, uniqueness and globally asymptotic stability of pos-

itive almost periodic solutions.
. Conclusive discussion.
. References.

o Ol

2. General nonautonomous case

In this section, we shall consider the general nonautonomous case and present some
preliminaries results, including the boundedness of solutions, the permanence and globally
asymptotic stability of system (1.7). First, we shall introduce some notations that will be
used throughout this paper.

Let R2 :={(x,y)" € R?|x > 0, y > 0} and f(t) be a bounded continuous function
on R. Define

fl=supfn),  fh=inf ().
teR teR
Particularly, if £ (¢), g(¢, x) arew periodic functions with respect tq then

w

17 ) 1
= —/f(t)dt, g2(x) :=—/g(t,x)dt.
w w
0

Consider the nonautonomous predator—prey system (1.7) together with the following
assumptions:

(A1) a(t),b(t),d(t), e(t) are continuous orR and are bounded below and above by
positive constants;

(A2) c(t,x) is continuous with respect to the first variable and is differentiable with
respect to the second variable, arnd, 0) = 0, (dc/9x)(t,x) > O for anyt € R,
x >0, and(dc/dx)(¢, x) is bounded with respect 0

(A3) there exists a constadp > 0, such that(z, x) < Cox foranyr e R, x > 0;

(A3) there exists a constady > 0, such that(z, x) < Co for anyre R, x > 0;

(Ag) a' — CoMz > 0;

(Ag) (a))? — 4b"CoM> > 0, wherem;, M;, m;, M;, i = 1,2, are positive constants such

that
at u
. * . *
M1>ﬁ.=M1’ M2>?M1.=M2,
a — CoM> d'

P k P *
m)y < ————— =mj, my < e—uml._ mj, (2.1)

bu
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N au N du N
My > ﬁ’ Mo > ?Ml,
a4 /(@)2 = abrCoM; dl
mi < T , My < e—uml. (2.2)
Define
r={@ " e R m<x <M1, my<y< Mo}, (2.3)
Fi={x, »7" € R? |11 <x < My, iz <y < Ma). (2.4)

Theorem 2.1. Both the nonnegative and positive conegéfare positively invariant with
respect to systerfl.7).

Proof. Note that system (1.7) is equivalent to

X(t)—X(to)eXD{ / a(s) = b(s)x(s) — <& (x)(s) (s)}ds},

y(r>=y(ro)exp{/[d(s>— ()%} }
fo

The assertion of the lemma follows immediately forzalt 9. The proof is complete. O

Theorem 2.2. Assume thatA1)—(A4) hold. Then the sef” defined by(2.3) is positively
invariant with respect to syste.7).

Proof. Let(x(z), y(1))” be the solution of1.7) through(x (o), y(t0))” with m1 < x(f0) <
My andmy < y(to) < Mo.

From the prey’'s equation @fl.7) and the positivity of the solution afL.7), it follows
that

X (1) <x@)[a" —bx®)] =bx(O[MF —x)] < b x@)[M1—x(1)].
A standard comparison argument shows that
O<x(<M1 = x(@)<Mi, 1=>1o.

Similarly, by the predator’s equation ¢f.7), we have
! !

, ¢! e e
Y (1) < y(0) [d“ - ﬁly(t)} = ﬁly(t)[Mé‘ y(0] < —y(t)[Mz —y(],
and hence,
O<y(t) <Mz = y@®) <Mz t=>to.
The first equation of (1.7) and the above results together lead to
x'(1) = x(O[a' — bx(t) — CoMa] = b"x (1) [m} — x(1)] = b"x(1)[m1 — x ()],
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then we have
x(to)=z2m1 = x(t)=2m1, =1

By the second equation ¢1.7), we have

u u

V() = y(t) [d’ - e—y(r)} = y0[my—y)] = —yO)[m2—y©)),
mi m1i m1i
which implies
y(to) Z2mz = y(@)=mp, tZ=1o.

Now we can claim thaf” is positively invariant with respect to (1.7). The proof is com-
plete. O

Carrying out similar arguments as above, we can prove

Theorem 2.3. If (A1), (A2), (A3) and (A4) hold, then the sef’ defined by(2.4) is pos-
itively invariant with respect to syste(.7).

Definition 2.1. The solutions of system (1.7) are said to be ultimately bounded if there exist
B > 0 andT > 0 such that every solutiotx (¢), y(¢))T of (1.7) through(x (1), y(t0))” €

R? satisfies|| (x (1), y(t))T || < B, for all t > 1o+ T, whereB is independent of particular
solution whileT may depend on each solution.

Definition 2.2 [29]. System (1.7) is said to be permanent if there exists a compact region
I c IntR?F such that for every solutiotx (¢), y(r))” of (1.7) with positive initial value
(x(t0), y(t0))T, there exists & > 0 such thatx(r), y(t)) e 'forallt >+ T.

Theorem 2.4. If (A1)—(A4) hold, then the sef’ defined by(2.3) is an ultimately bounded
region (or absorbing and positively invariant 9eaf systen{1.7).

Proof. Let (x(¢), y(t))T be the solution of(1.7) with any positive initial value(x (1),
y(to)'.

If x(t) > My forall ¢ > 1o, thenx(t) — Mj > M1 — M7 := 61 > 0 forall r > 1o, which,
together with the first equation of (1.7), implies

() <x@®[a" = b'x] <x®)[a" — b (M +81)] = —bls1x (1), 1 >10.

Thus,x () < x (o) exp{—b'81(t — 19)} — 0 ast — +o0, which contradicts the faat(r) >
M, for all t > rg. Hence, there must exist/a > 0 such that () < M forall t > 19 + T1.

If y(r) > M forall t > to, theny(¢) — M3 > M> — M5 := 82 > O forallt > t. By the
second equation of (1.7), we have

l l
V() <y [d“ - Aj—ly(t)} <) [d“ - ;—l(M; + 52)}

1
e

=——3082y(), t=>t T1.
Mlz)’() >t0+T1
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Therefore,

!
y() < y(to+ T1) exp{—;l—az(t — 10— Tl)} — 0 ast— +oo,
1

which contradicts the faot(z) > M» for all t > 79. Hence, there exists® > T such that
y(@) < Maforallt > tg+ To.

If x(t) <myforallt > 1o, thenmi —x(¢) > m] —mq:=83 > 0forallr > ro. From the
first equation 0f1.7), it follows

X (1) = x(0)a = b x(t) — CoM2] > x(t)[d' — CoMa — b" (m} — 83)]
=b"83x(t), t>=t9+ To.
Thus,
x(1) = x(to+ T2) exp|{b"83( — to — T2)} — +o0  ast — +oo,

which contradicts the fact(r) < m1 for all r > t9. Hence, there exists® > T» such that
x(t) >mq forallt > 19+ Ts.

If y(t) <mpforallt> 1, thenm3 — y(t) > m5 — mp := 84 > 0 for all t > 0. By the
second equation of (1.7), we have

u 1 !
V) =) [dl - e—y(r)} > y(t) [d’ —Z(m3— 5@} =% 5ay(t), t>10+Tx
mi mj m1

Therefore,
u

y(t) = y(to+ T3) exp{e—54(t — 1o — T3)} — 400 ast — +oo,
mi

which contradicts the faot(z) < m2 for all t > 1. Hence, there exists® > T3 such that
y(t) = moforallt > 1o+ Ty.

Hence, the above arguments imply thet), y (1))’ e I for anyr > 1o+ T4. Therefore,
I' is an ultimately bounded region of syst&fn7). The proof is complete. O

By the similar arguments, we can establish the following result:

Theorem 2.5. Assume thatA1), (A2), (A3) and(A4) hold. Then the sef defined by2.4)
is an ultimately bounded regigir absorbing and positively invariant sedf systen(1.7).

The above arguments show that

Theorem 2.6. If (A1)—(A4) Or (A1), (A2), (A3) and (A4) hold, then systerl.7) is per-
manent.

Remark 2.1. Practical persistence [8-10], in which seems to have been some recent
interest, refers to determining specific estimates in terms of model date for the asymptotic
distance to the boundary of the feasible region for uniformly persistent population
interaction models. In fact, the scenarios of the approach to Theorem 2.6 is a particular
case of the so-called “practical persistence” approach to permanence.
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Definition 2.3. System(1.7) is said to be globally asymptotically stable if any two solu-
tions (x; (t), y; 1) T, i =1, 2, of (1.7) with positive initial values have the property

Jim_ (1) = 220] + |y = y20)]) =0.

In order to explore the globally asymptotic stability, we introduce below a lemma due
to Barkalat.

Lemma 2.1 [4]. Let f be a nonnegative function defined @) +o00) such thatf is inte-
grable on[0, +00) and is uniformly continuous o), +o00). Thenlim;_, ., f(¢) = 0.

Lemma 2.2. Leth be a real number angt be a nonnegative function defined [@n +oc0)
such that f is integrable on[h, +00) and is uniformly continuous of#, +c0). Then

lim;— 100 f(z) =0.

Theorem 2.7. AssumegA1)—(Ay4) hold. Moreover, if

C C u [
s b - Cps0, S o0,
mi m7 M,

wherem;, M;,i =1, 2, are defined in2.1) and
dc

Ci= sup max {—(@,x)¢¢ >0,
t€[0,+00) | ¥Elm1,M1] ox

then systen(l.7) is globally asymptotically stable.

Proof. Let (x; (1), yi(1)T, i = 1,2, be any two solutions of1.7) with positive initial
values(x; (f0), yi (t0))” . Theorem 2.2 implies that there exist§'a> 0 such that(x; (r),
yvienT er,i=1,2,forallt >tg+ T1.

Consider a Lyapunov function defined by

V() = In{xi)} = In{xa)}| + [In{y2)} = In{y2(0)}

A direct calculation of the right derivativ®™ V (¢) of V(¢) along the solutions of1.7)
leads to

, t>1o.

DtV () = [—b(r)(xl(r) —xa(t)) — (%&;ﬂ)ym) - C”%égmyzm)}
x sgr(x1(t) — x2(1))

yi(®)  y2(t)
+ [—e(t)<xl(t) - xz(t)>i| sgn(y1(t) — y2(1))

I . (et x®) et ()
—[ b(t)(x1(t) — x2(1)) (7“0) yi(t) 0 y2(t)
c(t, x1()) c(t, x2(t))
T yz(r)—ixz(t) yz(t))}sgr(xlm—xz(r))

+|:—e(t)<yl(t) y2(t) | y2(t) yZ(t)):|Sgr(y1(t)—y2(t))

xi(t)  xa() | oxa()  x2()
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< =b[x1(1) — x2()| + Co| y1(1) — y2(0)|

1 0
S(rem) - 1LE®D)

+ M> %a

|x1(1) — x2(1)|

L
(5(1)?

el et
A ly1(t) — y2(0)| + m—%M2|X1(t) — x2(t)|

eu
M3 — —zMz} |x1(1) = x2(1)|
mi m

1

el
— [E - Co} |y1(t) = y2(1)|

< —p(|x1(0) = x20)] + [y1(0) = y2(0) 1),
t >2maxr+ 11,0} :=T, (2.5)

whereé(t) is betweernx1(r) andx2(z), and

dc
Ci1= sup { max {—(t,x)}}>0,
0x

IE[O,+OO) xe[ml,Ml]
. Co+C et el
= mm{bl -2 My~ SMa, — — Co| > 0.
mji mi My

Obviously,
V(T) = |In{x1(T)} = In{x2(T)}| + [In{y1(T)} = In{y2(T) }| < +o0.

Integrating from?T to ¢ on both sides 0§2.5) produces

t
V() + u/(|X1(S) —x2(8)| + [y1(s) — y2(s)|) ds S V(T) < 400, 1>T.

T
Then
+00 V(T)
/ (Jx1(s) = x2(8)| + [y1(s) — y2(9)|) ds < o < +o0
T

Hence | x1(r) — x2(2)| + |y1(t) — y2(t)| € LY([T, +00)). By system (1.7) and Theorem 2.4,
we getx; (¢), y; (1), i = 1, 2, and their derivatives are bounded[@h +o0), which implies
that|x1(t) — x2(2)| + | y1(¢) — y2(¢)| is uniformly continuous ofiT, +00). By Lemma 2.2,
we reach
im ([xa@) = x20] + [y10) = y2()|) =0.

The proof is complete. O

Theorem 2.8. Assume thatA1), (A2), (A3) and(Ag4) hold. If
éo —i—iﬁlélM el e éo

<2 Z—A—2M2>0, ,\——,\—>O,
mi my My m1

(As) b —
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whereri;, M;, i = 1, 2, are defined in2.2) and
N dc
Ci1= sup max —(,x)¢¢,
XE

t€[0,400) iy, Mq] L OX

then systen(l.7) is globally asymptotically stable.

The proof is similar to that of Theorem 2.7, hence the details are omitted here.

3. Periodic case

In this section, we investigate the existence, uniqueness and stability of positive periodic
solutions of(1.7) under the assumption that

(Ag) the parameters in systeth.7) arew periodic with respect to.

In addition to the assumptions in Section 2, it is clear that Theorems 2.2—2.8 remain
valid for system (1.7) with the additional assumptiots).

Lemma 3.1 (Brouwer fixed point theoremBuppose that a continuous operatomaps
a closed, bounded, convex subsetC R" into itself. Thens2 contains at least one fixed
point of the operatob, i.e., there exists an* € £2 such thato (x*) = x*.

Theorem 3.1. If (A1)—(A4) and (Ag) hold, then systemil.7) has at least one positive
periodic solution, sayx*(t), y*(1))T, andmy < x*(t) < M1, mz < y*(t) < Mo, where
m;, M;,i =1, 2, are defined i2.1).

Proof. First, we define a shift operator, which is also known as a Poincaré mapping
o:R?— RZby

o (0, y0)") = (x (. to, (x0, y0)"), ¥ (@, 10, (x0. yo)T))T, (x0,y0)" € R?,

where (x(z, 10, (x0, yo) 1), y(t, to, (x0, yo)7))T denotes the solution of (1.7) through the
point (o, xo0, yo)© . Theorem 2.2 tells us that the setdefined by(2.3) is positive invariant
with respect to systenil.7), that is to say, the operater defined above map§F' into
itself, i.e.,o (I') C I'. Since the solution of1.7) is continuous with respect to the initial
value, the operatar is continuous. It is not difficult to show thdt is a bounded, closed,
convex set ink2. By Lemma 3.1¢ has at least one fixed point ifi, i.e., there exists a
(x*, y9)T e I' such that

@*, )T = (x(@, to, %, y9)T), y(w, 10, (%, y)T)) .

Hence, there exists at least one strictly positivperiodic solution of1.7) in I". The rest
of the proof follows directly. O

Similarly, we can easily prove that
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Theorem 3.2. If (A1), (A2), (A3), (As) and(Ag) hold, then systerti..7) has at least one
pAositivew periqdic solution, say&*(t), 3*()T, andmy < £*(t) < M1, mz < 3*(t) <
M>, wherem;, M;,i =1, 2, are defined in(2.2).

Remark 3.1. Itis fairly widely known that in an autonomous system of ODEs, permanence
implies the existence of a componentwise positive equilibrium. Some authors have reported
that, in a periodic setting, there are also results asserting that permanence implies the
existence of a componentwise positive periodic orbit. Comparing Theorem 2.6 with Theo-
rems 3.1 and 3.2, one can easily observe that our results fairly support the claim.

The conditions in Theorems 3.1 and 3.2 are given in terms of supremum and infimum
of the parameters. Next, we will employ an alternative approach to establish some criteria
for the same problem but in terms of the averages of the related parameters over an interval
of the common period. That is a continuation theorem in coincidence degree theory, which
have been successfully used to establish sufficient criteria for the existence of positive
periodic solutions of Lotka—\Volterra type multi-species competition systems and predator—
prey systems with time delays; for example, one can consult [15-17,34] for details.

To this end, we shall first summarize below a few concepts and results from [19]
borrowing notations and terminologies there.

Let X,Z be normed vector spaceg,:DomL C X — Z be a linear mapping,

N : X — Z be a continuous mapping. The mappibgvill be called a Fredholm mapping
of index zero if dimKelZ = codimIimL < +oo and ImL is closed inZ. If L is

a Fredholm mapping of index zero and there exist continuous projeftoss — X
and Q:Z — Z such that ImP = KerL, ImL = KerQ = Im(I — Q), it follows that
LIDomL NKerP:(I — P)X — ImL is invertible. We denote the inverse of that map
by Kp. If £2 is an open bounded subset’fthe mappingV will be called L-compact on
Qif ON(£2) isboundedan& » (I — Q)N : 2 — X is compact. Since In® is isomorphic

to KerL, there exists an isomorphisit Im Q — KerL.

Lemma 3.2 (Continuation theorem).et L be a Fredholm mapping of index zero aivd
be L-compact or2. Suppose

(a) for eacha € (0, 1), every solutionx of Lx = ANx is such thate ¢ 9£2;
(b) ONx #£0foreachx € 92 NKerL and

dedJON, 2 NKerL,0} #0.
Then the operator equatiabix = Nx has at least one solution lying BomL N £2.
Theorem 3.3. AssumgA1)—(A3) and(Ag) hold. Moreover, if
(A7) %j exp{2(a + d)o} <1,

then systeni1.7) has at least one positive periodic solution, sayx*(¢), y*(r))’, and
there exist positive constant$, g, i = 1, 2, such that] <x*(¢) < g7, a5 < y*(t) < B3.
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Proof. Making the change of variables
x)=exp{x®},  y®O=exp{30)}.
system(1.7) is reformulated as
)y =a@)—b@)exp{x()} —c(r, exp|x(1)}) exp{3(1) — (1)},
(1) =d(1) — ey exp{3(1) — (1)} (3.1)
Let

X=Z={G N €CR R X1 +w) =301), 51 +0)=F0)},
~ ~T _ ~ ~
| 5" | = max |2()] + max|5()

., @&»lex(orz).

ThenX, Z are both Banach spaces when they are endowed with the above|Agrm
Let

d(1) — e(t) exp{y(t) — X (1)}

L) L-el-[1Eme) [

Lswar y

N [x} _ [Nl(r)} _ [a(r) — b(1) explE ()} — c(t, expl(r)}) expl(r) — i(r)}}
y Nao(1) ’

Then

KerL = {(& »H" e X | & T = (h1, h2)" € R?},
w

ImL:{(i,&)TeZ‘/i(t)dtzO, /;(r)dr:O},
0

0
and

dimKerL =2 =codimImL.

Since ImL is closed inZ, L is a Fredholm mapping of index zero. It is easy to show that
P, Q are continuous projectors such that

ImP =KerlL, ImL=KerQ=Im(I — Q).

Furthermore, the generalized inverse {tp Kp:ImL — DomL N Ker P exists and is
given by

K H_ Jex(syds — L [@ [T 5(s)dsdr
"Lyl Joi(s)ds — 2 [ o 5(s)dsdt |
ox 5]

| 2[5 (als) = b(s) explE(s)} — c(s, expiX(s)}) expli(s) — X(s)}) ds
T L e(d(s) — els) eXpI(s) — £(5)}) ds ’

Thus

<=
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KP(I—Q)N[;E}

| JoNisyds — = [ Jo Na(s)dsdt — (5 = 3) [’ Na(t)di
Jo Na(s)yds — L [ [0 No(s)dsdt — (£ — 3) [’ No(t)dt |

Obviously,ON andKp(I — Q)N are continuous. Using the Arzela—Ascoli theorem, it is

not difficult to srlow thatk » (1 — Q)N (£2) is compact for_any open bounded setc X.
Moreover,Q N (£2)is bounded. Thusy is L-compact on2 with any open bounded set
2 CX.

Now we reach the position to search for an appropriate open, bounded sRbset
for the application of the continuation theorem. Corresponding to the operator equation
Lx =ANXx, 1€ (0, 1), we have

X' () =afa@) — by exp{x()} — c(r, exp{x () }) exp{3() —x(®)}],
V(1) =A[d(1) — e(t) exp{3(t) — X(1)}]. (3.2)

Suppose thatt, 7)7 € X is a solution of systeni3.2) for a certaink e (0, 1). Integrating
on both sides of (3.2) from 0 @, we obtain

w w

Ezw:/b(t)exp{i(t)}dt+/c(t,exp{i(t)})exp{§(t)—i(t)}dt
0 0
Jw:/e(t)exp{y(t)—i(t)}dt. (3.3)

0
It follows from (3.2) and(3.3) that

w w

/\i/(t)|dr<)\[/a(t)dt+/b(r) exp{x (1)} dt
0

0 0

+/c(t,exp{i(t)})exp{§(t) —)Nc(t)}dtj| < %0,
0

w w w

/ (t)|dt<A|:/d(t)dt+/e(t) exp{&(r)—i(t)}dt} < 2dw. (3.4)
0 0
Since(#, )T € X, there exist;, n; € [0, w], i =1, 2, such that
X(Sl)—tgdfl]x(f) f(n1)=t£?(?a>)<]f(f),
V()= e%"l ]y(t) i) = Qgg}y(t) (3.5)

From(3.3) and(3.5), we obtain



Q. Wang et al. / J. Math. Anal. Appl. 278 (2003) 443-471

aw >

b(t) exp|i (&)} dt = bwexp{i (1)},

do> [ e@t)exp{3(&2) — ¥(n)} dt = ewexp{§(&2) — (1)},

O ~— O T—=

and hence,

FED < In{%}, (&) < ln{
From(3.4) and(3.6), we obtain

YIRS

}-i-f(nl).

xu)<;z(sl)+/|x’(t>|dt<|n{ }+2&a) -
0

Sl Q1

YIRS

&(t)<§(Sz)+/|§/(t)|dt<ln{ }+H1+2c?w = Ho.
0

On the other hand, b§8.3) and(3.5), we also have

w

aw < /b(t) exp{x(m)}dt+/Coexp{i(nz)}dt
0 0
=bw

exp{(n)} + Cowexp{7(n2)},

do< / o(t) exp{F(n2) — %(E) ) di = 2w explF(r2) — £(ED)).

0
and hence,
1 1

#0210 2[a —c0exp{y<nz>}]} {Z[a—cOexp[Hz}]}
=In %[1— —exp{2(a+d)w “

) b

y(n2) = 1In E} +x(&1).

From(3.4) and(3.8), we have

X(1) = x0n) — /|)?/(t)|dt > H3 — 2aw,

- - 5 d L
() >y(nz)—/|y’(t)|dt >In= + Hy— 2(a+d)w = Ha,

457

(3.6)

(3.7)

(3.8)

(3.9)
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which, together with3.7), implies

max |¥(t)| < max{|H1|, |H3 — 2aw|} := Hs,
te[0,w]

’an)f]w(t)‘ <max{|Hz|, |Ha|} := He.

Clearly, Hs and Hg are independent of.
By assumptior(Ay), it is easy to show that

i1 _[a-—bexpx}—cexpiihexpy —x}]_[0
QN[;} = [ci—éexp{y—x} }— [o} (3.10)

has a unique solutiogx*, 3*)7 in Int R2. SetH = Hs+ Hg+ C, which is taken sufficiently
large such that the unique solution@10) satisfies|(*, )7 || = |¥*| + |3*| < H.

Let2 ={GE N’ e X | I&, M| < H}, then itis clear thaf2 verifies the requirement
(a) of Lemma 3.2. Wheri, )7 € 32 nKerL =32 N R?, (%, )7 is a constant vector in
R? with ||(X, )T || = |X| + |J| = H. Then

% _ [a—bexpx} —c(exp(x}) exp(y — X} 0
QN[&}_[d—éexp{i—i} }7’5[0 :
In view of Theorem 3.3, direct calculation produces
degJON, 2 NKerL,0)

—bexpE*} — S (explE*]) expli*l  —E(explE*)) explyt — i)
=sgn + c(exp{x*}) exp{y* — x*}
eexp(y* — i*) —eexpy* — x*}

= sgn{d[l; expx*} + 2—; (exp(x*}) exp{7*} — ¢(exp{x*}) exp(7* — i*}
+ ¢(exp{x*}) exp(y* —i*}“

= sgn{&[l; explx*} + g—i(exp{i*}) exp{y*}“ >0, (3.11)

where the degree is Brouwer degree, and the isomorphisinim Q onto KerL can be
chosen to be the identity mapping, since®ma= Ker L. By now we have proved tha?
verifies all requirements of Lemma 3.2, then

L H N H
y y
has at least one solution in Dam 2, i.e., (3.1 has at least one periodic solution
in DomL N 2, say (X*(1), y*(t))T. Setx*(t) = exp{X*(t)}, y*(t) = exp{y*(r)}, then

(x*(1), y*(1))T is one positivew periodic solution of systenfl.7). The existence of
positive constantsy, o5, B, B5 are obvious. The proof is completen

Carrying out similar arguments, we have
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Theorem 3.4. AssumeA1), (A2), (A3) and (Ag) hold. Moreover, if
N d -
(A7) a——Co>0,
e

then systent1.7) has at least one positive periodic solution, sayx*(z), N7, and
there exist positive constari§, g, i = 1, 2, such thate] <x*() < By, a5 < 3*(1) <p3.

Definition 3.1. Let (x*(¢), y*(¢))T, i = 1, 2, be a positive» periodic solution of system
(1.7) with positive initial value. We say that*(¢), y*(t))” is globally asymptotically
stable if any other solutiotx (r), y(¢))T of (1.7) has the property

Jim(Jx@) = "] + [y0) - y*)]) =0.

It is immediate that if(x*(r), y*(r))T is globally asymptotically stable, thepx*(z),
y*(t)T isin fact unique.
From Theorems 2.7 and 3.1, it follows that

Theorem 3.5. If (A1)—(As) and (Ag) hold, then systenil.7) has a unique positive
periodic solution inI” which is globally asymptotically stable.

Theorem 3.6. Assumd&A1)—(Aa), (Ag) and (A7) hold. Moreover, if

Co+C el e
- 22, B2 >0, — —Co>0,
mq mio1 Ml
or
Co+C u !
b — 0 2,32— ¢ M> > 0, e——Co>0,
miq mio1 ,31

Where()lj = ma)({o{;k, mi}, ,3,' = mln{,Bl*, M,'}, m;, Mi, i = 1, 2, are defined |r(21), O{;k, i*'
i =1, 2, are defined in Theore®3 and

d dc

Co= maxj max —C(t,x) , Mmax —C(t, x)t¢ >0,
te[0,w] | xelmy,p11 | X xelag,M1] | 0x

then systent1.7) has a unique positive periodic solution, sayx*(z), y*(z))T, which is

globally asymptotically stable aney < x*(¢) < 1, a2 < y*(t) < B2.

Proof. Theorem 3.3 implies that systefh.7) has at least one positiveperiodic solution,
say (x*(1), y*(t))T, and there exist positive constant$, 87, i = 1,2, such thatrj <
x*(t) < B, a5 < y*(¢) < B5. Inaddition, sincd™ is an ultimately bounded region of (1.7)
and(x*(r), y*(1))T is a periodic solution, it follows that; < x*(r) < B1, a2 < y*(¢) < B2.
To complete the proof, we only need to show thdt(r), y*(¢))T is globally asymptotically
stable.

Let (x(r), y(#))T be any other solution of1.7) with initial value (x(to), y(t0))’. By
Theorem 2.2, we have that there existgia> 0 such thainy < x(r) < M1, m2 < y(t) <
Mo, for all t > 19 + Ty, wherem;, M;, i =1, 2, are defined in2.1). We denotel” :=
max{tg + T1, O}.
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Consider a Lyapunov function defined by
V) =|Infx®} = In{x*®)}| + |In{y®)} = In{y*®)}.
Obviously,
V(T) = |In{x(T)} = In{x*(D)}| + |In{y(T)} = In{y*(T)}| < +o0.

A direct calculation of the right derivativ®™ V (¢) of V(¢) along the solutions of1.7)
leads to

y(@) —

DTV@) = [—b(t)(x(t) —x*(1)) - ( x(1) xX*(t)

x sgn(x (1) — x*(1))

y@ oy @) ¥
[— ()(x(t) *(t))} sgn(y (1) — y*(1)). (3.12)

Just because the different intersections will lead to different estimations, we will discuss
DTV () in the following four cases.
Casel:

c(t, x(t)) c(t, x*(1)) *(t)>j|

c(t,x(1)) c(t,x(1))

D+V<r>=[—b(r)(x(r)—x*(r))—( 0 y(t) — )

c(t,x() , c(t,x*(t) , -
w0 O (t))}sgr(x(t) x*(1))

yo oy ¥y ) .
[_ m( 0 0 T x0) _x*o))]sgr(y ® =)

< =b'fx () — x* ()] + Coly (1) — y* ()]

1
%a—( () = ——c(r,50)

v (1)

+ B2

1 *
€W ) =)

ﬁz\x(r) —x*(@)|

- —|y(r> -y + -

< =b'fx@) —x* (t)|+C0|y(t)—y (t)|+ ﬂ2|X(t)—X*(t)|

——|y(r>—y (r)|+ ﬂ2|x(t)—x (r>|

<—|:bl— Co+C2

mi

B2 — < ﬁz]\x(r) —x*(0)|
mio1

!
- [;—l—Co}|y(t)—y*(t)|, t>T, (3.13)

whereg (1) is betweenx () andx*(¢), and

dc
Co= max{ max {—(t x)} max {—(t x)}}
te[0,0] | xe[m,1] | Ox [, M1]
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Case2:
+ - i _ c(t,x(1)) _C(t,X(t)) "
D V(t)—[ b(t)(x (1) — x*(1)) ( 0 () w0 (1)
ct,x(@) , ct, x*@)) , N
+ 0 Y — ) y (t)ﬂSQF(X(t)—x (t))

y@o) oy y@®  y*(@ %
[_e( )<x(r) o0 x*(t))}sg'(y 0 =y"0)

< =b'x(®) = x*(@0)| + Co|y(1) = y* ()|

+ B i—( 1,E(1) — ! ———c(t.E@®)||x (1) — x*(1)]
?|€(r) ax (s( 02 "
- —|y(r> —y*(0)| +— M2|X(t) —x (r>|
< —bl|x(r) —x* (t)|+C0|y(t)—y (r>|+ ﬂz|x(r>—x )|
- —|y(r> —y* ()| +— M2|X(t) —x*(1)]
<—|:bl—CO+C2ﬁ2_ eu M21||x(t)_x*(t)|
mi mioq
[
— [e— — Co}|y(t) —y*®|. t>T. (3.14)
B1
Case3:
n [ oy €@ x(0) et x* (1))
D V(t)—[ b(t) (u(r) —u* (1)) < 0 (1) D) (1)
c(t, x*(1)) ct, x*@) , N
v PO T Y (t))}sgr(x(t)—x (1)

y@) oy yr@)  y*@® .
[— ()(x(t) 0 + 0 —x*(t))]Sgr(y(t)—y ()

< —b|x(t) — x (t)| + Coly(®) = y* ()]
( 1) - c(r.&m)

+ M |x(t)—x*(t)‘

1
(«‘E( (&0)?
ﬁz\X(t) —x*(1)

0+C2

- —Iy(t) —yol+ -

<=blx@) —x* 0]+ co\y(t) -y 0|+ Ma|x(1) — x* (1))

——Iy(t)—y (t)\+ ﬁz\x(t)—x (t)|



462 Q. Wang et al. / J. Math. Anal. Appl. 278 (2003) 443-471

< —|:bl _ CO + C2M2 _ et ﬁ2:| |x(t) —x*(t)|
ma mioq
el *
— [M—Co}‘y(t)—y o], t>T. (3.15)
Case4:

n [ ey (€@ x (@) et x* (1)
DTV() —[ b(1)(x (1) — x*(1)) ( () y(1) T y(1)

c(t, x*(@)) c(t,x*(t)) , "
+ Wy(t) EREIO R (t))} sgn(x (1) — x*(1))

yo y@ | y@®  y@) .
[—e(ﬂ( o o T o —x*(t))}sgr(y(t)—y ®))

< =bl|x(0) —x (r)| + Coly(®) — y* ()|

+ M ( £(1)) — c(t,&(n)

1 *
E0))2 x® ="

= —|y(r> — 0|+ e—M2|X(t) —x*(1)]

< —bl|x () — x* ()] + Co|y() — y* ()| + CotCa

M> |x(t) —X (t)‘

- —|y(r> -y + —Mz\x(r) — x*(r>|
B1 mion

<—|:bl—CO+C2M2_ et M2i||x(t)—x*(t)|
mi mia1
!
— [e— — Co}|y(t) —y*®|. t>T. (3.16)
B1

Itis easy to know that cases 1 and 2 give weaker conditions. And by the assuitqgion
we have

DYV(t) < —pa(jx(@) —x* @]+ |y@) —y*®)]), =T, or
DYV(t) < —pa(jx () —x* @]+ |y@) —y*®)]), 1>T, (3.17)
where
. Co+C u !
Ml:mln{bl— 0t O, ¢ g, e——Co}>O
m1 mio M1
u 1
Mz:min{bl—C0+C2,32— ¢ M> ——C0}>O.
mi mia1  B1

Integrating on both sides ©8.17) from T to ¢ produces

t
V() + i /(|x(S) —xX*(©)]+ |ys) = y*(5)|)ds < V(T) <+o0, t>T.
T
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Then

V(T)

i

t
f(|x(s)—x*(s)|+|y(s)—y*(s)|)ds< <400, t>T,
T

and hencelx (1) —x*(1)|+ |y () — y*(t)| € LY([T, +00)). By (3.12) and(3.17), we obtain

bl

lInf{x®} —In{x*@®)}
In{y(®} —In{y*®)}

Therefore,

| T
| T

<V(T) <400, t2=
<V(T) <+o0, t=

min {x*@)}exp{—V(T)} <x() < max {x*()}exp{V(T)} < +o0, t>T,

re[0,0] r€[0.0]
. % *
tépolz]{y "} exp{—V(T)} <v(@) < tg?gg]{y M} exp{V(T)} <+o0, t2>T.

The boundedness af*(¢), y*(¢) implies thatx (¢), y(¢) are bounded above and below by
positive constants for all > T. Sincex(¢), y(¢), x*(¢), y*(¢) are bounded with bounded
derivatives (from the equations satisfied by them), it will follow that) — x* ()| + |y (z) —
y*(1)| is uniformly continuous ofiT, +o0). By Lemma 2.2, we get

Jim ([x@) —x* O] +[y0) =y 0)]) =0.
Now the proof is complete. O

Combining Theorem 2.8 with Theorem 3.2, we conclude:

Theorem 3.7. Assume thatA1), (A2), (As3), A(A4), (As) and(Ag) hold. Then systerti.7)
has a unique positive periodic solution inl", which is globally asymptotically stable.

Similarly, we can prove the following theorem.

Theorem 3.8. Assume thatA1), (A2), (As), (As), (Ag) and (A7) hold. Moreover, if one
of the following conditions holds

Co+m1Co ~ N el Co

b — ———Po— ——P2>0, — —— >0,
m3 My My i
Co+m1Co ~ et . e Co

b — D Bo— ——M2>0, ————>0,
mi miay pr m
Co+m1Cy ~ et . e Co

bl— = MZ—AAM2>0, T—A—>O,
m3 miay 1 a1
éo—i—rﬁléz A et el éo

b — Mz — ——f2>0, — —— >0,
1 mioq M, Qa1
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wherex; = maxa;, m;}, ,3, = m|n{,3* M} i=121m;, M, i=1,2,aredefinedin2.2),
ar, l*, i =1, 2, are defined in Theore®4 and

~ dc dc
Co= max{ max {—(t,x)}, max {—(t,x)}}>0
1€[0,0] | xe[siy, 1] 0x xelag, M1 0x
then systendl.7) has a unique positive penodlc solution, Sa)(x*(t) 3*())T, which is
globally asymptotically stable angh < £*(1) < A1, é2 < $* (1) < Bo.

4. Almost periodic case

In this section, we devote ourselves to the existence, uniqueness and stability of positive
almost periodic solution of1.7) under the assumption that

(Ag) a(t),b(1),d(t), e(t) are almost periodic functionsz, x) is almost periodic ir¢
uniformly with respect tor € [0, +00).

In addition to the assumptions in Section 2, it is clear that Theorems 2.2—2.8 remain
valid for system (1.7) with assumptigasg).
Let
x(1) =exp{x (1)}, y(0) =exp{3(n}.
Then systent1.7) becomes

(@) =a@) —b@)exp{x(t)} —c(r, exp{x (1) }) exp{3(1) — (1)},
¥'(1) =d(t) — ety exp{3(1) — X(1) }. (4.1)
By Theorems 2.2-2.5, it is not difficult to show that

Theorem 4.1. If (A1)—(A4) hold, then the sef™ := {(x, y)T € R? | In{m1} < x <In{M1},
In{m2} < y <In{M>}} is the positively invariant and ultimately bounded region of system
(4.1), wherem;, M;, i =1, 2, are defined in2.1).

Theorem 4.2. If (A1), (A2), (A3), and (A4) hold, then the sef™ := {(x,y)” € R?|
In{m1} < x < In{Ma}, In{m2} < y < In{Mz}} is the positively invariant and ultimately
bounded region of syste(.1), wherem;, M;, i =1, 2, are defined in(2.2).

In order to prove the main result of this section, we shall first make some preparation.
Consider
x'=f(t,x), f(t,x)eC(Rx D,R"), (4.2)

where D is an open set iR", f (¢, x) is almost periodic i uniformly with respect to
x € D.

To discuss the existence of an almost periodic solutioidd®), we investigate the
product system of4.2)

x'=f(t,x), Yy =f(t,y). (4.3)
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Lemma 4.1 [49]. Suppose that there exists a Lyapunov function V(t,x,y) defined o
[0, +00) x D x D which satisfies the following conditions

>

() a(llx —ylD <V, x,y) <b(|x — yl), wherea(y), b(y) are continuous, increasing
and positive definite
(i) [V, x1,y1) = V(t, x2, y2)| < K{|lx1 —x2|| + [ly1— y2[}, whereK > Qis a constant
(iii) V(/z)(t, x,y) < —cV(]x —y|), wherec > 0 is a constant.

Moreover, suppose that systémh?2) has a solution in a compact sétfor all ¢ > o > 0,
S c D. Then systen¥.2) has a unique almost periodic solution i say p(¢), which is
uniformly asymptotically stable ib. Furthermoremod(p) € modf).

Theorem 4.3. If (A1)—(As) and (Ag) hold, then syster(l.7) has a unigue positive almost
periodic solution which is uniformly asymptotically stablelinand is globally asymptot-
ically stable.

Proof. For (x, y)T € IntRZ, we define||(x, y)T || = x + y. In order to prove that system
(1.7) has a unique positive almost periodic solution, which is uniformly asymptotically
stable inl", it is equivalent to show that syste@h.1) has a unique almost periodic solution
to be uniformly asymptotically stable if*.
Consider the product system @f.1)
X0 =a(t) — b(t)exp{x1()} — c(t, exp{F1(1)}) exp| y1(1) — F1(1)},
F1(1) =d (1) — e(t) exp{y1(1) — X1(1)},
To(t) = a(t) — b(t)exp{xa() } — c(r, exp{x2(t) }) exp|{F2(1) — Z2(1)},
Vo(t) = d(1) — e(t) exp{y2(t) — X2(1)}. (4.4)
Now we define a Lyapunov function g6, +oo) x I'* x I'* as
V(t, %1, 1, %2, §2) = |¥1(t) — X2(0)| + [F2() — F2(1)|.
Set
a(| G, 30" — G2. 52" |) = (|G 50" — G2, 527 )
= | G1. 30" — G2, 572" | = |1 — %2l + 51 — Fal.
Itis clear that the condition (i) of Lemma 4.1 is satisfied. Moreover,
|V(t7 i:I.v 917 i27 92) - V(ts i?ﬂ y?)s i41 §4)|
= |([F2(0) = 220 + [720) = 52(0)]) = ([7a(0) = Fa(0)| +[Fa(0) = 74 )]
< [71(0) = B3| + [510) — Fa()| + [Z2(t) — Fa()| + |52 — Fa@)|,  (4.5)

which shows that the condition (ii) of Lemma 4.1 is satisfied.

Let (& (1), 5:(1)T, i = 1,2, be any two solutions of4.1) defined on[0, +o0) x I'*
x I'*,

Calculating the right derivativ®* V (¢) of V() along the solutions of4.1), we have
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DYV = [—b(t)(exp{il(t)} —exp{x2(t)}) — (c(z, exp{x1(1)}) exp{F1(t) — X1(1)}

— c(r, exp{F2()}) expl2(1) — F2)}) | sgn(Fa(r) — F2(0)
+ [—e(t) (exp{31(t) — X1(1)} — exp|y2(r) — X2(1) })] sgn(y1(t) — y2(1))

Co+C u
g—[bl— ik 1M2—%M{||exp{i1(t)}—exp{iz(t)}|
1

mi
el B _
_ [Vl — C0j| lexp{31(1)} — exp{72(0)}|. (4.6)
where
dc
Ci= sup { max {—(t,x)}} = 0.
1€[0,400) Lx€lm1,M1] | 0x

By Theorem 4.1 and

|lexp{z1(1)} — exp{z2()}| < exp{s () }|Z1(1) — F2(0)

bl

lexp{71()} — exp{F2()}| < exp{n(®)}[71() — 520)], (4.7)
whereg (¢) is betweerk1(¢) andxa(t), n(¢) is betweeny,(z) andy»(¢), we have
DTV < —|:bl - MMz - e—;Mz}mﬂil(t) —X2(1)|
mi ml
el ~ ~
- [ﬁl - Co}m2|y1(t) 0]
= —u(|71(t) — F200)| + |51(0) — F2()]), (4.8)
where
u )
w= min{ [bl — MMZ — e—2M2:|m1, |:e— — C0i|m2} > 0.
mi ms My

Hence, the condition (iii) of Lemma 4.1 is satisfied.

Therefore, from Theorem 4.1 and Lemma 4.1, it follows that sysiefr) has a unique
almost periodic solution in*, say (*(¢), 3*(¢))T, which is uniformly asymptotically
stable in I'*. Hence, system(1.7) has a unique positive almost periodic solution
(x*(0), y*())T in I", which is uniformly asymptotically stable iff. By Theorem 2.7,
one can easily show thak*(r), y*(1))” is globally asymptotically stable. The proof is
complete. O

By similar arguments, we also have
Theorem 4.4. If (A1), (A2), (A3), (As), (As) and (Ag) hold, then systenil.7) has a

unique positive almost periodic solution which is uniformly asymptotically stabieand
is globally asymptotically stable.
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;?)l:)ll‘iec;bility of general theorems to nonautonomous systems of form (1.2)—(1.6)

c(t,x) PI uB P GAS EPS GAS of PS APS

m(t)x Th2.1, Th2.2 Th2.4 Th2.6 Th2.7 Th3.1, Th3.3 Th3.5, Th3.6 Th4.3
% Th2.1-2.3 Th2.4,Th2.5 Th2.6 Th2.7,Th2.8 Th3.1-3.4 Th3.5-3.8 Th4.3,Th4.4
"A(j_);‘,,n Th2.1, Th2.3 Th2.5 Th2.6 Th2.8 Th3.2, Th3.4 Th3.7, Th3.8 Th4.4
% Th2.1-2.3 Th2.4,Th2.5 Th2.6 Th2.7,Th2.8 Th3.1-3.4 Th3.5-3.8 Th4.3,Th4.4

m(t)(1—e=4%) Th2.1,Th2.3 Th2.5 Th2.6 Th2.8 Th3.2, Th3.4 Th3.7, Th3.8 Th4.4

P: permanence, PI: positive invariance, GAS: globally asymptotic stability, APS: almost periodic solutions,
Th: theorem, UB: ultimate boundedness, PS: periodic solutions, EPS: existence of periodic solutions.

5. Conclusive discussion

In this paper, we have investigated the dynamical behavior of a class of nonautonomous
semi-ratio-dependent predator—prey systems, which incorporates a number of possible
terms for the predator’s functional responses to the prey. In order to enhance the
applicability of the general results established previously, we shall go back to some of
the particular forms for the functional responses and interpret the general results in some
of the particular cases. One can easily see that it is very trivial to apply the general results
to nonautonomous predator—prey systems of form (1.2)—(1.6). So we prefer to illustrate in
Table 1 the applicability of such general theorems to systems of form (1.2)—(1.6).

From Table 1, one can easily observe that, for a given predator’s functional response
to prey, different sufficient criteria are established for certain dynamical behavior of
such systems. For example, both Theorem 3.1 and Theorem 3.3 assert the existence of
componentwise positive periodic solutions of system (1.7) when the functional response
is of type 1, 2 and 4.

Naturally, it is interesting to know how these corresponding theorem actually compare.
Without loss of generality, as an example, we will talk about this topic based on Theo-
rems 3.1 and 3.3.

Exploring (A4) (from Theorem 3.1) versusA¢) (from Theorem 3.3) is clearly the
heart of the matter, since these are the only hypothesis that vary from Theorem 3.1 to
Theorem 3.3. By (2.1), we can také = a“d" /b'e! + ¢, wheree is taken sufficient small.

From (A4), one can easily derive that

! Ipl ol L plgl
Co< 2 -_2%¢ 2 ,7¢ (5.1)
My  atd" +eble!  g¥ da
while (A7) can be rewritten as
be _
Co < 7exp{—2(a+d)}. (5.2)

Itis trivial to show that (5.1) implies (5.2) if and only if

d'ja" < exp{—2@a+d)},
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since
blel  be
g .
du d
Generally speaking, assumptionj and (A7) cannot contain each other as special case.
That s to say, Theorems 3.1 and 3.3 do provide different sufficient criteria for the existence

of componentwise positive periodic solutions of system (1.7). For example, consider the
following predator—prey system of form (1.2):

x=x(0.3—x) — (0.5sin2tz + §)xy,
y‘:y[o.z— (coszn+2)ﬂ. (5.3)
In system (5.3),
a(t) =0.3, b(t)=1, d()=0.2, e(t) =cosZrt + 2,
c(t,x)=(0.5sin27r + 8)x.
Then direct calculation shows that

c(t,x) <0.5+ 8 < Cop,
al _ a'ble! . 30
My a'd“ +eblel 6+ 100’

be _
76 exp{—2(a +d)} = 6exg—1} ~ 2.21,

wheree > 0 can be taken sufficient small.
Taked = 3, Cg = 3.5 ande sufficient small; then we have
al
Co< E,
which shows that for system (5.3) Theorem 3.1 applies. However, foiCany 3.5, we
always have

Co > %exp{—Z(& +d)},

so we can conclude that Theorem 3.3 fails.
Takes = 1.5, Co = 2 ande sufficient small; then we have
l -
a be _
Co<—, Co< —expi—2(a+d)},
0<M2 0<= p{—2@+d)}
therefore, both Theorem 3.1 and Theorem 3.3 apply.
Taked = 6; thenCqp > 6.5, hence

al

be -
Co> —, Co> =exp—2(a+d)j,
0>M2 0> Fi p{ (a+ )}

which implies neither Theorem 3.1 nor Theorem 3.3 applies. In this case, from the
criteria established in this paper, we learn nothing about the existence of positive periodic
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solutions. Stronger and more effective criteria should be established by using other
methods.

Also, the above discussion and Table 1 tell us that generally there are no forms of func-
tional responses for which Theorem 3.1 applies but Theorem 3.3 does not for vice versa.
However, for some concrete predator—prey systems, the answer is completely different. For
system (5.3) withld = 3, which is of form (1.2) and the functional response is of type 1, we
have proved that Theorem 3.1 applies while Theorem 3.3 does not.

Now let us consider a predator—prey system of form (1.3), where the functional response
is of type 2,

0.7
i=x(0.4—05x) — 1+);y,

y‘:y(o.l—o.sX); (5.4)
X
here
a(t) =04, b(t)=0.5, d(t)=0.1, e(t) =0.3sin 27t + 0.4,
0.7x
=—" <0.7<Co.
c(t,x) Tox 0 Co

Then for anyCp > 0.7, we have

al a'ble! a'blel  ble!
— = < <—=05< CO,
My  a*d*+eblel  atd*  d*

that is Theorem 3.1 does not apply. However,dgr= 0.71,

be _
76 exp{—2(@ +d)} = 2exg—1} ~ 0.74> Co,

which implies Theorem 3.3 applies.

Finally, in view of the above discussion, we would like to mention that some results in
Sections 3 and 4 have room for further improvement. However, significant improvement
appears to be difficult unless new approaches can be found. The methods used here are very
powerful and effective and can be used to attack other problems. It also seems interesting
but more challenging to derive sufficient and necessary criteria for the dynamics of systems
of form (1.7).
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