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Abstract

Unifying ordinary differential and difference equations, we consider linear dynamic equatio
measure chains or time scales, which possess an exponential dichotomy uniformly in a par
and show that this dichotomy is robust, if the mentioned parameter changes slowly in time. He
equations can be infinite dimensional and are not assumed to be invertible.
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1. Introduction and preliminaries

The well-known and established notion of an exponential dichotomy generalize
concept of hyperbolicity from autonomous to nonautonomous linear equations, whe
invariant subspaces are replaced by so-called invariant vector bundles and the s
properties of the solutions in these nontrivial invariant sets are uniform. The importa
exponential dichotomies in the theory of nonautonomous dynamical systems is due
fact that they are a very useful tool to solve nonlinear problems as perturbations of
ones, like in the persistence of integral manifolds (cf., e.g., [6,13,16]).
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Meanwhile dichotomies are widely used, and thorough introductions into the the
exponentially dichotomous ordinary differential equations (ODEs) can be found in
the books [3,5]. For difference equations (O�Es) the literature is slightly sparser, but [
and [6, Section 7.6] pioneered here. Both concepts have been unified in [12,13] with
“calculus on measure chains,” which goes back to [7]. This calculus allows a simu
ous treatment of ODEs, O�Es and of equations on so-called inhomogeneous time sc
which allow applications in, for instance, discretization theory and population dyna
To quote a reference about dynamic equations on measure chains or time scales we
mend [7] and the monograph [2].

In the present paper we prove an abstract perturbation result (Theorem 3.
parameter-dependent linear dynamic equations on measure chains in arbitrary
spaces. Such a result has two main applications:

• Robustness of exponential dichotomies under slowly varying coefficients: This means
if we consider for example a parameter-dependent linear ODEẋ =A(t, q)x, which has
an exponential dichotomy uniformly in a parameterq from, e.g., a metric space, the
one can replace the constant valueq by any functionq∗(t) which varies “slowly” in
time, such that the equatioṅx =A(t, q∗(t))x is also exponentially dichotomous. Th
in turn, yields a sufficient condition for a dynamic equation to possess an expon
dichotomy in terms of the spectrum of their coefficient operator (see Remark 3.3

• Construction of invariant fiber bundles, which are the counterpart of integral manifol
in the theory of difference equations or general dynamic equations. Indeed, usin
orem 3.4 one is able to characterize invariant fiber bundles as fixed points of an a
integral operator within a Lyapunov–Perron technique. Such applications are pre
in, e.g., [6,16] for differential equations, while O�Es are considered in [14] and th
general case of dynamic equations on arbitrary measure chains will be publish
forthcoming paper.

The above mentioned result has its origins in [6] and [16]. Their approach has th
vantage that, differing from [3, p. 50, Proposition 1], one can immediately apply
infinite dimensional equations. Moreover, in the case of ODEs, and with an equivale
sult (cf. [15]), it follows with Palmer [11] that our main Theorem 3.4 is more general
[17, p. 342, Theorem 6] in certain situations. In the case of difference equations, we
know of any related results, and therefore the achievements of this paper (Theorem
Corollary 3.6) seem to be new even in this setting.

To introduce our terminology,N are the positive integers,Z the integers,R is the real
and C the complex field. In addition, for any realh � 0 we write Rh := {x ∈ R: 1 +
hx > 0}. Now suppose for the following thatX denotes a real or complex Banach sp
with the norm‖ · ‖. L(X ) stands for the linear space of continuous endomorphisms oX
with the norm‖T ‖ := sup‖x‖=1 ‖T x‖, andGL(X ) for the group of toplinear isomorphism
on X ; IX is the identity mapping onX . We writeN (T ) := T −1({0}) for thekerneland
R(T ) := TX for therangeof T ∈ L(X ).

We also shortly introduce some notions, which are specific for the calculus on
sure chains.(T,
,µ) denotes an arbitrarymeasure chainwith order relation “
” and
growth calibrationµ (cf. [7]). A time scaleis a special case of a measure chain, wh
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T is a nonempty closed subset of the realsR, “
” is just the canonical ordering “�”
and the growth calibration is given byµ(t, τ ) = t − τ . Differing from the usual notation
ρ+ : T → T, ρ+(t) := inf{s ∈ T: t ≺ s} is the forward jump operatorand we assum
that thegraininessµ∗(t) := µ(ρ+(t), t) is bounded throughout the paper. Measure ch
with constant graininess are calledhomogeneous. A point t ∈ T is calledright-denseif
µ∗(t)= 0 and otherwiseright-scattered. In case sup{s ∈ T: s ≺ t} = t we speak of aleft-
densepoint t . Besides,(T,
,µ) is assumed to be unbounded above and below, i.e., th
{µ(t, τ ) ∈ R: t ∈ J } has the mentioned property for oneτ ∈ T. A measure chain(T̃,
, µ̃)
is denoted asdiscrete, if T̃ = {tk}k∈Z and if there exist realsh0, h > 0 such that

h0 � µ̃(tk+1, tk)� h for k ∈ Z. (1.1)

With given real numbersh0, h > 0, and measure chainT, we write S
h
h0
(T) for the set

of all discrete measure chains(T̃,
,µ) with T̃ ⊆ T satisfying (1.1). Furthermore, w
speak of a(h0, h)-measure chain(T,
,µ), if for every pointt0 ∈ T there existtk, t−k ∈ T,
k ∈ N, such that{tk}k∈Z ∈ S

h
h0
(T) holds. Any measure chain which is unbounded ab

and below, and with bounded graininessµ∗, is a(h0, h)-measure chain forh0 > 0 andh�
h0 + supt∈Tµ

∗(t) (cf. [13, p. 2, Lemma 1.1.7]). The following example should illumin
the above notions for readers who are primarily interested in ODEs or O�Es.

Example 1.1. (1) For the realsR we have the identitiesρ+(t) ≡ t , µ∗(t) ≡ 0 on R and
each real number is a right- and left-dense point. Moreover,R is a (h0, h)-time scale for
any 0< h0 � h.

(2) The discrete time scalesh̄Z, h̄ > 0, and in particular the integersZ, consist of right-
scattered points. We haveρ+(t) ≡ t + h̄, µ∗(t)≡ h̄ on h̄Z, andh̄Z is a(h0, h)-time scale
for any h̄� h0 � h.

A mappingφ : T → X is said to bedifferentiable(at t0 ∈ T), if there exists a uniqu
derivativeφ∆(t0) ∈ X , such that for everyε > 0 the estimate∥∥φ(

ρ+(t0)
) − φ(t)−µ

(
ρ+(t0), t

)
φ∆(t0)

∥∥ � ε
∣∣µ(

ρ+(t0), t
)∣∣ for t ∈U

holds in a neighborhoodU ⊆ T of t0 (see [7, Section 2.4]). As special cases we obtain
time scale setting the usual derivativeφ∆(t) = φ̇(t) for T = R and the forward differenc
operatorφ∆(t)= (φ(t + h)− φ(t))/h for T = hZ, h > 0.

Now let(Q, d) be a metric space. According to [7, Section 5.2], a mappingf : T×Q →
X is said to berd-continuous, if for everyq0 ∈ Q one has thatf is continuous in(t0, q0)

for every right-denset0 ∈ T, and if for any left-denset0 ∈ T the limits limq→q0 f (t0, q),
lim(t,q)→(t0,q0), t≺t0 f (t, q) exist.

In addition,Crd(T,X ) denotes the set of rd-continuous maps fromT into X and

CrdR
(
T,L(X )

) := {
A ∈ Crd

(
T,L(X )

)
: IX +µ∗(t)A(t) ∈ GL(X ) for all t ∈ T

}
stands for the set of so-calledregressivemappings. Thepositively regressive groupis given
by C+

rdR(T,R) := {a ∈ Crd(T,R): 1 + µ∗(t)a(t) > 0 for t ∈ T} with the addition(a ⊕
b)(t) := a(t)+ b(t)+µ∗(t)a(t)b(t), and the subtraction(a � b)(t) := (a(t)− b(t))/(1+
µ∗(t)b(t)) for t ∈ T. On the time scaleT = R, rd-continuity means continuity, and th
algebraic operations⊕ or � reduce to the usual (pointwise) addition or subtraction
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continuous real-valued mappings, respectively. On the other hand, forT = hZ, h > 0, any
function is rd-continuous.

We abbreviate�a� := inft∈T a(t), �a� := supt∈T a(t) and a � b :⇔ 0< �b − a� for
functionsa, b : T → R. An elementa ∈ C+

rdR(T,R) is said to bediscretely bounded be
low, if Γ−(a) := 1+�µ∗a�> 0 holds. In addition, we saya is discretely bounded above, if
Γ+(a) := 1+ �µ∗a�<∞. For an arbitrary realh� 0 one easily verifies that the mappin
ξh : Rh → R, ϑh : R → Rh, given by

ξh(x) := lim
t↘h

log(1+ tx)

t
, ϑh(x) := lim

t↘h

exp(tx)− 1

t
,

are bijective and inverse to each other. Then thereal exponential functionea(t, τ ) ∈ R,
t, τ ∈ T, onT, allows the representation

ea(t, τ )=
t∫

τ

ξµ∗(s)
(
a(s)

)
∆s (1.2)

and we haveea⊕b(t, τ ) = ea(t, τ )eb(t, τ ) for t, τ ∈ T (cf. [7]). For homogeneous tim
scales and constant functionsa(t)≡ α, one obtains explicitly

ea(t, s)= eα(t−s) for T = R,

ea(t, s)= (1+ hα)(t−s)/h for T = hZ, h > 0,

and formulas for the exponential function on various other time scales can be found
pp. 69ff].

We close this section with two technical results on the real exponential function
first one estimates the exponential function on bounded subsets ofT, while the second on
relates real exponential functions on different measure chains.

Lemma 1.1. Consider reals0< h0 � h and functionsa, b ∈ C+
rdR(T,R). Then the con

stantsE−
a (h0, h) := infh0�µ(t,s)�h ea(t, s), E

+
b (h0, h) := suph0�µ(t,s)�h eb(t, s) satisfy

the following:

(a) If 0 � a, then for anyC ∈ R there exist reals0< h0 � h, �µ∗� � h such thatC �
E−
a (h0, h),

(b) if b is bounded above, we haveE+
b (h0, h) <∞.

Proof. The easy proof can be found in [13, p. 115, Lemma 2.3.1].✷
Lemma 1.2. SupposeT̃ = {tk}k∈Z is a discrete measure chain with̃T ⊆ T and c̃, d̃ ∈
C+

rdR(T̃,R). Thenc0, d0 : T → R,

c0(t) := ϑµ∗(t)

(
sup
k∈Z

ln(1 +µ(tk+1, tk)c̃(tk))

µ(tk+1, tk)

)
,

d0(t) := ϑµ∗(t)

(
inf

ln(1 +µ(tk+1, tk)d̃(tk))
)
,

k∈Z µ(tk+1, tk)
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ẽc̃(tk, tl)� ec0(tk, tl), ẽd̃ (tl , tk)� ed0(tl, tk) for l � k, (1.3)

where, from now on,̃ec̃ denotes the real exponential function onT̃.

Proof. See [13, p. 67, Lemma 1.3.32].✷

2. Bounded growth and exponential dichotomies

Consider an operator-valued mappingA ∈ Crd(T,L(X )). Differing from the existing
literature on linear dynamic equations on measure chains we do not assume that thcoef-
ficient operatorA is regressive and we can include noninvertible difference equations
our theory. Hence our standard reference for, e.g., existence and uniqueness res
be [13], instead of [2,7]. Alinear dynamic equation(or a linear system) is an equation o
the form

x∆ =A(t)x, (2.1)

and a differentiable mappingλ : I → X is said to solve (2.1) on a subsetI = T or I = {t ∈
T: τ 
 t}, τ ∈ T, if its derivativeλ∆ satisfiesλ∆(t)≡A(t)λ(t) on I .

Example 2.1. On homogeneous time scales, the linear dynamic equation (2.1) des
ODEs and O�Es. In fact, ifT = R we consider linear nonautonomous ODEs of the fo
ẋ =A(t)x. If T = hZ, then (2.1) reduces to the difference equation(x(t + h)− x(t))/h=
A(t)x(t) or equivalentlyx(t + h)= [IX + hA(t)]x(t).

The linear dynamic equation (2.1) is said to have

• c+-bounded growth(with constantC), if there exists a real numberC � 1 and some
c ∈ C+

rdR(T,R) bounded above, such that‖ΦA(t, τ )‖ � Cec(t, τ ) for τ 
 t ,
• (c, d)-bounded growth(with constantC), if it has c+-bounded growth, one hasA ∈

CrdR(T,L(X )) and if there exists somed ∈ C+
rdR(T,R) bounded below, such tha

‖ΦA(t, τ )‖ � Ced(t, τ ) for t 
 τ ,

whereΦA(t, τ ) ∈ L(X ) is the transition operatorof (2.1), i.e., the solution of the corre
sponding initial value problemX∆ = A(t)X, X(τ) = IX in L(X ) for τ 
 t . It is easy to
see thatΦA has the properties

ΦA

(
ρ+(t), t

) = IX +µ∗(t)A(t) for t ∈ T, (2.2)

ΦA(t, τ )=ΦA(t, s)ΦA(s, τ ) for τ 
 s 
 t (2.3)

(cf. [13, p. 55, Satz 1.3.9]) and in caseA ∈ CrdR(T,L(X )) one has the relationΦA(t, τ ) ∈
GL(X ) and thelinear cocycle property(2.3) holds for allτ, s, t ∈ T.

Remark 2.1. (1) Without the condition thatc is bounded above, it would be possible
show that every system (2.1) hasc+-bounded growth (cf. [1]).
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(2) On discrete measure chains, the system (2.1) hasc+-bounded growth for a certainc,
if and only ifA is bounded (cf. [13, p. 71, Satz 1.3.42]).

The following two lemmas can be shown using Gronwall’s inequality on measure c
(see [2, p. 256, Theorem 6.4]).

Lemma 2.1. Assumec ∈ C+
rdR(T,R) is discretely bounded below. Consider the line

systems(2.1)and

x∆ = B(t)x (2.4)

with B ∈ Crd(T,L(X )). If there exists a real numberC � 1 and a bounded functionε ∈
Crd(T,R) satisfying‖ΦA(t, τ )‖ � Cec(t, τ ) for τ 
 t and‖A(t)−B(t)‖ � ε(t) for t ∈ T,
then

∥∥ΦB(t, τ )−ΦA(t, τ )
∥∥ � C2�ε�

Γ−(c+Cε)
µ(t, τ )ec+Cε(t, τ ) for τ 
 t .

Proof. See [13, p. 73, Korollar 1.3.45(a)].✷
Lemma 2.2. LetC1,C2 � 1 be reals andc ∈ C+

rdR(T,R). If the linear systems(2.1)and
(2.4)havec+-bounded growth with constantsC1 andC2, respectively, then

∥∥ΦB(t, τ )−ΦA(t, τ )
∥∥ � C1C2ec(t, τ )

t∫
τ

‖B(s)−A(s)‖
1 +µ∗(s)c(s) ∆s for τ 
 t .

Proof. See [13, p. 74, Korollar 1.3.46(a)].✷
A mapping of projectionsP : T → L(X ) is called aninvariant projectorof the linear

system (2.1), ifP(t)ΦA(t, τ )=ΦA(t, τ )P (τ) for τ 
 t holds, and in case[
IX +µ∗(t)A(t)

]∣∣
N (P (t))

: N (
P(t)

) → N
(
P

(
ρ+(t)

))
(2.5)

is bijective for all right-scatteredt ∈ T, we speak of aregular invariant projector. Then
one can show that the restriction

Φ̄A(t, τ ) :=ΦA(t, τ )|N (P (τ )) : N (
P(τ)

) → (
N

(
P(t)

))
for τ 
 t

is a well-defined isomorphism, and we denote its inverse byΦ̄A(τ, t) (cf. [12, Proposi-
tion 2.3]). The linear system (2.1) is said to possess anexponential dichotomy(ED for
short) witha, b,K1,K2, if there exists a regular invariant projectorP : T → L(X ) of (2.1)
satisfying∥∥ΦA(t, τ )P (τ)

∥∥ �K1ea(t, τ ) for τ 
 t, (2.6)∥∥Φ̄A(t, τ )
[
IX − P(τ)

]∥∥ �K2eb(t, τ ) for t 
 τ, (2.7)

with real constantsK1,K2 � 1 anda, b ∈ C+
rdR(T,R), a � b. Note that on the time sca

T = R any invariant projector is regular.
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Example 2.2. Let α,β , h� 0 be reals withα < β . On homogeneous measure chains w
µ∗(t)≡ h onT and for constant coefficient operatorsA(t)≡A onT, one has the following
situation:

(1) In caseh= 0 (ODEs), the linear dynamic equation (2.1) has an ED withα,β , if the
spectrumσ(A)⊆ C is disjoint from the vertical strip{λ ∈ C: α � !λ� β} in the complex
plane. The corresponding invariant projector is given by the spectral projection rela
the spectral set{λ ∈ σ(A): !λ < α} (cf. [5, p. 72ff]).

(2) Analogously, in caseh > 0 (O�Es), the system (2.1) possesses an ED withα,β , if
σ(IX + hA) is disjoint from the annulus{λ ∈ C: α � |α| � β}, and the invariant projecto
is given by the spectral projection related to{λ ∈ C: |λ| < α}.

Remark 2.2. In our definition of an exponential dichotomy, the growth functionsa, b are
not assumed to be constants. For ODEs this generalization dates back to [10]. A
feature of our definition is that we do not insist on a hyperbolicity condition likea � 0 � b.
Thus, one can speak of apseudo-hyperbolic dichotomy, which makes the above notio
more flexible. Eventually, we point out again that Eq. (2.1) does not have to be regre
For O�Es this has its origins in [6, p. 229, Definition 7.6.4] and with a different,
equivalent definition in [9].

The proof of the next lemma is too excessive to be presented here. It is based on
that certain spaces of exponentially bounded functions are admissible for Eq. (2.1) (c
p. 106, Satz 2.2.7]).

Lemma 2.3. LetK1,K2,L1,L2 � 1, ε � 0 be reals anda, b, c, d ∈ C+
rdR(T,R) such that

a � c� d � b. Then under the assumptions

(i) the linear system(2.1)possesses an ED witha, b, K1, K2 andP ,
(ii) the linear system(2.4)possesses an ED withc, d , L1, L2 andQ,
(iii) ‖A(t)−B(t)‖ � ε for all t ∈ T,

the invariant projectors satisfy∥∥P(t)−Q(t)
∥∥ � εmax{L1,L2}Ca,b(c, d) for t ∈ T,

with

Ca,b(c, d) := K1

�d − a� + K2

�c− a� + max

{
K1

�c− a� ,
K2

�b− d�
}
.

Proof. See [13, p. 108, Korollar 2.2.9].✷
One of the main properties of an exponential dichotomy is its roughness. At th

of this section we present a roughness theorem for exponential dichotomies undeL∞-
perturbations of dynamic equations on discrete measure chains, which is sufficient
purposes.
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Theorem 2.4. Let (T̃,
, µ̃) be a discrete measure chain and consider a mappingÃ :
T̃ → L(X ). The linear dynamic equationx∆ = Ã(t)x on T̃ is assumed to possess an E
with ã, b̃, K1, K2 and an invariant projectorP̃ , whereb̃ is bounded above. Moreover, l
c̃, d̃ ∈ C+

rdR(T̃,R) with ã � c̃ � d̃ � b̃, and suppose the mapping̃B : T̃ → L(X ) satisfies

‖B̃(t) − Ã(t)‖ � ε for t ∈ T̃ with a real numberε � 0 such thatεCã,b̃(c̃, d̃) < 1. Then

x∆ = B̃(t)x has an ED withc̃, d̃ ,

L1 :=
(
Cã,b̃(c̃, d̃)Γ+(d̃)
1 − εC

ã,b̃
(c̃, d̃)

)2

, L2 :=
(

1+ Cã,b̃(c̃, d̃)Γ+(d̃)
1 − εC

ã,b̃
(c̃, d̃)

)
Cã,b̃(c̃, d̃)Γ+(d̃)
1 − εC

ã,b̃
(c̃, d̃)

and an invariant projectorQ̃ : T̃ → L(X ) satisfying

∥∥Q̃(t)− P̃ (t)
∥∥ � ε

(
1 + Cã,b̃(c̃, d̃)Γ+(d̃)

1 − εCã,b̃(c̃, d̃)

)
Cã,b̃(c̃, d̃)

2Γ+(d̃)
1 − εCã,b̃(c̃, d̃)

for t ∈ T̃.

Proof. See [13, pp. 113–114, Satz 2.2.14]. However, the proof is very similar to th
ference equations case presented in [9, p. 45, Satz 3.2.1].✷

3. Uniform exponential dichotomies

In this section we are confronted with exponential dichotomies on three different
scales,” namelyZ, discrete and general measure chains. The subsequent lemma clar
what extend the dichotomy notion for difference equations from [9, p. 7, Definition 2
carries over to dynamic equations on discrete measure chains.

Lemma 3.1. Consider realsK1,K2,M1,M2 � 1, a discrete measure chain(T̃,
, µ̃) with
T̃ = {tk}k∈Z, functionsã, b̃ ∈ C+

rdR(T̃,R), ã � b̃, a sequencêA : Z → L(X ) and

Ψ
Â
(k, l) :=

{
IX for l = k,
Â(k − 1) . . . Â(l) for l < k.

(3.1)

If P̂ : Z → L(X ) is a sequence of projections such that∥∥Ψ
Â
(k, l)P̂ (l)x

∥∥ �K1ẽã (tk, tl)
∥∥P̂ (l)x∥∥ for l � k, (3.2)∥∥Ψ

Â
(k, l)

[
IX − P̂ (l)

]
x
∥∥ �K−1

2 ẽb̃(tk, tl)
∥∥[
IX − P̂ (l)

]
x
∥∥ for l � k, (3.3)

andx ∈ X , and if

P̂ (k + 1)Â(k)= Â(k)P̂ (k), N
(
P̂ (k + 1)

) ⊆ R
(
Â(k)

)
, (3.4)∥∥P̂ (k)∥∥ �M1,

∥∥IX − P̂ (k)
∥∥ �M2 (3.5)

for k ∈ Z holds, then the linear system

x∆ = Ã(t)x, Ã(tk) := 1

µ̃∗(tk)
(
Â(k)− IX

)
for k ∈ Z (3.6)

on T̃ possesses an ED with̃a, b̃, constantsM1K1,M2K2 and the invariant projectorP̃ :
T̃ → L(X ), P̃ (tk) := P̂ (k).
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Proof. Above all, we remark that the transition operatorsΦÃ of (3.6) andΨ
Â

satisfy
ΦÃ(tk, tl) = Ψ

Â
(k, l) (cf. (2.2), (2.3)) for alll � k. Inductively one can see from (3.

that P̃ : T̃ → L(X ) is an invariant projector of (3.6) and to show thatP̃ is regular, we
verify that[

IX + µ̃∗(t)Ã(t)
]∣∣
N (P̃ (t))

: N (
P̃ (t)

) → N
(
P̃

(
ρ̃+(t)

))
(3.7)

is bijective for allt ∈ T̃. For an arbitraryt ∈ T̃ we chooseξ0 ∈ N (P̃ (t)) such that[IX +
µ̃∗(t)Ã(t)]ξ0 = 0 and the estimate

K−1
2 ẽb̃

(
ρ̃+(t), t

)‖ξ0‖ =K−1
2 ẽb̃

(
ρ̃+(t), t

)∥∥[
IX − P̃ (t)

]
ξ0

∥∥
(3.3)
�

∥∥ΦÃ

(
ρ̃+(t), t

)[
IX − P̃ (t)

]
ξ0

∥∥ (2.2)= ∥∥[
IX + µ̃∗(t)Ã(t)

]
ξ0

∥∥ = 0

yieldsξ0 = 0. Therefore, the linear operator (3.7) is one-to-one. Due to the inclusion
we know that for everyξ ∈ N (P̃ (ρ̃+(t))) there exists aξ0 ∈ X with [IX + µ̃∗(t)Ã(t)]ξ0
= ξ . Hence,ξ = [IX − P̃ (ρ̃+(t))]ξ = [IX − P̃ (ρ̃+(t))][IX +µ̃∗(t)Ã(t)]ξ0 and because th
two expressions in brackets on the right-hand side commute due to (3.4), the operat
is onto. It remains to prove that (3.6) satisfies the claimed dichotomy estimates w.
invariant projectorP̃ . Passing over to the least upper bound forx ∈ X , ‖x‖ = 1, in (3.2)
immediately gives us

∥∥ΦÃ(t, τ )P̃ (τ )
∥∥ (3.2)

� K1ẽã(t, τ )
∥∥P̃ (τ )∥∥ (3.5)

� K1M1ẽã(t, τ ) for τ 
 t .

On the other side, since the operator (3.7) is bijective, we know that the extended tra
operatorΦ̄Ã(t, τ ) : N (P̃ (τ ))→ N (P̃ (t)), t 
 τ , is well-defined (cf. [12, Proposition 2.3
and for anyx ∈ X we have

K−1
2 ẽ

b̃
(τ, t)

∥∥Φ̄
Ã
(t, τ )

[
IX − P̃ (τ )

]
x
∥∥

(3.3)
�

∥∥ΦÃ(τ, t)
[
IX − P̃ (t)

]
Φ̄Ã(t, τ )

[
IX − P̃ (τ )

]
x
∥∥ = ∥∥[

IX − P̃ (τ )
]
x
∥∥

for t 
 τ . Passing over to the least upper bound overx ∈ X , ‖x‖ = 1, finally gives

∥∥Φ̄Ã(t, τ )
[
IX − P̃ (τ )

]∥∥ �K2ẽb̃(t, τ )
∥∥IX − P̃ (τ )

∥∥ (3.5)
� K2M2ẽb̃(t, τ ) for t 
 τ,

and the proof is finished.✷
The following result can be considered as a perturbation result, as well as a suf

condition for an exponential dichotomy on discrete measure chains. For difference
tions it goes back to [6, p. 234, Theorem 7.6.8] and [16, Theorem 4].

Lemma 3.2. Consider a discrete measure chain(T̃,
, µ̃), T̃ = {tk}k∈Z, real numbers0<
θ1 < 1< θ2, K1,K2 � 1,N0 � 0, functionsã, b̃ ∈ C+

rdR(T̃,R), ã � b̃, whereb̃ is bounded

above, sequenceŝA, B̂ : Z → L(X ), and sequences of projectionsP̂1, P̂2 : Z → L(X ) such
that ∥∥Â(k)η∥∥ � θ1

(
1+ µ̃∗(tk)ã(tk)

)‖η‖ for η ∈ R
(
P̂1(k)

)
, (3.8)∥∥Â(k)ξ∥∥ � θ2

(
1 + µ̃∗(tk)b̃(tk)

)‖ξ‖ for ξ ∈ N
(
P̂1(k)

)
(3.9)
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u-
and‖IX − P̂2(k)‖ �K2, ‖Â(k)‖ �N0,

P̂2(k + 1)Â(k)= Â(k)P̂1(k), N
(
P̂2(k + 1)

) ⊆ R
(
Â(k)

)
, (3.10)∥∥P̂1(k)

∥∥ �K1,
∥∥P̂2(k)

∥∥ �K1, (3.11)

for k ∈ Z. For fixed functions̃c, d̃ ∈ C+
rdR(T̃,R) with ã � c̃� d̃ � b̃ we assume∥∥Â(k)− B̂(k)

∥∥ � ε1,
∥∥P̂2(k)− P̂1(k)

∥∥ � ε2 for k ∈ Z, (3.12)

where the realsε0, ε1 � 0 may satisfy

2ε2K1 � min{1− θ1, θ2 − 1}, εCã,b̃(c̃, d̃) < 1 (3.13)

with the abbreviation

ε := 1

�µ̃∗�
(
ε1 + 2ε2K1N0

1 − 2ε2K1

)
.

Then the linear dynamic equation

x∆ = B̃(t)x, B̃(tk) := 1

µ̃∗(tk)
(
B̂(k)− IX

)
, k ∈ Z,

on T̃ possesses an ED with̃c, d̃,L1,L2 given in Theorem2.4, and an invariant projector
Q̃ : T̃ → L(X ) such that

∥∥Q̃(tk)− P̂2(k)
∥∥ � ε

(
1 + Cã,b̃(c̃, d̃)Γ+(d̃)

1 − εCã,b̃(c̃, d̃)

)
Cã,b̃(c̃, d̃)

2Γ+(d̃)
1 − εCã,b̃(c̃, d̃)

for k ∈ Z.

Proof. The crucial object in our considerations is the operator sequenceΓ : Z → L(X ),
Γ (k) := P̂2(k)P̂1(k)+ [IX − P̂2(k)][IX − P̂1(k)], which satisfies

P̂2(k)Γ (k)≡ P̂2(k)
2P̂1(k)+ [

P̂2(k)− P̂2(k)
2][IX − P̂1(k)

]
≡ P̂2(k)P̂1(k)

2 + [
IX − P̂2(k)

][
P̂1(k)− P̂1(k)

2] ≡ Γ (k)P̂1(k) (3.14)

on Z. Moreover, one has∥∥IX − Γ (k)
∥∥ �

∥∥P̂1(k)− P̂2(k)
∥∥∥∥P̂1(k)

∥∥ + ∥∥P̂2(k)
∥∥∥∥P̂2(k)− P̂1(k)

∥∥
(3.11)
� 2K1

∥∥P̂2(k)− P̂1(k)
∥∥ (3.12)

� 2ε2K1 for k ∈ Z, (3.15)

and consequently the linear operatorΓ (k) ∈ L(X ) is invertible due to (3.13) and the Ne
mann series. This guarantees∥∥Γ (k)∥∥ � 1 + 2ε2K1,

∥∥Γ (k)−1
∥∥ � [1 − 2ε2K1]−1 for k ∈ Z, (3.16)

and the identity (3.14) gives usΓ (k)−1P̂2(k) ≡ P̂1(k)Γ (k)
−1 on Z. For the mappinĝC :

Z → L(X ), Ĉ(k) := Â(k)Γ (k)−1 we have

P̂2(k + 1)Ĉ(k)
(3.10)≡ Â(k)P̂1(k)Γ (k)

−1 ≡ Ĉ(k)P̂2(k) onZ,

and the definition ofĈ(k) ∈ L(X ) leads toR(Ĉ(k)) = R(Â(k)). Additionally, (3.10)
implies N (P̂2(k + 1)) ⊆ R(Ĉ(k)) for all k ∈ Z. With arbitrary η ∈ R(P̂2(k)) we get
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,

P̂1(k)Γ (k)
−1η ≡ Γ (k)−1P̂2(k)η ≡ Γ (k)−1η onZ, henceΓ (k)−1η ∈ R(P̂1(k)) and there-

fore due to (2.2), (2.3), applied tõeã , the estimate

∥∥Ĉ(k)η∥∥ = ∥∥Â(k)Γ (k)−1η
∥∥ (3.8)

� θ1ẽã (tk+1, tk)
∥∥Γ (k)−1η

∥∥
(3.16)
� θ1

1 − 2ε2K1
ẽã(tk+1, tk)‖η‖ (3.13)

� ẽã (tk+1, tk)‖η‖ for k ∈ Z.

Mathematical induction overk � l implies

∥∥Ψ
Ĉ
(k, l)P̂2(l)x

∥∥ (2.3)
� ẽã(tk, tl)

∥∥P̂2(l)x
∥∥ for l � k, x ∈ X ,

with the operatorΨ
Ĉ
(k, l) ∈ L(X ) given by (3.1), and similarly one derives∥∥Ψ

Ĉ
(k, l)

[
IX − P̂2(l)

]
x
∥∥ � ẽb̃(tk, tl)

∥∥[
IX − P̂2(l)

]
x
∥∥ for l � k.

Thus, the assumptions of Lemma 3.1 withM1 = K1, M2 = K2 are satisfied for the se
quencesĈ, P̂2 : Z → L(X ), and the linear dynamic equation

x∆ = C̃(t)x, C̃(tk) := 1

µ̃∗(tk)
(
Ĉ(k)− IX

)
for k ∈ Z (3.17)

on T̃ consequently possesses an ED withã, b̃,K1,K2 and the invariant projector̃P (tk) :=
P̂2(k), k ∈ Z. Due to the estimate

µ̃∗(tk)
∥∥C̃(tk)− B̃(tk)

∥∥ (3.17)
�

∥∥Â(k)Γ (k)−1 − Â(k)
∥∥ + ∥∥Â(k)− B̂(k)

∥∥
(3.12)
�

∥∥Â(k)∥∥∥∥Γ (k)−1
∥∥∥∥IX − Γ (k)

∥∥ + ε1

(3.15)
� 2ε2K1

∥∥Â(k)∥∥∥∥Γ (k)−1
∥∥ + ε1

(3.16)
� 2ε2K1N0

1 − 2ε2K1
+ ε1 for k ∈ Z

and the inequality (3.13), one can finally apply Theorem 2.4 to (3.17).✷
Our last preparation concerning discrete measure chains provides another sufficie

dition for an exponential dichotomy on quite general measure chains.

Lemma 3.3. Consider reals0 < h0 � h, �µ∗� � h, such that(T,
,µ) is a (h0, h)-
measure chain, a realC2 � 1 and functionsc, c2, d, d2 ∈ C+

rdR(T,R), d bounded above
d2 discretely bounded below andc � d , sups∈T ξµ∗(s)(c(s)) < infs∈T ξµ∗(s)(d(s)), as well
as a linear system

x∆ = B(t)x (3.18)

on T with B ∈ CrdR(T,L(X )). Under the assumptions

(i) the system(3.18)has(c2, d2)-bounded growth with constantC2,
(ii) there exist real numbersL1,L2 � 1, such that for any discrete measure chainT̃ =

{tk}k∈Z ∈ S
h
h0
(T) the equation

x∆ = B̃(t)x, B̃(tk) := 1 (
ΦB(tk+1, tk)− IX

)
, k ∈ Z,
µ(tk+1, tk)
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on T̃ has an ED withc̃, d̃ : T̃ → R,

c̃(tk) := ec(tk+1, tk)− 1

µ(tk+1, tk)
, d̃(tk) := ed(tk+1, tk)− 1

µ(tk+1, tk)
,

L1,L2 and an invariant projectorQ̃t0 : T̃ → L(X ),

the system(3.18)possesses an ED with̄c, d̄ : T → R,

c̄(t) := ϑµ∗(t)
(

sup
s∈T

ξµ∗(s)
(
c(s)

))
, d̄(t) := ϑµ∗(t)

(
inf
s∈T

ξµ∗(s)
(
d(s)

))
,

L̄1 := L1C2E
+
c2�c̄(h0, h), L̄2 :=L2C2E

+
d̄�d2

(h0, h) (3.19)

and the invariant projectorQ : T → L(X ) given byQ(t) := Q̃t (t).

Proof. Since the functiond is bounded above, and sinced2 is discretely bounded be
low, it is not difficult to verify thatc2 � c̄, d̄ � d2 are bounded above. Therefore, us
Lemma 1.1(b) we obtainE+

c2�c̄(h0, h),E
+
d̄�d2

(h0, h) < ∞. Now let t0 ∈ T be arbitrar-

ily given and we choose any discrete measure chainT̃ = {tk}k∈Z ∈ S
h
h0
(T) like in as-

sumption (ii) (such a measure chain exists because of [13, p. 2, Lemma 1.1.7])
c̃, d̃ ∈ C+

rdR(T̃,R), and one can easily show̃c� d̃ . In addition, we have

ln(1+µ(tk+1, tk)c̃(tk))

µ(tk+1, tk)
= ln ec(tk+1, tk)

µ(tk+1, tk)

(1.2)= 1

µ(tk+1, tk)

tk+1∫
tk

ξµ∗(s)
(
c(s)

)
∆s

� 1

µ(tk+1, tk)

tk+1∫
tk

sup
t∈T

ξµ∗(t)
(
c(t)

)
∆s

= sup
t∈T

ξµ∗(t)
(
c(t)

)
for k ∈ Z,

and accordingly

sup
k∈Z

ln(1+µ(tk+1, tk)c̃(tk))

µ(tk+1, tk)
� sup

t∈T

ξµ∗(t)
(
c(t)

)
. (3.20)

Now define the mappingPt0 : T → L(X ), Pt0(t) := ΦB(t, t0)Q̃t0(t0)ΦB(t0, t), which sat-
isfiesPt0(t) ≡ Pt0(t)

2, Pt0(t)ΦB(t, t0) ≡ ΦB(t, t0)Pt0(t0) on T (cf. (2.3)); for this reason
Pt0 is also an invariant projector of the linear system (3.18). As a result of the ide
IX + µ(tk+1, tk)B̃(tk)≡ ΦB(tk+1, tk) on Z, the mappingB̃ : T̃ → L(X ) is regressive and
one inductively obtainsΦB̃(tk, tl) = ΦB(tk, tl) for k, l ∈ Z. With a givent ∈ T, t0 
 t , we
choosek ∈ N0 maximally such thatt0 
 tk 
 t holds, and the assumptions (i) and (ii) imp

∥∥ΦB(t, t0)Pt0(t0)
∥∥ (2.3)

�
∥∥ΦB(t, tk)

∥∥∥∥ΦB(tk, t0)Q̃t0(t0)
∥∥

= ∥∥ΦB(t, tk)
∥∥∥∥Φ ˜ (tk, t0)Q̃t0(t0)

∥∥ � C2ec2(t, tk)L1ẽc̃(tk, t0).
B
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On the basis of Lemma 1.2, the monotonicity properties ofϑµ∗(t) : R → Rµ∗(t), t ∈ T, as
well as (3.20), this leads to

∥∥ΦB(t, t0)Pt0(t0)
∥∥ (1.3)

� L1C2ec2(t, tk)ec̄(tk, t0)� L1C2ec2�c̄(t, tk)ec̄(t, t0)

� L1C2E
+
c2�c̄(h0, h)ec̄(t, t0) for t0 
 t .

Consequently, the first dichotomy estimate for (3.18) is shown. To prove the c
sponding estimate in negative time, we fixt 
 t0 and choosel � 0, l ∈ Z, minimally
with t 
 tl 
 t0. Analogously we get from Lemma 1.2 that‖ΦB(t, t0)[IX − Pt0(t0)]‖ �
L2C2E

+
d̄�d2

(h0, h)ed̄ (t, t0) for t 
 t0. Hence the proof is finished, if one defines the inv

ant projector for (3.18) byQ : T → L(X ), Q(t) := Pt (t). ✷
Now we arrive at the main result of this paper. In case of infinite dimensional differe

equations it goes back to [6, pp. 240–241, Theorem 7.6.12]. However, [16, Theor
contains a more accessible approach for ODEs inRN .

Theorem 3.4. Let Q denote a nonempty set and consider the mappingsA(·, q) ∈
Crd(T,L(X )), q ∈ Q, B ∈ CrdR(T,L(X )), realsC1,C2,K1,K2 � 1 and functionsa, b,
c1, c2, d2 ∈ C+

rdR(T,R), a � b, b bounded above,c1, c2 discretely bounded below, suc
that for anyq ∈ Q the following conditions hold:

(i) The linear system

x∆ =A(t, q)x (3.21)

hasc+
1 -bounded growth with constantC1,

(ii) the linear system(3.21)possesses an ED witha, b,K1,K2 and the invariant projector
Pq : T → L(X ),

(iii) the linear system

x∆ = B(t)x (3.22)

has(c2, d2)-bounded growth with constantC2.

Moreover, for arbitrarily fixed functionsc, d ∈ C+
rdR(T,R) with

a � c� d � b, sup
s∈T

ξµ∗(s)
(
c(s)

)
< inf

s∈T

ξµ∗(s)
(
d(s)

)
, (3.23)

we choose reals0< h0 � h, �µ∗� � h so large that

(iv) K1K2 <E−
b�a(h0, h), K1 <E−

c�a(h0, h) andK2 <E−
b�d (h0, h),

(v) (T,
,µ) is a (h0, h)-measure chain.

Then there exist realsε0, ε1 > 0, depending onh0, h, a, b, c, c1, c2, d, d2, C1,C2, K1,K2,
such that under the additional assumption

(vi) there exists a mappingq∗ : T → Q with
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∥∥A(
t, q∗(τ )

) −B(t)
∥∥ � ε0 for t, τ ∈ T, 0 � µ(t, τ )� h, (3.24)∥∥Pq∗(t)(t)− Pq∗(τ )(t)
∥∥ � ε1 for t, τ ∈ T, h0 � µ(t, τ )� h, (3.25)

also the linear dynamic equation(3.22)possesses an ED with̄c, d̄ : T → R given in(3.19),
constantsL̄1, L̄2 � 1 and an invariant projectorQ : T → L(X ), satisfying∥∥Q(t)− Pq∗(t)(t)

∥∥ � ε1 + ∥∥Q(t)− Pq∗(τ )(t)
∥∥ (3.26)

for t, τ ∈ T, h0 �µ(t, τ )� h.

Remark 3.1. (1) In general we have the inequalitiesc � c̄, d̄ � d and thus the exponen
tial dichotomy with growth functions̄c, d̄ guaranteed from Theorem 3.4 is weaker tha
dichotomy withc, d . Nevertheless, one hasc = c̄, d = d̄ for the special case of the tim
scalesT = R or T = h̄Z, h̄ > 0, and constant functionsc, d , like usually assumed for ODE
and O�Es. In particular, under these assumptions the right inequality in (3.23) bec
redundant. Moreover, forT = h̄Z, h̄ > 0, we can replace hypothesis (v) by the inequa
h̄ � h0, while (v) can be dropped in case ofT = R. A similar remark also holds for th
subsequent Corollary 3.6.

(2) Even in the special case of ODEs, our Theorem 3.4 generalizes [16, Theor
with regard to the following aspects: On the one hand, Theorem 3.4 holds true in in
dimensional Banach spaces, we only need that (3.21) has bounded growth in forwar
and finally, beyond the inequalities (3.23) we do not assume any hyperbolicity cond
on the growth functionsc, d .

(3) For a setQ with exactly one element, the inequality (3.25) is redundant and one
consider Theorem 3.4 as a roughness theorem for exponentially dichotomous syste
bounded growth. However, on discrete measure chains, Theorem 2.4 is more gene
Theorem 3.4.

(4) In case of homogeneous time scales it is possible to derive a relatively handy e
estimate for the maximal size ofε0, ε1 in terms of the growth constants for (3.21), t
dichotomy data for (3.22), as well ash0, h > 0. This can be found in [13, pp. 125–12
Korollar 2.3.10] or in [14] for O�Es.

Proof of Theorem 3.4. Let ΦA(· ;q), q ∈ Q, denote the parameter-dependent transi
operator of (3.21). We subdivide the present proof into four steps:

(I) Since b and, by virtue of (3.23) also the growth functiond ∈ C+
rdR(T,R), is

bounded above, we obtain thata, d are discretely bounded above and the inequal
0 � b � a, 0 � c � a, 0 � b � d . Due to Lemma 1.1(a) one can chooseh0 > 0 so large
that the assumption (iv) is satisfied. Eventually, we pick reals 0< θ1 < 1< θ2, such that
(θ2/θ1)K1K2 <E−

b�a(h0, h) holds.
(II) Let s ∈ T be arbitrary, but fixed. Then, due to assumption (ii), the linear dyna

equation

x∆ =A
(
t, q∗(s)

)
x (3.27)

has an exponential dichotomy with an invariant projectorPq∗(s) : T → L(X ), which in
particular satisfies the regularity condition (2.5) onT. Hence [12, Proposition 2.3] gua
antees thatΦA(t, s;q∗(s))|N (P (s)) : N (Pq∗(s)(s)) → N (Pq∗(s)(t)), s 
 t , is bijective.
q∗(s)
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Thus, for anyξ ∈ N (Pq∗(s)(t)), s 
 t , there exists a pre-imageξ0 ∈ N (Pq∗(s)(s)) with
ξ =ΦA(t, s;q∗(s))ξ0 and consequently we have the inclusion

N
(
Pq∗(s)(t)

) ⊆ R
(
ΦA

(
t, s;q∗(s)

))
for s 
 t . (3.28)

(III) By assumption (v) we know that(T,
,µ) is a (h0, h)-measure chain, and ther
fore for anyt0 ∈ T we get a discrete measure chainT̃ = {tk}k∈Z ∈ S

h
h0
(T). We are going to

verify that the operator sequencesÂ, B̂, P̂1, P̂2 : Z → L(X ), Â(k) :=ΦA(tk+1, tk;q∗(tk)),
B̂(k) := ΦB(tk+1, tk), P̂1(k) := Pq∗(tk)(tk), P̂2(k) := Pq∗(tk−1)(tk) satisfy the assumption

of Lemma 3.2. ObviouslyP̂1(k), P̂2(k) ∈ L(X ) are projections for everyk ∈ Z. Further-
more, we haveP̂2(k + 1)Â(k)= Â(k)P̂1(k) for k ∈ Z and due to the inclusion (3.28) als
N (P̂2(k + 1))⊆ R(Â(k)) for k ∈ Z. Now we define the functions̃a, b̃ : T̃ → R,

ã(tk) := K1ea(tk+1, tk)− θ1

θ1µ(tk+1, tk)
, b̃(tk) := eb(tk+1, tk)− θ2K2

θ2K2µ(tk+1, tk)
for k ∈ Z,

which satisfyã, b̃ ∈ C+
rdR(T̃,R), as well as̃a � b̃. Sinceb is bounded above, Lemma 1.1(

guarantees that̃b is bounded above. From assumption (ii) and∥∥Â(k)η∥∥ = ∥∥Â(k)P̂1(k)η
∥∥ = ∥∥ΦA

(
tk+1, tk;q∗(tk)

)
Pq∗(tk)(tk)η

∥∥
(2.6)
� K1ea(tk+1, tk)‖η‖ for η ∈ R

(
P̂1(k)

)
,

‖ξ‖ = ∥∥Φ̄A

(
tk, tk+1;q∗(tk)

)
ΦA

(
tk+1, tk;q∗(tk)

)[
IX −Pq∗(tk)(tk)

]
ξ
∥∥

= ∥∥Φ̄A

(
tk, tk+1;q∗(tk)

)[
IX − Pq∗(tk)(tk+1)

]
ΦA

(
tk+1, tk;q∗(tk)

)
ξ
∥∥

(2.7)
� K2eb(tk, tk+1)

∥∥Â(k)ξ∥∥ for ξ ∈ N
(
P̂1(k)

)
,

the above construction of̃a, b̃ yields ‖Â(k)η‖ � θ1(1 + µ(tk+1, tk)ã(tk))‖η‖ for η ∈
R(P̂1(k)), ‖Â(k)ξ‖ � θ2(1 + µ(tk+1, tk)b̃(tk))‖ξ‖ for ξ ∈ N (P̂1(k)). Since the assump
tion (ii) implies for anyq ∈ Q that ‖Pq(s)‖ � K1, ‖IX − Pq(s)‖ � K2 for s ∈ T, one
directly has‖P̂1(k)‖ � K1, ‖IX − P̂2(k)‖ � K2, ‖P̂2(k)‖ � K1 for k ∈ Z. Finally, from
assumption (i) we get∥∥Â(k)∥∥ = ∥∥ΦA

(
tk+1, tk;q∗(tk)

)∥∥ � C1ec1(tk+1, tk)� C1E
+
c1
(h0, h)

for k ∈ Z, and assumption (iv) together with Lemma 2.1 leads to∥∥Â(k)− B̂(k)
∥∥ = ∥∥ΦA

(
tk+1, tk;q∗(tk)

) −ΦB(tk+1, tk)
∥∥

(3.24)
�

C2
1ε0

Γ−(c1 + ε0C1)
hE+

c1+ε0C1
(h0, h) for k ∈ Z, (3.29)

as well as‖P̂1(k)− P̂2(k)‖ = ‖Pq∗(tk)(tk)−Pq∗(tk−1)(tk)‖ � ε1 for k ∈ Z (cf. (3.25)). Now
c̃, d̃ : T̃ → R,

c̃(tk) := ec(tk+1, tk)− 1

µ(tk+1, tk)
, d̃(tk) := ed(tk+1, tk)− 1

µ(tk+1, tk)
, k ∈ Z,

define functions inC+
rdR(T̃,R), which satisfyã � c̃ � d̃ � b̃ by means of the assump

tion (iv).
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(IV) As a result of step (III), for sufficiently small realsε0, ε1 > 0, one can apply
Lemma 3.2 and therefore the system

x∆ = B̃(t)x, B̃(tk) := 1

µ(tk+1, tk)

(
B̂(k)− IX

)
, k ∈ Z,

on T̃ has an exponential dichotomy with̃c, d̃, L̄1, L̄2 � 1 and an invariant projector̃Qt0 :
T̃ → L(X ). The estimate (3.23) implies thatd is bounded above and sincet0 ∈ T, as
well as the discrete measure chainT̃ ∈ S

h
h0
(T) had been arbitrary, Lemma 3.3 implies

exponential dichotomy of the linear system (3.22) onT. Ultimately, the estimate (3.26)
a trivial consequence of (3.25).✷

We have formulated hypothesis (vi) of Theorem 3.4 using the coefficient map
of (3.21) and (3.22) to increase its applicability. In some situations it is desirable, thou
assume conditions on the transition operators or theL1-distance of the two linear system

Corollary 3.5. The assumed inequality(3.24)can be replaced by∥∥ΦA

(
t, τ ;q∗(τ )

) −ΦB(t, τ )
∥∥ � ε0 for t, τ ∈ T, 0 � µ(t, τ )� h, (3.30)

or, in casec1 = c2, by

t∫
τ

‖A(s;q∗(s))−B(s)‖
1+µ∗(s)c1(s)

∆s � ε0 for t, τ ∈ T, 0 � µ(t, τ )� h, (3.31)

without changing the conclusion of Theorem3.4.

Remark 3.2. The three papers [8, Theorem 3.1], [11, Theorem 2] and [18, Corolla
prove roughness theorems for an exponential dichotomy of finite dimensional differ
equations under assumptions similar to (3.30). In this situation, Theorem 3.4 is suf
for [8, Theorem 3.1] and equivalent to [11, Theorem 2], like shown in [15].

Proof of Corollary 3.5. Under each assumption, either (3.30) or (3.31), one is ab
derive the estimate (3.29) in the proof of Theorem 3.4. Actually we have

∥∥Â(k)− B̂(k)
∥∥ = ∥∥ΦA

(
tk+1, tk;q∗(tk)

) −ΦB(tk+1, tk)
∥∥ (3.30)

� ε0 for k ∈ Z,

or using Lemma 2.2, we obtain∥∥Â(k)− B̂(k)
∥∥ = ∥∥ΦA

(
tk+1, tk;q∗(tk)

) −ΦB(tk+1, tk)
∥∥

� C1C2ec1(tk+1, tk)

tk+1∫
tk

‖A(s;q∗(s))−B(s)‖
1 +µ∗(s)c1(s)

∆s

(3.31)
� ε0C1C2E

+
c1
(h0, h)

for k ∈ Z, and therefore only the condition determining the size ofε0 > 0 changes, but no
the assertion of Theorem 3.4.✷
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At first glance the technical and abstract Theorem 3.4 might be a little hard to g
For that reason we apply it to derive a result showing that the notion of an expon
dichotomy is robust under slowly varying coefficients. More precisely, this result e
tially states that, if an exponentially dichotomous system depends Hölder-continu
on a fixed parameter, then this parameter can be replaced by a time-dependent f
possessing a sufficiently small global Hölder constant, without destroying the ED
dynamic equation.

Corollary 3.6. Consider some metric space(Q, d), an rd-continuous mappingA : T ×
Q → L(X ), realsK1,K2 � 1, C1,C2,L� 0, α,β ∈ (0,1] and functionsa, b, c1, c2, d2 ∈
C+

rdR(T,R), a � b, b bounded above, such that for anyq ∈ Q the following conditions
hold:

(i) We have the Hölder estimate∥∥A(t, q)−A(t, q̄)
∥∥ � Ld(q, q̄)α for t ∈ T, q̄ ∈ Q, (3.32)

(ii) the linear system(3.21)hasc+
1 -bounded growth with constantC1,

(iii) the linear system(3.21)possesses an ED witha, b,K1,K2 and the invariant projector
Pq : T → L(X ).

Moreover, for arbitrarily fixed functionsc, d ∈ C+
rdR(T,R) like in (3.23), we choose real

0< h0 � h, �µ∗� � h so large that

(iv) K1K2 <E−
b�a(h0, h), K1 <E−

c�a(h0, h) andK2 <E−
b�d (h0, h),

(v) (T,
,µ) is a (h0, h)-measure chain.

Then there exist realsε0, ε1 > 0, depending only onh0, h, a, b, c, d, c1, c2, d2,C1,C2,K1,

K2, such that for any mappingq∗ : T → Q satisfying

(vi) the Hölder condition

d
(
q∗(t), q∗(τ )

)
� θ

∣∣µ(t, τ )∣∣β for t, τ ∈ T, (3.33)

whereθ � 0 satisfiesLθαhαβ � ε0, Lθαhαβ max{K1,K2}Ca,b(c, d)� ε1,
(vii) the linear system

x∆ =A
(
t, q∗(t)

)
x (3.34)

has(c2, d2)-bounded growth withC2,

also the linear system(3.34)has an ED withc̄, d̄ : T → R given in(3.19), L̄1, L̄2 � 1 and
an invariant projectorQ : T → L(X ).

Remark 3.3. (1) The property thatq∗ : T → Q changes slowly in time has been form
lated using the Hölder condition (3.33). In case of a Banach spaceQ and a differentiable
mappingq∗, one can use the mean value theorem on measure chains (cf. [7, pp.
Corollary 3.3(i)]) to show that (3.33) is satisfied withβ = 1, if the derivativeq∆∗ : T → Q
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Birk-
has sufficiently small values. This is usually fulfilled in applications from singular pe
bation theory (cf. [13, pp. 219–226] for dynamic equations on measure chains, or [1
O�Es).

(2) One can also use Corollary 3.6 as a criterion for an exponential dichotomy
linear system (2.1). In fact, one assumes that

• h̄� µ∗(t)� H̄ for all t ∈ T with certain reals̄h, H̄ > 0,
• there exist reals̄α < β̄, ᾱ ∈ Rh̄, such that the spectrum ofA(t0) ∈ L(X ), t0 ∈ T, can

be decomposed into closed disjoint setsσ1(t0), σ2(t0) with

sup
λ∈σ1(t0)

!H̄ λ < ᾱ < β̄ < inf
λ∈σ2(t0)

!h̄λ for t0 ∈ T,

and gets from [13, p. 97, Satz 2.1.22] that the time-invariant systemsx∆ =A(t0)x, t0 ∈ T

fixed, possess an exponential dichotomy. Here

!hz := lim
t↘h

|1 + tz| − 1

t
, z ∈ C, with 1 + hz $= 0,

is theHilger real part. Now the above Corollary 3.6 withQ = T, the metricd(t, τ ) :=
|µ(t, τ )|, as well asq∗(t) := t , implies that (2.1) possesses an exponential dichotomy u
the assumption‖A(t)−A(τ)‖ �L|µ(t, τ )|α for t, τ ∈ T and a sufficiently smallL� 0.

Proof of Corollary 3.6. We successively verify the hypotheses of Theorem 3.4 app
to the mappingB(t) := A(t, q∗(t)). Due to the assumption (vi) we know thatq∗ : T → Q
is continuous and consequentlyB : T → L(X ) is rd-continuous. The assumptions (ii) a
(vii) imply that the two systems (3.21) and (3.34) have bounded growth, and (vii) inc
that (3.34) is regressive. In order to derive the inequalities (3.24) and (3.25), we pickt1, t2 ∈
T arbitrarily, use (3.32), (3.33) and arrive at∥∥A(

t, q∗(t1)
) −A

(
t, q∗(t2)

)∥∥ � Lθαhαβ for t ∈ T, 0 � µ(t1, t2)� h. (3.35)

Setting t1 = t , t2 = τ yields (3.24). Using the hypothesis (iii) we know that the lin
systemx∆ = A(t, q∗(t1))x has an exponential dichotomy witha, b, K1, K2 andPq∗(t1).
Similarly, x∆ = A(t, q∗(t2))x has an exponential dichotomy with the invariant projec
Pq∗(t2), and weaker growth functionsc, d . The relation (3.35), as well as Lemma 2.3 imp
for t1 = t , t2 = τ the estimate∥∥Pq∗(t)(t)−Pq∗(τ )(t)

∥∥ �Lθαhαβ max{K1,K2}Ca,b(c, d)
for t, τ ∈ T, h0 �µ(t, τ )� h, and using Theorem 3.4 we obtain the assertion.✷
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[5] J.L. Daleckĭı, M.G. Krĕın, Stability of Solutions of Differential Equations in Banach Space, in: Translat

of Mathematical Monographs, Vol. 43, American Mathematical Society, Providence, RI, 1974.
[6] D. Henry, Geometric Theory of Semilinear Parabolic Equations, in: Lecture Notes in Mathematics, Vo

Springer-Verlag, Berlin, 1980.
[7] S. Hilger, Analysis on measure chains—a unified approach to continuous and discrete calculus,

Math. 18 (1990) 18–56.
[8] R.A. Johnson, Remarks on linear differential systems with measurable coefficients, Proc. Amer.

Soc. 100 (1987) 491–504.
[9] J. Kalkbrenner, Exponential Dichotomy and Chaotic Dynamic of Noninvertible Difference Equations,

thesis, University of Augsburg, 1994, in German.
[10] J.S. Muldowney, Dichotomies and asymptotic behaviour for linear differential systems, Trans. Amer.

Soc. 283 (1984) 465–484.
[11] K.J. Palmer, A perturbation theorem for exponential dichotomies, Proc. Roy. Soc. Edinburgh Sect.

(1987) 25–37.
[12] C. Pötzsche, Exponential dichotomies for linear dynamic equations, Nonlinear Anal. 47 (2001) 873–
[13] C. Pötzsche, Slow Fiber Bundles of Dynamic Equations on Measure Chains, Ph.D. thesis, Unive

Augsburg, 2002, in German.
[14] C. Pötzsche, Slow and fast variables in nonautonomous difference equations, J. Difference Equation

(2003) 473–487.
[15] K. Sakamoto, A remark on perturbation theorems for exponential dichotomies, private correspon

March 2000.
[16] K. Sakamoto, Estimates on the strength of exponential dichotomies and application to integral ma

J. Differential Equations 107 (1994) 259–279.
[17] R.J. Sacker, G.R. Sell, A spectral theory for linear differential systems, J. Differential Equations 27

320–358.
[18] N. Van Minh, Spectral theory for linear non-autonomous differential equations, J. Math. Anal. App

(1994) 339–351.


