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Abstract

Unifying ordinary differential and difference equations, we consider linear dynamic equations on
measure chains or time scales, which possess an exponential dichotomy uniformly in a parameter,
and show that this dichotomy is robust, if the mentioned parameter changes slowly in time. Here, the
equations can be infinite dimensional and are not assumed to be invertible.
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1. Introduction and preliminaries

The well-known and established notion of an exponential dichotomy generalizes the
concept of hyperbolicity from autonomous to nonautonomous linear equations, where the
invariant subspaces are replaced by so-called invariant vector bundles and the stability
properties of the solutions in these nontrivial invariant sets are uniform. The importance of
exponential dichotomies in the theory of nonautonomous dynamical systems is due to the
fact that they are a very useful tool to solve nonlinear problems as perturbations of linear
ones, like in the persistence of integral manifolds (cf., e.g., [6,13,16]).
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Meanwhile dichotomies are widely used, and thorough introductions into the theory of
exponentially dichotomous ordinary differential equations (ODEs) can be found in, e.g.,
the books [3,5]. For difference equationsA@s) the literature is slightly sparser, but [4]
and [6, Section 7.6] pioneered here. Both concepts have been unified in [12,13] within the
“calculus on measure chains,” which goes back to [7]. This calculus allows a simultane-
ous treatment of ODESs, ®Es and of equations on so-called inhomogeneous time scales,
which allow applications in, for instance, discretization theory and population dynamics.
To quote a reference about dynamic equations on measure chains or time scales we recom-
mend [7] and the monograph [2].

In the present paper we prove an abstract perturbation result (Theorem 3.4) for
parameter-dependent linear dynamic equations on measure chains in arbitrary Banach
spaces. Such a result has two main applications:

e Robustness of exponential dichotomies under slowly varying coefficiéigameans,
if we consider for example a parameter-dependentlinear ©BEA (¢, ¢)x, which has
an exponential dichotomy uniformly in a paramejefrom, e.g., a metric space, then
one can replace the constant valuby any functiong, () which varies “slowly” in
time, such that the equation= A(z, g.(7))x is also exponentially dichotomous. This,
in turn, yields a sufficient condition for a dynamic equation to possess an exponential
dichotomy in terms of the spectrum of their coefficient operator (see Remark 3.3(2)).

e Construction of invariant fiber bundleshich are the counterpart of integral manifolds
in the theory of difference equations or general dynamic equations. Indeed, using The-
orem 3.4 one is able to characterize invariant fiber bundles as fixed points of an abstract
integral operator within a Lyapunov—Perron technique. Such applications are presented
in, e.g., [6,16] for differential equations, whileAEs are considered in [14] and the
general case of dynamic equations on arbitrary measure chains will be published in a
forthcoming paper.

The above mentioned result has its origins in [6] and [16]. Their approach has the ad-
vantage that, differing from [3, p. 50, Proposition 1], one can immediately apply it to
infinite dimensional equations. Moreover, in the case of ODEs, and with an equivalent re-
sult (cf. [15]), it follows with Palmer [11] that our main Theorem 3.4 is more general than
[17, p. 342, Theorem 6] in certain situations. In the case of difference equations, we do not
know of any related results, and therefore the achievements of this paper (Theorem 3.4 and
Corollary 3.6) seem to be new even in this setting.

To introduce our terminologyy are the positive integer, the integersR is the real
and C the complex field. In addition, for any reél> 0 we writeR;, :={x e R: 1+
hx > 0}. Now suppose for the following that' denotes a real or complex Banach space
with the norm|| - ||. £L(X) stands for the linear space of continuous endomorphisnig on
with the norm|| 7'|| := sup, =1 I 7x ||, andG L(X') for the group of toplinear isomorphisms
on X; Iy is the identity mapping otk. We write N'(T') := T~1({0}) for the kerneland
R(T) :=T X fortherangeof T € L(X).

We also shortly introduce some notions, which are specific for the calculus on mea-
sure chains(T, <, u) denotes an arbitrargneasure chairwith order relation <” and
growth calibrationu (cf. [7]). A time scaleis a special case of a measure chain, where
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T is a nonempty closed subset of the reRls“<" is just the canonical ordering<”

and the growth calibration is given hy(z, t) =t — . Differing from the usual notation,

o+ :T— T, py(t) :=inf{s € T: r < s} is theforward jump operatorand we assume
that thegraininessu™*(7) := u(p+(2), t) is bounded throughout the paper. Measure chains
with constant graininess are callbdmogeneousA point ¢t € T is calledright-denseif

w*(t) =0 and otherwiseight-scatteredIn case sufy € T: s <t} = ¢ we speak of deft-
densepointz. Besides(T, <, ) is assumed to be unbounded above and below, i.e., the set
{un(t, 1) € R: t € J} has the mentioned property for one T. A measure chailT, <, /1)

is denoted asliscrete if T = {#}x<z and if there exist realsg, 4 > 0 such that

ho < i(tyy1,tx) <h forkeZ. (1.1)

With given real number&g, # > 0, and measure chalifi, we write SZO(T) for the set

of all discrete measure chaifi@, <, x) with T € T satisfying (1.1). Furthermore, we
speak of g ho, h)-measure chailT, <, w), if for every pointsg € T there existy, t_; € T,

k € N, such that{f; }xez € SZO(T) holds. Any measure chain which is unbounded above
and below, and with bounded grainingss is a(ho, h)-measure chain fatg > 0 andh >

ho + supep u*(?) (cf. [13, p. 2, Lemma 1.1.7]). The following example should illuminate
the above notions for readers who are primarily interested in ODE\EO

Example 1.1. (1) For the realR we have the identitiep, () =, u*(t) =0 onR and
each real number is a right- and left-dense point. MoredRes, a (ho, h)-time scale for
any O< ho < h.

(2) The discrete time scalég, 1 > 0, and in particular the intege?s consist of right-
scattered points. We haye (1) =t + h, u*(t) = h onhZ, andhZ is a(ho, h)-time scale
forany i < ho < h.

A mappinge : T — X is said to bedifferentiable(at 7o € T), if there exists a unique
derivative¢? (o) € X, such that for every > 0 the estimate

[#(0+(t0) — @) — w(p+(t0), ) p* (10) | < €|pe(p+(t0).7)| forteU

holds in a neighborhootd C T of 7o (see [7, Section 2.4]). As special cases we obtain in a
time scale setting the usual derivatiyé (1) = ¢(r) for T = R and the forward difference
operatorp? (1) = (¢ (t + h) — ¢(t))/h for T=hZ, h > 0.

Now let(Q, d) be a metric space. Accordingto [7, Section 5.2], a mapping x Q —
X is said to bead-continuousif for every go € Q one has thaf is continuous inzg, ¢o)
for every right-densep € T, and if for any left-densey € T the limits lim,_, ,, f (o, 9),
lim(t,q)%(to,qo), t<tg f(ta 61) exist.

In addition,C,q(T, X) denotes the set of rd-continuous maps frBnmto X and

CraR (T, L(X)) :={A € C(T, L(X)): Ix + u*(1)A(t) € GL(X) forall € T}

stands for the set of so-calleejressivamappings. Th@ositively regressive group given

by CLR(T,R) := {a € C(T,R): 1+ p*(t)a(t) > 0fort e T} with the addition(a &
b)(t) :=a(t) + b(t) + u*(®)a(®)b(t), and the subtractiom © b)(¢) := (a(t) — b(t))/(1+
w*(@®)b (1)) for t € T. On the time scald’ = R, rd-continuity means continuity, and the
algebraic operation® or & reduce to the usual (pointwise) addition or subtraction of
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continuous real-valued mappings, respectively. On the other hantl £0k7Z, h > 0, any
function is rd-continuous.

We abbreviatda| := inf,era(t), [a] :=supcra(?) anda < b :< 0 < |b — a] for
functionsa, b : T — R. An elementz € C’ﬁ{,{R(’JT, R) is said to bediscretely bounded be-
low, if I'_(a) := 1+ |u*a] > 0 holds. In addition, we sayis discretely bounded aboyi¢
I'y(a) =14 [u*a] < oo. For an arbitrary real > 0 one easily verifies that the mappings
&Ry — R, 9, : R— Ry, given by

log(1+ tx) exp(tx) —1
t

:=1lim , 12 = lim ———,
&n(x) am R (X) ym ;

are bijective and inverse to each other. Thenrda exponential functior, (¢, 7) € R,
t,7 €T, onT, allows the representation

t
eq(t,7) =/§m<s>(a(s))As (1.2)

and we haver,gp(f, 7) = e4(t, T)ep(t, ) for t, v € T (cf. [7]). For homogeneous time
scales and constant functiom@) = «, one obtains explicitly

ea(t,s)=e*"™9 forT=R,
ea(t,s) = A+ ha)"'" forT=hZ, h>0,

and formulas for the exponential function on various other time scales can be found in [2,

pp. 69ff].

We close this section with two technical results on the real exponential function. The
first one estimates the exponential function on bounded subs&tsdfile the second one
relates real exponential functions on different measure chains.

Lemma 1.1. Consider real) < hg < & and functions:, b € @r}R(T, R). Then the con-

stants E; (ho, h) = infry<u )< €a(t, 8), E,j(ho, h) = SUP, < (e s < €b (s S) satisfy
the following

(@) If 0 < a, then for anyC € R there exist real® < hg < h, [u*] < h such thatC <
E,; (ho, h),
(b) if b is bounded above, we ha' (ho, h) < cc.

Proof. The easy proof can be found in [13, p. 115, Lemma 2.3.1].

Lemma 1.2. SupposeT = {}xez is a discrete measure chain with € T and ¢,d e
CHR(T,R). Thenco,do: T — R,
IN(1+ p(teta, tk)f‘(tk))>

M (Be+1, )

N+ w(teg, 1A (1)
d = 19 * f )
0(t) :=Dy (’)(iirelz (a1, 1)

co(t) :="Vpux(r) <sup
keZ
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are positively regressive and satisfy
ex(tr, 1) <eco(tr,tr), €5t tx) <eap(ty, ) forl <k, (1.3)

where, from now org: denotes the real exponential function®n

Proof. See [13, p. 67, Lemma 1.3.32]0

2. Bounded growth and exponential dichotomies

Consider an operator-valued mappiAgs Cy(T, L(X)). Differing from the existing
literature on linear dynamic equations on measure chains we do not assume tioafthe
ficient operatorA is regressive and we can include noninvertible difference equations into
our theory. Hence our standard reference for, e.g., existence and uniqueness results will
be [13], instead of [2,7]. Ainear dynamic equatiofor alinear systerpis an equation of
the form

x4 = A()x, (2.1)

and a differentiable mapping: I — X is said to solve (2.1)onasubde:Tor I ={r €
T: r <t}, v €T, if its derivativer? satisfiesh? (r) = A(r)A(r) on 1.

Example 2.1. On homogeneous time scales, the linear dynamic equation (2.1) describes
ODEs and Q\Es. In fact, ifT = R we consider linear nonautonomous ODESs of the form
x=A(t)x.If T=hZ,then (2.1) reduces to the difference equatio@ + ) — x(¢))/ h =
A(t)x(¢) orequivalentlyx (¢t + h) = [Iy + hA(2)]x(2).

The linear dynamic equation (2.1) is said to have

e cT-bounded growti{with constantC), if there exists a real numbér > 1 and some
ce Gr}ﬂ(ﬂf, R) bounded above, such thigb 4 (¢, ) || < Ce. (¢, 7) for = <1,

e (c,d)-bounded growtl{with constantC), if it has c*-bounded growth, one has e
CgR(T, L(X)) and if there exists somé € C’rJ{,{R(’JT, R) bounded below, such that
[@at, D < Cealt,7) fore <z,

where® 4 (t, t) € L(X) is thetransition operatorof (2.1), i.e., the solution of the corre-
sponding initial value problenX? = A(r)X, X(t) = Iy in L(X) for T <¢. It is easy to
see thatd 4 has the properties
Pa(p4 (1), 1) =1y +p*(0A@) forteT, (2.2)
Dp(t, 1) =Du(t,5)Pa(s,t) forv=<s=<t (2.3)

(cf. [13, p. 55, Satz 1.3.9]) and in cades Ci¢gR (T, L(X)) one has the relatio@ 4 (f, 7) €
GL(X) and thdinear cocycle property2.3) holds for allr, s, ¢t € T.

Remark 2.1. (1) Without the condition that is bounded above, it would be possible to
show that every system (2.1) has-bounded growth (cf. [1]).
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(2) On discrete measure chains, the system (2.1y hamunded growth for a certain
if and only if A is bounded (cf. [13, p. 71, Satz 1.3.42]).

The following two lemmas can be shown using Gronwall’s inequality on measure chains
(see [2, p. 256, Theorem 6.4]).

Lemma 2.1. Assumec € @r}R(T, R) is discretely bounded below. Consider the linear
systemg2.1)and

x? = B(t)x (2.4)

with B € Cy(T, L(X)). If there exists a real number > 1 and a bounded functioa €
Crd(T, R) satisfying||®@(r, 7)|| < Ce (¢, 7) forT <t and||A(t) — B(r)|| <e(t) fort €T,
then

C?[e]

[®p@. 1) — @at, T)| < m“(" Tecrce(t,T) fort<t.

Proof. See [13, p. 73, Korollar 1.3.45(a)].0

Lemma 2.2. LetC1,C2 > 1 be reals and: @ﬁgﬂ(ﬁl‘, R). If the linear systemg&.1) and
(2.4)havec™-bounded growth with constan@ and C,, respectively, then

t
[1B(s) — As)]|
[®5(t, 1) — Palt, T)| < C1C2ec(t, z)/ To 2 6)es) As fort =<t

Proof. See [13, p. 74, Korollar 1.3.46(a)].0
A mapping of projections : T — L(X) is called aninvariant projectorof the linear
system (2.1), ifP (1)@ (¢, t) = Da(t, T) P(7) for <t holds, and in case
[Ix + 1 (HA®D)] |N(P(t)): N(P@®)) = N(P(p+(1))) (2.5)

is bijective for all right-scattered e T, we speak of aegular invariant projector Then
one can show that the restriction

DA, T):=Pa(t, DN Py : N(P(D) = (N(P®))) forT =<t

is a well-defined isomorphism, and we denote its inversehyz, ) (cf. [12, Proposi-
tion 2.3]). The linear system (2.1) is said to posses&xonential dichotom{ED for
short) witha, b, K1, K>, if there exists a regular invariant project®r. T — L(X") of (2.1)
satisfying

[®4, DP(0)| < Kieat,T) forr =1, (2.6)
[®a(t, D)[Ix — P(D)]| < K2ep(t,7) fore <, (2.7)

with real constant&1, K> > 1 anda, b € Gﬁ{,ﬁ(ﬂf, R), a < b. Note that on the time scale
T =R any invariant projector is regular.
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Example2.2. Leta, 8, h > 0 be reals withy < 8. On homogeneous measure chains with
w*(t) = h onT and for constant coefficient operatet&) = A onT, one has the following
situation:

(1) In caser = 0 (ODESs), the linear dynamic equation (2.1) has an ED wijtB, if the
spectrumy (A) < C is disjoint from the vertical strigh € C: o < 0 < B} in the complex
plane. The corresponding invariant projector is given by the spectral projection related to
the spectral s€ih € o (A): Nr <} (cf. [5, p. 72ff]).

(2) Analogously, in casé > 0 (OAES), the system (2.1) possesses an ED wijt, if
o(Iyx + hA) is disjoint from the annulug. € C: o < || < B}, and the invariant projector
is given by the spectral projection related{toc C: |A| < «}.

Remark 2.2. In our definition of an exponential dichotomy, the growth functiens are

not assumed to be constants. For ODEs this generalization dates back to [10]. A second
feature of our definition is that we do not insist on a hyperbolicity conditiondike0 <1 b.

Thus, one can speak ofmseudo-hyperbolic dichotomwhich makes the above notion
more flexible. Eventually, we point out again that Eq. (2.1) does not have to be regressive.
For OAEs this has its origins in [6, p. 229, Definition 7.6.4] and with a different, but
equivalent definition in [9].

The proof of the next lemma is too excessive to be presented here. It is based on the fact
that certain spaces of exponentially bounded functions are admissible for Eq. (2.1) (cf. [13,
p. 106, Satz 2.2.7]).

Lemma23.LetK1, K2, L1, L2 >1,€ >0bereals and:, b, ¢, d € G, R(T, R) such that
a < ¢ <d <b. Then under the assumptions

(i) the linear systeni2.1)possesses an ED with b, K1, K> and P,
(ii) the linear systeni2.4)possesses an ED withd, L1, Lo and Q,
(i) |A@) — B@)| <eforallzeT,

the invariant projectors satisfy
|P(t) — Q)| <emax{Li, L2}Cqp(c,d) forreT,

with

K K K K
Canlc,d) = —— 2 max{ ! 72}

Ld—aJ+Lc—aJ+ lc—al’ |b—d]
Proof. See [13, p. 108, Korollar 2.2.9].0

One of the main properties of an exponential dichotomy is its roughness. At the end
of this section we present a roughness theorem for exponential dichotomies.£fider
perturbations of dynamic equations on discrete measure chains, which is sufficient for our
purposes.
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Theorem 2.4. Let (T, <, i) be a discrete measure chain and consider a mapping
T— L(X). The linear dynamic equatior® = A()x onT is assumed to possess an ED
with @, b, K1, K2 and an invariant prOJect0|P whereb is bounded above. Moreover, let
éde C’ {R(’JT R) with @ < & <1d <1 b, and suppose the mappiy: T — £(X) satisfies

|B(t) — A(t)|| < € for r € T with a real number > 0 such thateCa’b(c, d) < 1. Then
A = B(t)x has an ED with?, d,
(c& 5@, ci)mc?))z ( Ca5(C, c?)mc?)) C 5@ T4 (d)
Ll = ’—” s L2 =1+ - = - =
1-€C; ;(c.d) 1-€C;;(c.d) ) 1—€C;;(C,d)

and an invariant projectorQ : T — £(X) satisfying
C; 5 J)F+(J)> C, 5@ 2T (d)

—— — forreT.
1-¢C, ;@ d) ) 1—€C, 5@ d)

[0@) —P@)| <e<1+

Proof. See [13, pp. 113-114, Satz 2.2.14]. However, the proof is very similar to the dif-
ference equations case presented in [9, p. 45, Satz 3.211].

3. Uniform exponential dichotomies

In this section we are confronted with exponential dichotomies on three different “time
scales,” namelZ, discrete and general measure chains. The subsequent lemma clarifies to
what extend the dichotomy notion for difference equations from [9, p. 7, Definition 2.1.2]
carries over to dynamic equations on discrete measure chains.

Lemma 3.1. Consider reaIsKl, K2, M1, M2 > 1, a discrete measure cha(m‘ =, i) with
= {tx }xez, functionsa, b € @ JQ(T R),a<b,a sequence\ 7 — L(X) and

R X A forl =k,
vakD) ’_{A(k—l)...A(l) for < k. 3.1
If P:7Z — L(X) is a sequence of projections such that

[, DP x| < K&z (e, 0)| POx|  forl <k, (3.2)

|wik,D[1x — PO]x| = Ky e; (0, ) ||[1x — PO]x| fori <k, (3.3)
andx € X, and if

Pk+DAK)=AKPK),  N(Pk+1)SR(AK), (3.4)

[P <My, |ix = PR < M2 (3.5)
for k € Z holds, then the linear system

A Ao, A) = —— (Atk) —Iy) forkez (3.6)
e (tc)

on T possesses an ED with b, constantsM1 K1, M2K» and the invariant projector® :
T — L(X), P(t) := P (k).
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Proof. Above all, we remark that the transition operatdrg of (3.6) and¥; satisfy
Dtk 1)) = Wi(k, 1) (cf. (2.2), (2.3)) for alll < k. Inductively one can see from (3.4)

that P : T — L£(X) is an invariant projector of (3.6) and to show thatis regular, we
verify that

[1x + 2*OAD] | 5y N (P @) = N (P(5+1))) 3.7)

is bijective for allz € T. For an arbitrary € T we chooseo € N(P (1)) such thaf/y +
1*()A(t)]&o = 0 and the estimate

K528 (51 (0). 1) 160l = K5 Y5 (5 0). 1) |[Ix — P(0)]éo |

3.3) B ~ 22 N
< | @z(p+0). 1)1y — PO]éo| = |[1x + 2* AWM ]é| =0

yields&p = 0. Therefore, the linear operator (3.7) is one-to-one. Due to the inclusion (3.4)
we know that for every € N'(P(5.(t))) there exists & € X with [Ix + i* (1) A(1)]&o
=&.Hencef = [Ix — P(p+(1))]E = [Ix — P(p+ ()]l 1x + " (1) A(t) 160 and because the

two expressions in brackets on the right-hand side commute due to (3.4), the operator (3.7)
is onto. It remains to prove that (3.6) satisfies the claimed dichotomy estimates w.r.t. the
invariant projectorP. Passing over to the least upper boundxfar X, ||x|| = 1, in (3.2)
immediately gives us

@t )P < K1é;(t, r)||P(t)H KlMlea(t 1) fort <t.

On the other side, since the operator (3.7) is bijective, we know that the extended transition
operator® ; (1, 7) : N (P (1)) = N(P (1)), 1 < , is well-defined (cf. [12, Proposition 2.3])
and for anyx € X we have

Ky ()| @51, 0)[Ix — P(D)]x||

(33 ~ _ ~ -
< @i 0[Ix — P(0)]D;(t, D[Ix — P(O)]x|| = |[1x — P(D]x||
for ¢ < 7. Passing over to the least upper bound overX’, ||x|| =1, finally gives

[®:t D[lx — P(D)]|| < K285t 0 |1 — P(t)“ < KaMoe;(t,7) forr=r,
and the proofis finished. o
The following result can be considered as a perturbation result, as well as a sufficient

condition for an exponential dichotomy on discrete measure chains. For difference equa-
tions it goes back to [6, p. 234, Theorem 7.6.8] and [16, Theorem 4].

Lemma 3.2. Consider a discrete measure chaiﬁ =, L), T= {tc ez, real number® <
61 <1 <6 K1, Ko >1, No> 0, functionsi, b € (? JR(T R), @ <1 b, whereb is bounded

above, sequences B:7 — L(X),and sequences of prolectloﬁg, P>:7Z — L(X) such
that

[An| <61(1+ A*(@)aw))lnll - forn e R(Py(k)), (3.8)
[Atg| = 62(1+ A* ()b IIEN for & e N'(PL(k)) (3.9)
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and|| Ly — P2(k)l| < K2, |A(k)|| < No,

Pok + DA(K) = A() Pr(k),  N(Pa(k+1) S R(A®)). (3.10)

|Pro)| < K1 [ Pa(b)] < K, (3.11)
for k e Z. For fixed functions, d € G, R(T, R) witha <1 ¢ < d <1 b we assume

[Ak) = B()| <ex, |Potk)— Prk)| <ex fork ez, (3.12)
where the realgg, €1 > 0 may satisfy

262K < min{l— 61, 6> — 1}, €C, ;@ d) <1 (3.13)

with the abbreviation

e 1 S 2¢2K1Ng
T\t T 1020k, )

Then the linear dynamic equation

x4 = B()x, B(t) := (Bk) — Iy), keZ,

w* (1)

on Tl: possesses an ED with d,Li,L> given in Theoren2.4, and an invariant projector
Q: T — L(X) such that

C-:C dT(d)\ C 7(¢,d)°T(d
5@ )Ty ( )) w@dPrd

(1) — Pa(k) | <el1 5 5
|0t — P | 6(+1_6C&’5(5,d) 1—€C, ;. d)

Proof. The crucial object in our considerations is the operator sequencgé — L(X),
I (k) := Po(k)Py(k) + [Ix — P2(k)][Ix — P1(k)], which satisfies

Po(k)T (k) = Pa(k)? Pr(k) + [ Po(k) — Pa(k)?][Ix — Pr(k)]
= Po(k) Pr(k)? + [Ix — P2(0)][ Pak) — PL(k)?] = T (k) Pok)  (3.14)
onZ. Moreover, one has

l1x =T 0| < ||Prk) — o) | Pro)|| + | P2k ||| Patk) — Pock) |

(3.11) N A 3.12
< 2K1| Patk) — Prk)|| < 22Ky forkeZ, (3.15)

and consequently the linear operafofk) € L(X) is invertible due to (3.13) and the Neu-
mann series. This guarantees

Ir()| <1+2e2Kk1, | Ik~ <[1-2e2K1]™ fork e Z, (3.16)
and the identity (3.14) gives US (k)" Po(k) = P1(k)I" (k)= on Z. For the mapping’ :
7 — L(X), C(k) :== A(k)I" (k)" we have

Potk + DE) 2 At Py M (k)L = C (k) Patk)  onZ,

and the definition ofC(k) € L(X) leads toR(C (k)) = R(A(k)). Additionally, (3.10)
implies N (P2(k + 1)) € R(C(k)) for all k € Z. With arbitraryn € R(P2(k)) we get
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Pik)T (k)" Yn= (k)" LPx(k)n = I'(k)~1n onZ, hencel (k)~1n € R(Pi(k)) and there-
fore due to (2.2), (2.3), applied &, the estimate

[Ctn| = ||A(k)r(k) nn elea(tm,tk)nr(k) |
(326)

1- 262K1
Mathematical induction over > [ implies

5 (313
ei(tern, t)lnll < ez(tera, t)linll  fork e Z.

. 23) .
[@ek,DP2Dx| < ea(,n)| Pa(Dx]| forl <k, xeX,
with the operato® (k, [) € L(X) given by (3.1), and similarly one derives

|watk. D[ Ix — P2D]x| = &3t 1) | [ 12 — P2D)]x||  for ! < k.

Thus, the assumptlons of Lemma 3.1 with = K1, M> = K» are satisfied for the se-
quencesf? Po:7Z — L(X), and the linear dynamic equation

4 =C()x, Cty) =

ll*tk) (Ck)—1y) forkeZ (3.17)

qn’ﬁ‘ consequently possesses an ED \iith, K1, K> and the invariant projectd?(tk) =
P>(k), k € Z. Due to the estimate

@) C () — B(tk)|| ||A(k)1“(k)* — A + |Atk) — B |

2 . 1
< la®]]re HHIx-F(k)H+61

(3.15) 16) 2¢2K1Ng

< 2eKi||AW)|| k)~ 1H+61 < T- 2k, "€ forkeZ

and the inequality (3.13), one can finally apply Theorem 2.4 to (3.1).

Our last preparation concerning discrete measure chains provides another sufficient con-
dition for an exponential dichotomy on quite general measure chains.

Lemma 3.3. Consider realsO < ho < h, [u*] < h, such that(T, <, u) is a (ho, h)-

measure chain, a real’> > 1 and functions:, ¢2,d, d> € @ 4R(T,R), d bounded above,
d discretely bounded below ard< d, sup,.cr &,(s) (¢ (s)) < infyeT &, (5)(d(s)), as well
as a linear system

4= B(r)x (3.18)
on T with B € CgR(T, L(X)). Under the assumptions
(i) the systen(3.18)has(cz, d2)-bounded growth with constadb,

(i) there exist real numbergy, L, > 1, such that for any discrete measure chain=
{tthez € S}, (T) the equation

- - 1
A=B()x,  Bt)i=——(Pptit1. 1) — Ix), keZ,
M1, T)
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onT has an ED with?, d : T — R,

et =1 fir1 1) — 1
) = e =1 g ealli i)

w k1, B) wtes1, )

L1, Lz and an invariant projectoQ,, : T — L£(X),
the systen(3.18)possesses an ED withd : T — R,
L_([) = ﬁ,u*(t) (Supgu*(s)(o(s))>, C?([) = ﬁ,u*(t) (;2’.{1‘5’“*(8) (d(s))),

Ly:=L1C2E] o (ho. ), Lo:=LyC2ET_ (ho,h) (3.19)

ded;

and the invariant projecto : T — L(X) given byQ(¢) := 0;(1).

Proof. Since the function/ is bounded algove, and sinde is discretely bounded be-
low, it is not difficult to verify thatc2 © ¢, d © do are bounded above. Therefore, using

Lemma 1.1(b) we obtalmczec(ho, h), E;ed (ho, h) < oo. Now letro € T be arbitrar-

ily given and we choose any discrete measure chaia {f}icz € Sh (T) like in as-
sumptlon (ii) (such a measure chain exists because of [13, p. 2 Lemma 1.1. 7]). Then
&de @ R(T IR), and one can easily shai d. In addition, we have

Tl

[ seoew) as

73

IN(1+ pte41, 0)C(1))  INec(tyt1, i) 12) 1
w(tk41, ) (i1, 1) M(tk41, 1)

Tk+1
SUpE, c(t)
(tk+1,tk) / pé“ ©
= supgﬂ*(t)(c(t)) fork e Z,
teT

and accordingly

IN(L+ p (s, 1)EW))
. S S e0)- 3.20
keZ I’L(tk-‘rl’tk) lETpé,u ([)(C( )) ( )

Now define the mappin@,, : T — L(X), Py, (1) := Pp(t, to)Q,o(to)cDB(to, 1), which sat-
isfies Py, (1) = Py (1)?, Pr(1)@p(t, 10) = @p(t, 10) Py (to) on T (cf. (2.3)); for this reason,

Py, is also an invariant projector of the linear system (3.18). As a result of the identity
Ly + w(tesr, i) B(tx) = ®p(tk41, tx) OnZ, the mappingd : T — L£(X) is regressive and
one inductively obtain® ; (1, t;) = ®p (1, 1;) for k,1 € Z. With a givent € T, 1o < t, we
choosek € Ng maximally such thafy < 7 < ¢ holds, and the assumptions (i) and (ii) imply

| @Bt 10) Py (10) || ||a>3(r 1| | @5tk 10) Oy (10) |

= B(t, 1 7Tk, 10) Oy (10) || < Caec, (2, tr) L1ez (4, 10).
| @5, 1)@t t0) O (t0) | < Caecy (t, 1) L1éz (1. to)
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On the basis of Lemma 1.2, the monotonicity propertie8,p{;) : R — R,+1), t € T, as
well as (3.20), this leads to

3
| @B (1, 10) Pot0)| < L1Coecy(t, i)ez(tk, 10) < L1Cecyoi(t, tr)ec (1, 10)

< L1C2E oo (ho, ez (t, 10) forig <.

Consequently, the first dichotomy estimate for (3.18) is shown. To prove the corre-
sponding estimate in negative time, we fixx 1o and choosd < 0, [ € Z, minimally

with ¢ < 1 < 19. Analogously we get from Lemma 1.2 th® g (7, 10)[1x — Piy(t0)]]l <
LZCZE:{GdZ(ho, h)e;(t, o) for t < to. Hence the proof is finished, if one defines the invari-
ant projector for (3.18) by : T — L(X), Q) := P, (¢). O

Now we arrive at the main result of this paper. In case of infinite dimensional differential
equations it goes back to [6, pp. 240-241, Theorem 7.6.12]. However, [16, Theorem 1]
contains a more accessible approach for ODE&n

Theorem 3.4. Let Q denote a nonempty set and consider the mappiagsq) <
C(T, L(X)), q € Q, B e CyR(T, L(X)), realsC1, C2, K1, K2 > 1 and functionsu, b,
c1,c2,do € Gﬁ{,ﬁ(']r, R), a < b, b bounded above;s, ¢2 discretely bounded below, such
that for anyq € Q the following conditions hotd
() The linear system
x2 = A(t, ¢)x (3.21)

haScIr-bounded growth with constagt,

(ii) thelinear syster(B3.21)possesses an ED with b, K1, K> and the invariant projector
P, T — L(X),

(iii) the linear system

x4 = B(f)x (3.22)

has(cz, d2)-bounded growth with constarb.

Moreover, for arbitrarily fixed functions, d @?&R(T, R) with
a<lc<d<b, SUPE i (s) (¢ (5)) < Inf &,2(5)(d (), (3.23)
seT seT

we choose realb < hg < i, [u*] < h so large that

(iv) K1Kz < Ej o, (ho, h), K1 < E g,(ho, h) andKz < Ejq4(ho, h),

(v) (T, =, ) is a(hg, h)-measure chain.

Then there exist reaksy, €1 > 0, depending otko, 4, a, b, ¢, c1, ¢2,d, d2, C1, C2, K1, K>,
such that under the additional assumption

(vi) there exists a mapping, : T — Q with
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|A(t. g«(r)) = B@)| <eo fort,teT, 0< u(t, ) <h, (3.24)
| Pgooy(®) = Ppyy@)|| < er fort,teT, ho<p(t, 1) <h, (3.25)

also the linear dynamic equati¢8.22)possesses an ED withd : T — R givenin(3.19)
constantd.y, Lo > 1 and an invariant projectoQ : T — L(X), satisfying

o) — Ppy® | <er+ | Q) — Ppry @) || (3.26)
fort,7 €T, ho < u(t,t) <h.

Remark 3.1. (1) In general we have the inequalitiesd ¢, d < d and thus the exponen-

tial dichotomy with growth functions, 4 guaranteed from Theorem 3.4 is weaker than a
dichotomy withe, d. Nevertheless, one has= ¢, d = d for the special case of the time
scalesT =RorT = hZ, h > 0, and constant functiorsd, like usually assumed for ODEs

and QAEs. In particular, under these assumptions the right inequality in (3.23) becomes
redundant. Moreover, féf = hZ, h > 0, we can replace hypothesis (v) by the inequality

h < ho, while (v) can be dropped in case Bf=R. A similar remark also holds for the
subsequent Corollary 3.6.

(2) Even in the special case of ODEs, our Theorem 3.4 generalizes [16, Theorem 1]
with regard to the following aspects: On the one hand, Theorem 3.4 holds true in infinite
dimensional Banach spaces, we only need that (3.21) has bounded growth in forward time,
and finally, beyond the inequalities (3.23) we do not assume any hyperbolicity conditions
on the growth functions, d.

(3) For a seQ with exactly one element, the inequality (3.25) is redundant and one can
consider Theorem 3.4 as a roughness theorem for exponentially dichotomous systems with
bounded growth. However, on discrete measure chains, Theorem 2.4 is more general then
Theorem 3.4.

(4) In case of homogeneous time scales it is possible to derive a relatively handy explicit
estimate for the maximal size @, €1 in terms of the growth constants for (3.21), the
dichotomy data for (3.22), as well &, » > 0. This can be found in [13, pp. 125-126,
Korollar 2.3.10] or in [14] for Q\Es.

Proof of Theorem 3.4. Let @4(-; q), ¢ € Q, denote the parameter-dependent transition
operator of (3.21). We subdivide the present proof into four steps:

(I) Since b and, by virtue of (3.23) also the growth functiehe C{R(T,R), is
bounded above, we obtain thatd are discretely bounded above and the inequalities
0<b6a,0<xc6a, 0<xbod. Due to Lemma 1.1(a) one can chodsge> 0 so large
that the assumption (iv) is satisfied. Eventually, we pick reatsé < 1 < 6o, such that
(62/01)K1K2 < Eb_ea (ho, h) holds.

(I Let s € T be arbitrary, but fixed. Then, due to assumption (ii), the linear dynamic
equation

x4 =A(t,q*(s))x (3.27)

has an exponential dichotomy with an invariant projed®gy) : T — L£(X), which in
particular satisfies the regularity condition (2.5) BhnHence [12, Proposition 2.3] guar-
antees thatb (¢, s; G5 (IN (P, ) (5)) SN (Py(5)(8) = N(Py, (1), s < t, is bijective.
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Thus, for anyé € N'(P,,(5(1)), s < t, there exists a pre-imag® € N (P, (5)(s)) with
& = D4(t, 5; g+(s))&0 and consequently we have the inclusion

N (Py5)() SR(Da(t,5594(5))) fors =<t (3.28)

(1) By assumption (v) we know thatT, <, u) is a (ho, h)-measure chain, and there-
fore for anyrg € T we get a dlscrete ‘measure chdlie= {tk}kez € S (’Jl‘) We are going to
verlfy that the operator sequencAesB Pl, P2 7. — L(X), A(k) = <1>A (tk+1, tr; g« (tr)),
B(k) := Dp(ter1, t), Pik):=P L0 (), Po(k) = P, (1) (1) satisfy the assumptions
of Lemma 3.2. Obviouslyﬁl(k) ﬁz(k) € L(X) are projections for every € Z. Further-
more, we havePy(k + 1) A (k) = A(k) P1(k) for k € Z and due to the inclusion (3.28) also

N (Pa(k + 1)) € R(A(k)) for k € Z. Now we define the function® 5 : T — R,
K1eq (s, tx) — - tett, tx) — 02K

) = 1€aq (tie+1, %) 17 Bie) = ep(tiy1, k) — 02K2 fork e Z,
01 (Tr+1, 1) 2K (tr+1, 1)

which satisfya, b € @ R(T R), as well asi < b. Sinceb is bounded above, Lemma 1.1(b)
guarantees thatis bounded above. From assumption (ii) and

[Adon| = || Atk Prton| = | @4 (i1, 15 4 10)) Py @ |
(2.6) N
< Kieqa(ey1. 1) Inll- forn e R(Pu(k)),

€I =||Pa(tk, tkr1: 4= @)) Pa (k1. 1 45(0)) [ Ix — Py ) J€ ||
= | Pa(tr. i1 g (10)) [ L — Py k1) | P (tkr 1. 1 g2 (1) & |

(2.7) ~ ~
< Koep(tr, tiy1) |AGOE| for & e N'(Pr(k)),

the above constructlon of, b yields ||A(k)n|| < 11 + plti1, tato)lnl for n €
R(PL(K)), |AKEN = 02(1 + wltisr. )b (1)) ||| for & € N'(Pu(k)). Since the assump-
tion (ii) |mpl|es for anyq € Q that || P,(s)|| < K1, [l Ix — P;(s)|| < K2 for s € T, one

directly has||P1(k)|| < K1, |1x — Po(k)|| < Ko, | P2(k)|| < K1 for k € Z. Finally, from
assumption (i) we get

JAW)|| = | ®a(tks1. ks () | < Creey (trra, 1) < C1E] (ho. )
for k € Z, and assumption (iv) together with Lemma 2.1 leads to
[Ak) — B = | ®Paltesr. tx: () — Potesr. )|
324 Ceo
I'_(c1+€0C1)

aSNWE'~|| a‘&jlﬁl(k) Pz(k)|| =Py t)t) — Ppoai_p@) |l < e1 for k € Z (cf. (3.25)). Now
¢, d:T— R,

hE} | c,(ho,h) forkeZ, (3.29)

(a1, ) — 1 ~ tha1, ) — 1
(1) = ec(Tr+1, 1) Cd) = eq (tk+1, t)  kez
M (41, B) M (te+1, )
define functions |r€ JQ(T R), which satisfya <1 ¢ < d < b by means of the assump-
tion (iv).
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(IV) As a result of step (lll), for sufficiently small realsp, e1 > 0, one can apply
Lemma 3.2 and therefore the system

A =Bnx, B = ;(é(k) —1Iy), keZ,
p(tet 1, 1)

onT has an exponential dichotomy withd, L1, L» > 1 and an invariant project@,0 :

T — L£(X). The estimate (3.23) implies thatis bounded above and sinege T, as
well as the discrete measure chéire SZ (T) had been arbitrary, Lemma 3.3 implies an
exponential dichotomy of the linear system (3.22)arUltimately, the estimate (3.26) is
a trivial consequence of (3.25).0

We have formulated hypothesis (vi) of Theorem 3.4 using the coefficient mappings
of (3.21) and (3.22) to increase its applicability. In some situations it is desirable, though, to
assume conditions on the transition operators otthelistance of the two linear systems.
Corollary 3.5. The assumed inequali¢@.24)can be replaced by

|@a(t. 75 q:(0) = Pp(t. )| <eo fore,zeT, O< pt, o) <h, (3.30)

or, in casec; = ¢2, by

As<ey fort,7eT, 0< u(t, 1) < h, (3.31)

t
/ |ACs; gi(s)) — B(s)|
1+ p*(s)cals)

without changing the conclusion of Theor8m.

Remark 3.2. The three papers [8, Theorem 3.1], [11, Theorem 2] and [18, Corollary 2]
prove roughness theorems for an exponential dichotomy of finite dimensional differential
equations under assumptions similar to (3.30). In this situation, Theorem 3.4 is sufficient
for [8, Theorem 3.1] and equivalent to [11, Theorem 2], like shown in [15].

Proof of Corollary 3.5. Under each assumption, either (3.30) or (3.31), one is able to
derive the estimate (3.29) in the proof of Theorem 3.4. Actually we have

R . (3:30
|Ak) = Btk | = | @a(tks1, ks g(0)) — P12, 10)| < €0 forkeZ,
or using Lemma 2.2, we obtain

[Ak) = BW| = | Paltesr. tx: () — Potesr. ) |

(55 g«(s)) — B(s)|
1+ p*(s)ca(s)

Tk+1
A
< C1Czecq (trg1, 1)
Tk

(3.31)
< €C1C2E} (ho, h)

1

for k € Z, and therefore only the condition determining the sizegof 0 changes, but not
the assertion of Theorem 3.4



C. Potzsche / J. Math. Anal. Appl. 289 (2004) 317-335 333

At first glance the technical and abstract Theorem 3.4 might be a little hard to grasp.
For that reason we apply it to derive a result showing that the notion of an exponential
dichotomy is robust under slowly varying coefficients. More precisely, this result essen-
tially states that, if an exponentially dichotomous system depends Hélder-continuously
on a fixed parameter, then this parameter can be replaced by a time-dependent function
possessing a sufficiently small global Holder constant, without destroying the ED of the
dynamic equation.

Coroallary 3.6. Consider some metric spa€€, d), an rd-continuous mapping : T x
Q— LX), realsK1,K2>1,C1,C2, L >0, a, B € (0, 1] and functions:, b, c1, ¢2,d> €
CLR(T,R), a < b, b bounded above, such that for agye Q the following conditions
hold:

() We have the Holder estimate
|A(t,q) — At 9)| < Ld(q.)* forteT, geQ, (3.32)

(i) the linear syster(B.Zl)hasQ—bounded growth with constant,
(iii) thelinear systen(B.21)possesses an ED with b, K1, K, and the invariant projector
P, :T— L(X).

Moreover, for arbitrarily fixed functions, d € C’rJ{,{R(’JT, R) like in (3.23) we choose reals
0 < ho < h, [n*] < h so large that

(V) K1K2 < E, o, (ho, h), K1 < E o, (ho, h) andKz < E, ,(ho, h),
(v) (T, =, ) is a(hg, h)-measure chain.

Then there exist reals, €1 > 0, depending only ohg, i, a, b, ¢, d, c1, c2,d2, C1, C2, K1,
K>, such that for any mapping. : T — Q satisfying
(vi) the Holder condition

d(g+(0), ¢«()) <O|ut, v)|" fors,zeT, (3.33)

whered > 0 satisfiesL0*h*? < eg, LO*h*F max{K1, K2}Cy p(c,d) < €1,
(vii) the linear system
x4 = A(t, q*(t))x (3.34)
has(cz, d2)-bounded growth witlt2,

also the linear systerf8.34)has an ED witht, d : T — R given in(3.19) L1, L > 1and
an invariant projectorQ : T — L(X).

Remark 3.3. (1) The property thag, : T — Q changes slowly in time has been formu-
lated using the Holder condition (3.33). In case of a Banach s@aard a differentiable
mappingq., one can use the mean value theorem on measure chains (cf. [7, pp. 16-17,
Corollary 3.3(i)]) to show that (3.33) is satisfied with= 1, if the derivativeg? : T — Q
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has sufficiently small values. This is usually fulfilled in applications from singular pertur-
bation theory (cf. [13, pp. 219-226] for dynamic equations on measure chains, or [14] for
OAES).

(2) One can also use Corollary 3.6 as a criterion for an exponential dichotomy of the
linear system (2.1). In fact, one assumes that

e h < p*(t) < H forall 1 € T with certain reals:, # > 0,
o there exist real& < g, a € R, such that the spectrum df(zp) € L(X), 1o € T, can
be decomposed into closed disjoint sefé), o2(fo) with

sup fgri<a<pB<_ inf Ma forreT,
rea(tg) Aea(to)

and gets from [13, p. 97, Satz 2.1.22] that the time-invariant systehs A(to)x, to € T
fixed, possess an exponential dichotomy. Here
|14tz -1 .
Rz = lim & z€C, with 1+ hz #0,
N\ t
is the Hilger real part Now the above Corollary 3.6 wit® = T, the metricd(¢, 7) :=
|z, 7)|, as well agy,(¢) := ¢, implies that (2.1) possesses an exponential dichotomy under
the assumptiofiA(r) — A(z)| < L|u(t, t)|* for ¢, T € T and a sufficiently small > 0.

Proof of Corollary 3.6. We successively verify the hypotheses of Theorem 3.4 applied
to the mappingB(r) := A(z, g«(¢)). Due to the assumption (vi) we know that: T — O

is continuous and consequeny: T — L(X) is rd-continuous. The assumptions (ii) and
(vii) imply that the two systems (3.21) and (3.34) have bounded growth, and (vii) includes
that (3.34) is regressive. In order to derive the inequalities (3.24) and (3.25), we pick

T arbitrarily, use (3.32), (3.33) and arrive at

[A(t, g (1) — A(t, g5 (t2)) | < LO“R*P  fort e T, 0< pu(tr, 12) < h. (3.35)

Settingty, = ¢, r = 1 yields (3.24). Using the hypothesis (iii) we know that the linear
systemx? = A(t, g«(11))x has an exponential dichotomy with b, K1, K> and P, (1)
Similarly, x2 = A(z, g«(t2))x has an exponential dichotomy with the invariant projector
P, ), and weaker growth functions d. The relation (3.35), as well as Lemma 2.3 imply
for 11 =1t, rp = 7 the estimate

| Py.ioy(0) = Pyioy ()| < LO*h*P max( K1, K2}Cap(c, d)

fort,t €T, ho < u(t, v) < h, and using Theorem 3.4 we obtain the assertian.

References

[1] B. Aulbach, S. Hilger, Linear dynamic processes with inhomogeneous time scale, in: G.A. Leonov, et al.
(Eds.), Nonlinear Dynamics and Quantum Dynamical Systems, Akademie-Verlag, Berlin, 1990, pp. 9-20.

[2] M. Bohner, A. Peterson, Dynamic Equations on Time Scales—An Introduction with Applications, Birk-
héuser, Boston, 2001.



C. Potzsche / J. Math. Anal. Appl. 289 (2004) 317-335 335

[3] W.A. Coppel, Dichotomies in Stability Theory, in: Lecture Notes in Mathematics, Vol. 629, Springer-Verlag,
Berlin, 1978.
[4] C.V. Coffman, J.J. Schaffer, Dichotomies for linear difference equations, Math. Ann. 172 (1967) 139-166.
[5] J.L. Dalecki, M.G. Krein, Stability of Solutions of Differential Equations in Banach Space, in: Translations
of Mathematical Monographs, Vol. 43, American Mathematical Society, Providence, RI, 1974.
[6] D. Henry, Geometric Theory of Semilinear Parabolic Equations, in: Lecture Notes in Mathematics, Vol. 840,
Springer-Verlag, Berlin, 1980.
[7] S. Hilger, Analysis on measure chains—a unified approach to continuous and discrete calculus, Results
Math. 18 (1990) 18-56.
[8] R.A. Johnson, Remarks on linear differential systems with measurable coefficients, Proc. Amer. Math.
Soc. 100 (1987) 491-504.
[9] J. Kalkbrenner, Exponential Dichotomy and Chaotic Dynamic of Noninvertible Difference Equations, Ph.D.
thesis, University of Augsburg, 1994, in German.
[10] J.S. Muldowney, Dichotomies and asymptotic behaviour for linear differential systems, Trans. Amer. Math.
Soc. 283 (1984) 465-484.
[11] K.J. Palmer, A perturbation theorem for exponential dichotomies, Proc. Roy. Soc. Edinburgh Sect. A 106
(1987) 25-37.
[12] C. Potzsche, Exponential dichotomies for linear dynamic equations, Nonlinear Anal. 47 (2001) 873-884.
[13] C. Pétzsche, Slow Fiber Bundles of Dynamic Equations on Measure Chains, Ph.D. thesis, University of
Augsburg, 2002, in German.
[14] C. Potzsche, Slow and fast variables in nonautonomous difference equations, J. Difference Equations Appl. 9
(2003) 473-487.
[15] K. Sakamoto, A remark on perturbation theorems for exponential dichotomies, private correspondence,
March 2000.
[16] K. Sakamoto, Estimates on the strength of exponential dichotomies and application to integral manifolds,
J. Differential Equations 107 (1994) 259-279.
[17] R.J. Sacker, G.R. Sell, A spectral theory for linear differential systems, J. Differential Equations 27 (1978)
320-358.
[18] N. Van Minh, Spectral theory for linear non-autonomous differential equations, J. Math. Anal. Appl. 187
(1994) 339-351.



