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Abstract

The study by Yudovich [V.I. Yudovich, Example of the generation of a secondary stationary or periodic
flow when there is loss of stability of the laminar flow of a viscous incompressible fluid, J. Math. Mech.
29 (1965) 587–603] on spatially periodic flows forced by a single Fourier mode proved the existence of
two-dimensional spectral spaces and each space gives rise to a bifurcating steady-state solution. The inves-
tigation discussed herein provides a structure of secondary steady-state flows. It is constructed explicitly by
an expansion that when the Reynolds number increases across each of its critical values, a unique steady-
state solution bifurcates from the basic flow along each normal vector of the two-dimensional spectral space.
Thus, at a single Reynolds number supercritical value, the bifurcating steady-state solutions arising from
the basic solution form a circle.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Navier–Stokes equations mathematically model viscous fluid flows and from this theoretical
base it has been proved (see Krasnoselskii [7], Rabinowitz [15], Nirenberg [11]) that secondary
steady-state bifurcation flows arise from the basic flow when the Reynolds number varies across
critical values under the condition that the corresponding real critical eigenvalue is an odd al-
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gebraic multiplicity. In Taylor (see [4,13]), Bénard (see [5,14]) and Kolmogorov (see [2,10,17])
problems, there exist a flow invariant space, in which the corresponding real critical eigenvalue
has a single algebraic multiplicity or the eigenvalue is simple, and thus a bifurcating steady-state
solution arises.

In this study, we examine the bifurcation problem of the Kolmogorov model [2] in which a
spatially periodic flow is forced by a single Fourier mode. The model is expressed in the dimen-
sionless form of the Navier–Stokes equations

∂tu − �u + R u · ∇u + ∇p = (siny,0),

u|x=0 = u|x=2π/α, u|y=0 = u|y=2π ,

∇ · u = 0,

2π∫
0

2π/α∫
0

udx dy = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(1)

in the domain Ω = (0,2π/α)×(0,2π) for 0 < α < 1, where the Laplacian operator � = ∂2
x +∂2

y ,
the gradient operator ∇ = (∂x, ∂y), u = (u1, u2) and p denote the unknown fluid velocity and
pressure, and R represents the Reynolds number controlling the dynamical behaviour of the fluid
motion.

Yudovich [17] demonstrated that the critical eigenvector spaces of the linearized equation
of (1) are two-dimensional and established a flow invariant subspace of (1), in which the reduced
spectral problem has a simple critical eigenvalue. He proved the existence of a bifurcating solu-
tion using the Krasnoselskii theorem [7]. However, the dynamical behaviour close to a bifurcation
point still remains unclear as discussed by Kirchgässner [6] in a review of bifurcation analyses
associated with Navier–Stokes flows. That is, by using some invariant properties inherent to the
Navier–Stokes equations, one reduces the underlying space until the critical eigenvalue is simple.
Although such a method can give a rich set of solutions, any knowledge of their inter-relationship
is lost.

It is the purpose of this investigation to construct the secondary flows with respect to a
two-dimensional critical eigenvector space, of which each unit vector gives rise to a unique bifur-
cating steady-state solution, and to understand the inter-relationship of the bifurcating secondary
flows. It is demonstrated that the bifurcation steady-state solutions form a circle in the mathemat-
ical space at a supercritical value of the Reynolds number. It is verified that each critical eigenvec-
tor generates a flow invariant space, in which the critical eigenvalue is simple. We can therefore
construct the bifurcating solutions by an amplitude expansion technique as discussed in [6].

Recently, an analysis on the existence of bifurcating attractors has been established by Ma and
Wang [8] with respect to any dimension of eigenvector spaces. This theory might be applicable
to the present fluid motion problem. However, the approach of our study is rather different to the
analysis of Ma and Wang [8].

2. Statement of the main result

For convenience, we apply the curl operator to (1) to obtain the vorticity equation

∂t�ψ − �2ψ + RJ(ψ,�ψ) = cosy, (2)
2π∫ 2π/α∫

ψ dx dy = 0 (3)
0 0
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together with the periodic boundary condition

ψ |x=0 = ψ |x=2π/α, ψ |y=0 = ψ |y=2π . (4)

Here J (ϕ,φ) = ∂yϕ ∂xφ − ∂xϕ ∂yφ is the advection operator, ψ = ψ(x, y, t) is the stream func-
tion and the fluid flow velocity is defined by

u = (∂yψ,−∂xψ).

We see that u0 = (siny,0) is a solution of (1) giving ψ0 = − cosy, the solution of (2)–(4).
It is convenient to use the real Hilbert space

H 4 = {
φ ∈ L2(Ω); �2φ ∈ L2(Ω), φ satisfies (3), (4)

}
with ‖φ‖H 4 = ∥∥�2φ

∥∥
L2

,

the L2 inner product

〈ψ,φ〉 =
2π∫

0

2π/α∫
0

ψφ dx dy,

and the Lq -norm

‖φ‖Lq =
( 2π∫

0

2π/α∫
0

|φ|q dx dy

)1/q

.

The substitution of ψ = ψ0 + φ(x, y)etρ into (2)–(4) and the omission of the nonlinear term
produce the spectral problem described by

LRφ = ρ�φ, LRφ ≡ �2φ − R siny(� + 1)∂xφ, (5)

of which, the conjugate spectral problem is expressed as

L∗
Rφ∗ = ρ̄�φ∗, L∗

Rφ∗ ≡ �2φ∗ + R(� + 1)∂x

(
sinyφ∗).

The main result of this study reads as follows:

Theorem 2.1. For real value 0 < α < 1 and integer

mα = max{k � 1; kα < 1},
Eqs. (2)–(4) admit exactly mα circle bifurcation points

(ψ0,Rkα) for k = 1, . . . ,mα on
{
(ψ0,R); R > 0

}
.

The critical values of the Reynolds number satisfy the property√
2

1 − α2

(
1 + α2)< Rα < · · · < Rmαα, lim

α→0
Rα = √

2, lim
α→0

Rmαα = ∞,

and the circles of bifurcating steady-state solutions

{ψ = ψkα,θ,R; 0 � θ < 2π}
at a supercritical Reynolds number value R are locally represented by the expressions
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ψkα,θ,R = ψ0 + εφkα,θ +
∞∑

n=2

εnφn,kα,θ ,

1

R
= 1

Rkα

+
∞∑

n=1

ε2nλ2n,kα (6)

for small ε > 0, such that

λ2,kα < 0,
〈
ψkα,θ,R,�2φ∗

kα,θ

〉= ε
〈
φkα,θ ,�

2φ∗
kα,θ

〉 �= 0,

where numbers λ2n,kα are independent of θ , functions φn,kα,θ ∈ H 4,

|λ2n,kα| � c2n, ‖φn,kα,θ‖H 4 � cn for some constant c,

and φkα,θ and φ∗
kα,θ are the critical eigenvectors defined by the spectral problems

LRkα
φkα,θ = 0,

φkα,θ = cos(kαx + θ) +
∞∑

n=−∞, n�=0

ηn,kα cos(kαx + ny + θ) ∈ H 4 (7)

and

L∗
Rkα

φ∗
kα,θ = 0,

φ∗
kα,θ = cos(kαx + θ) +

∞∑
n=−∞, n�=0

η∗
n,kα cos(kαx + ny + θ) ∈ H 4 (8)

with ηn,kα and η∗
n,kα independent of θ .

The expression in (6) with λ2,kα < 0 implies the circle bifurcation is supercritical. That is,
the circle of steady-state solutions branches off the basic solution ψ0 when R increases across
a critical value Rk,α . The constants λ2n,kα and the functions ψkα,θ,R are defined inductively in
Section 4.

The existence of the mα critical values {Rkα}mα

k=1 was derived by Yudovich [17]. He showed
that the critical eigenvector space with respect to each Rkα is two-dimensional which he further
reduced to a simple flow invariance space of even functions ψ(x, y) = ψ(−x,−y). Therefore
Yudovich [17] proved the existence of a bifurcating steady-state solution by using the Krasnosel-
skii theorem [7]. By examining the steady-state solutions in this even function space, Okamoto
and Shoji [12] displayed computational results illustrating the occurrence of two steady-state
solutions bifurcating from (ψ0,Rkα) supercritically, and Matsuda and Miyatake [9] proved the
existence of two steady-state solutions branching off (ψ0,Rkα) supercritically. The existence of
four steady-state solutions branching off (ψ0,Rkα) is also implied from the study of Chen and
Wang [3].

In fact, if we define the projection operator

Qkαψ = 〈ψ,�2φ∗
kα,0〉

〈φkα,0,�2φ∗
kα,0〉

φkα,0 + 〈ψ,�2φ∗
kα,π/2〉

〈φkα,π/2,�2φ∗
kα,π/2〉

φkα,π/2

mapping H 4 onto the two-dimensional critical eigenvector space

span{φkα,0, φkα,π/2},
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Fig. 1. Schematic circle bifurcation diagram over the critical two-dimensional eigenvector space span{φkα,0, φkα,π/2}
for k = 1, . . . ,mα .

we produce the circles

Qkαψkα,θ,R = εφkα,θ = ε cos θφkα,0 + ε sin θφkα,π/2 for 0 � θ < 2π,

or

〈Qkαψkα,θ,R,Qkαψkα,θ,R〉 = ε2‖φkα,0‖2 for 0 � θ < 2π.

Observing that λ2,kα < 0 and 1/Rkα − 1/R = O(ε2), we may write

ε = O

(√
1

Rkα

− 1

R

)
.

Thus the circle bifurcation diagram illustrated in Fig. 1 is produced for any integer k = 1, . . . ,mα .
In fact, the mα circles of bifurcating steady-state solutions

{ψkα,θ,R; 0 � θ < 2π}, k = 1, . . . ,mα,

exist globally for Rkα < R < ∞ due to Rabinowitz global bifurcation theorem [15].
Based on spectral analysis and preliminary discussions in Section 3, we prove Theorem 2.1

and discuss the global branches of bifurcating circles of steady-state solutions in Section 4.
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3. Preliminary discussions

3.1. Spectral problem

The spectral problem (5) was solved by Meshalkin and Sinai [10] and Yudovich [17]. By
using a continued fraction approach [10], Yudovich [17] showed exactly mα eigenvector spaces,
which are two-dimensional. Meshalkin and Sinai [10] showed the nonexistence of nonreal critical
eigenvalues. More exactly, their study of (5) can be expressed as follows.

Lemma 3.1 (Meshalkin and Sinai [10]). For real value α � 0, the critical spectral problem
written in the form

LRφ = ρ�φ, 
ρ = 0,

φ = cos(αx) +
∞∑

n=−∞, n�=0

ηn,α cos(αx + ny),
∑
n�=0

|ηn,α|2 < ∞

⎫⎪⎪⎬
⎪⎪⎭ (9)

has no solution provided that �ρ �= 0. Moreover, Eq. (9) has no solution provided either α = 0
or α � 1.

Based on a continued fraction approach [10], Yudovich [17] derived the result.

Lemma 3.2. For real value 0 < α < 1, Eq. (9) with ρ = 0 has a unique solution (φ,R) =
(φα,Rα), which satisfies〈

φα,�2φ∗
α

〉 �= 0,

lim
α→0

Rα = √
2, lim

α→1
Rα = ∞, Rα < Rα′ for α < α′ < 1,

η±n,α = α2 − 1

α2 + n2 − 1
γ±1 · · ·γ±n, n � 1, (10)

where

γ±n = ∓1

dn + 1
dn+1+ 1

...

,

−d0

2
= 1

d1 + 1
d2+ 1

...

, dn = 2(α2 + n2)2

Rαα(α2 + n2 − 1)
(11)

and φ∗
α ∈ H 4 is the solution of L∗

Rα
φ∗

α = 0, the conjugate equation of (9).

Yudovich [17] also proved that the critical eigenvector space of (5) with

(R,ρ) = (Rα,0)

is two-dimensional. By following his approach, we derive the result.
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Lemma 3.3. For real value 0 < α < 1 and θ � 0, the critical spectral problem

LRφ = 0, φ = cos(αx + θ) +
∞∑

n=−∞, n�=0

ηn,α cos(αx + ny + θ) ∈ H 4 (12)

has a unique solution (φ,R) = (φα,θ ,Rα) such that√
2

1 − α2

(
1 + α2)< Rα, lim

α→0
Rmαα = ∞, (13)〈

φα,θ ,�
2φ∗

α,θ

〉 �= 0, (14)

where the coefficients {ηn,α} and the critical Reynolds number value Rα are uniquely defined in
Lemma 3.2, and φ∗

α,θ , defined in the form of (8), is the conjugate eigenfunction relating to φα,θ .

It is obvious that the spectral problem (12) is equivalent to the difference equation

2
(
α2 + n2)2ηn,α + Rα

(
α2 + (n − 1)2 − 1

)
ηn−1,α − Rα

(
α2 + (n + 1)2 − 1

)
ηn+1,α = 0

with the initial condition η0,α = 1, which is independent of the value θ � 0. Thus the deriva-
tion of Lemma 3.2 with θ = 0 based on the continued fraction approach implies the validity of
Lemma 3.3. The integration in (14) is independent of θ and hence Lemma 3.2 implies the valid-
ity of (14). It follows from Lemma 3.2 that (13) is an immediate consequence of the observation
limα→0 mαα = 1 and the inequality

−d0

2
<

1

d1
,

which is from (11).

3.2. Flow invariant spaces and a Fredholm decomposition

We now seek bifurcating solutions in the following complete subspaces of H 4:

H 4
α,θ =

{
ψ ∈ H 4; ψ =

∑
m,n

ηm,n cos(mαx + ny + mθ)

}
,

where we define that∑
m,n

≡
∑
m=0

∞∑
n=1

+
∞∑

m=1

∞∑
n=−∞

.

Lemma 3.4. For real value 0 < α < 1, θ � 0, the following assertions hold true:

(i) �−2J (ψ1,�ψ2) ∈ H 4
α,θ ,

∥∥J (ψ1,�ψ2)
∥∥

L2
� c‖ψ1‖H 4‖ψ2‖H 4 for ψi ∈ H 4

α,θ .

(ii) For f ∈ L2(Ω) such that �−2f ∈ H 4
α,θ and the projection operator

Pα,θψ = ψ − 〈ψ,�2φ∗
α,θ 〉

〈φα,θ ,�2φ∗
α,θ 〉

φα,θ ,

the equation

�−2LRαPα,θφ = Pα,θ�
−2f (15)
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has a unique solution Pα,θφ = φ ∈ H 4
α,θ such that

‖Pα,θφ‖H 4 = ∥∥(�−2LRα

)−1
Pα,θ�

−2f
∥∥

H 4 � c‖f ‖L2 .

Proof. (i) Let

ψi =
∑
m,n

η(i)
m,n cos(mαx + ny + mθ) ∈ H 4

α,θ for i = 1,2.

Using the Sobolev imbedding principle (see, for example, [1]), we derive∥∥�−2J (ψ1,�ψ2)
∥∥

H 4 = ∥∥J (ψ1,�ψ2)
∥∥

L2
� ‖∇ψ1‖L∞‖∇�ψ2‖L2 � c‖ψ1‖H 4‖ψ2‖H 4 .

Letting ϕm,n = cos(mαx + ny + mθ) and ϕ̂m,n = sin(mαx + ny + mθ), we have

J (ψ1,�ψ2) =
∑
m,n

∑
m′,n′

η(1)
m,nη

(2)

m′,n′(∂yϕm,n∂x�ϕm′,n′ − ∂xϕm,n∂y�ϕm′,n′)

=
∑
m,n

∑
m′,n′

(mn′ − m′n)α
[
(m′α)2 + n′2]η(1)

m,nη
(2)

m′,n′ ϕ̂m,nϕ̂m′,n′

= α

2

∑
m,n

∑
m′,n′

(mn′ − m′n)
[
(m′α)2 + n′2]η(1)

m,nη
(2)

m′,n′ϕm−m′,n−n′

− α

2

∑
m,n

∑
m′,n′

(mn′ − m′n)
[
(m′α)2 + n′2]η(1)

m,nη
(2)

m′,n′ϕm+m′,n+n′ . (16)

This becomes, after rearranging the coefficients,

J (ψ1,�ψ2) =
∑
m,n

ξm,n cos(mαx + ny + mθ).

We thus have �−2J (ψ1,�ψ2) ∈ H 4
α,θ .

(ii) By the definition of H 4
α,θ and Lemmas 3.1, 3.2 and 3.3, the critical spectral problem

LRφ = 0, φ ∈ H 4,

has an eigenfunction solution if and only if when R = Rkα for k = 1, . . . ,mα . We note that
Rα < Rkα whenever α < kα < 1. Thus a function φ solves the critical spectral problem

LRαφ = 0, φ ∈ H 4
α,θ ,

if and only if φ = cφα,θ for any constant c.
Since the operator

�−2LRα − I = −Rα�−2 siny(� + 1)∂x :H 4
α,θ �→ H 4

α,θ

is compact, it follows from Lemma 3.3 and the Fredholm alternative principle (see, for example,
[16]) that (15) has a unique solution if and only if〈

�2Pα,θ�
−2f,�2φ̂α,θ

〉= 0,

where φ̂α,θ �= 0 is a conjugate eigenvector of the operator �−2LRα in H 4
α,θ . That is,

L̂Rα φ̂α,θ = 0, φ̂α,θ ∈ H 4
α,θ ,



74 Z.-M. Chen, W.G. Price / J. Math. Anal. Appl. 324 (2006) 66–81
where the conjugate operator L̂Rα is defined through the scalar product of H 4
α,θ in the following

sense:〈
�2�−2LRαφ,�2ψ

〉= 〈
�2φ,�2L̂Rαψ

〉
.

This implies L̂Rα φ̂α,θ = �−4L∗
Rα

�2φ̂α,θ and so �2φ̂α,θ = φ∗
α,θ . Hence the unique existence

of (15) in the space H 4
α,θ is proved whenever〈

Pα,θ�
−2f,�2φ∗

α,θ

〉= 0,

which is always valid due to the definition of the projection Pα,θ . We thus derive assertion (ii)
and complete the proof.

The projection Pα,θ gives the following Fredholm decomposition of the Hilbert space

H 4
α,θ = Pα,θH

4
α,θ ⊕ span{φα,θ }

and assertion (ii) shows the invertibility of the linear operator �−2LRα over the subspace
Pα,θH

4
α,θ . �

4. Construction of the circle bifurcation

4.1. Proof of Theorem 2.1

We construct the solutions (ψ,R) = (ψα,θ,R,R) bifurcating from (ψ0,Rα) with supercritical
Reynolds number value R independent of θ � 0. By the absence of critical oscillatory eigenfunc-
tions due to Lemma 3.1, it suffices to construct bifurcating steady-state solutions of (2) and (3).

Firstly, let us formally construct the bifurcating solutions in H 4
α,θ . We rewrite the stationary

equation of (2) and (3) in the form(
1

R
− 1

Rα

)
(ψ − ψ0) + 1

Rα

�−2LRα(ψ − ψ0) = �−2J
(
ψ − ψ0,�(ψ − ψ0)

)
,

ψ ∈ H 4
α,θ ,

and use the amplitude expansion technique (see, for example, [6]) for the unknown bifurcation
steady-state solution

1

R
− 1

Rα

=
∞∑

n=1

εnλn, ψ − ψ0 =
∞∑

n=1

εnφn, φn ∈ H 4
α,θ , (17)

for small ε > 0 due to the bifurcation property ψ → ψ0 as R → Rα . Hence we derive

∞∑
n=1

∞∑
m=1

εn+mλnφm +
∞∑

n=1

εn 1

Rα

�−2LRαφn =
∞∑

n=1

∞∑
m=1

εn+m�−2J (φn,�φm).

This implies

LRαφ1 = 0,

λnφ1 + 1

Rα

�−2LRαφn+1 =
n∑

�−2J (φm,�φn+1−m) −
n−1∑

λmφn+1−m, n � 1.
m=1 m=1
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That is, φ1 = cφα,θ for any real value c �= 0 due to Lemma 3.3, and

�−2LRαPα,θφn+1

Rα

=
n∑

m=1

Pα,θ�
−2J (φm,�φn+1−m) −

n−1∑
m=1

λmPα,θφn+1−m,

λn

〈
φ1,�

2φ∗
α,θ

〉=
〈

n∑
m=1

�−2J (φm,�φn+1−m) −
n−1∑
m=1

λmφn+1−m,�2φ∗
α,θ

〉
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

due to the Fredholm decomposition H 4
α,θ = Pα,θ ⊕ span{φα,θ } and the commutativity

Pα,θ�
−2LRα = �−2LRαPα,θ .

Thus, by Lemma 3.4,

φ1 = cφα,θ (c �= 0),

φn+1 = Rα

(
�−2LRα

)−1
Pα,θ

(
n∑

m=1

�−2J (φm,�φn+1−m) −
n−1∑
m=1

λmφn+1−m

)
,

λn =
〈

n∑
m=1

�−2J (φm,�φn+1−m) −
n−1∑
m=1

λmφn+1−m, �2φ∗
α,θ

〉
c
〈
φα,θ ,�

2φ∗
α,θ

〉
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(18)

Noting that φα,θ = −φα,θ+π , it suffices to examine the case c > 0 for the eigenfunction
φ1 = cφα,θ . Moreover, if we denote (λn,c, φn,c) the solution of (18) depending on the constant
c > 0, Eq. (18) shows that

λn,c = λn,1c
n and φn,c = φn,1c

n.

That is, we have the solution expression

1

R
− 1

Rα

=
∞∑

n=1

εnλn,c =
∞∑

n=1

(εc)nλn,1, ψ − ψ0 =
∞∑

n=1

εnφn,c =
∞∑

n=1

(εc)nφn,1.

This gives the same branch of the bifurcating solution and therefore the constant c appearing in
(18) is always supposed to be 1, since the bifurcating solution is uniquely determined by (17)
and (18) with c = 1.

On the other hand, the scalar products appearing in (18) are independent of the choice of θ � 0
due to the change of variable αx′ = αx + θ in the respective integrations. This finding shows the
independence of λn on θ .

Secondly, we prove the convergence of the expansion. It follows from (18) and Lemma 3.4
that

‖φn+1‖H 4 + |λn|

� c

(
n∑

m=1

∥∥J (φm,�φn+1−m)
∥∥

L2
+

n−1∑
m=1

|λm|∥∥�2φn+1−m

∥∥
L2

)

� c

(
n∑

m=1

‖φm‖H 4‖φn+1−m‖H 4 +
n−1∑
m=1

|λm|‖φn+1−m‖H 4

)
. (19)

By denoting the constant c in (19) as c1 and examination of the difference equation

ξn+1 = c1

(
n∑

ξmξn+1−m +
n−1∑

|λm|ξn+1−m

)
, ξ1 = ‖φα,θ‖H 4,
m=1 m=1
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we find that

ξn � ξn+1, |λn| + ‖φn+1‖H 4 � ξn+1, ξ2 = c1‖φα,θ‖2
H 4, (20)

and for n � 2,

ξn+1 � c1

(
n∑

m=1

ξmξn+1−m +
n−1∑
m=1

|λm|ξn+1−m

)

= c1

n−1∑
m=1

(
ξm + |λm|)ξn+1−m + c1ξnξ1

� 2c1

n−1∑
m=1

ξm+1ξn+1−m + c1ξnξ2

� 3c1

n−1∑
m=1

ξm+1ξn+1−m

= 3c1

n∑
m=2

ξmξn+2−m.

Letting {an} satisfy the difference equation

an+1 =
n∑

m=2

aman+2−m with a2 =√
3c1ξ2 =

√
3c3

1‖φα,θ‖2
H 4,

we find that

ξn+1 � an+1. (21)

It is proved in Appendix A that

an+1 � 4n−1an
2 �

(
4
√

3c3
1‖φα,θ‖2

H 4

)n

. (22)

This estimate together with (20), (21) show the existence of a constant c > 0 such that

|λn| + ‖φn+1‖H 4 � ξn+1 � an+1 � cn,

which yields the convergence of the expansion for small ε > 0.
Thirdly, we carry out the proof of λ2n−1 = 0. For n � 1, we adopt the two orthogonal sub-

spaces of H 4
α,θ :

H 4
α,θ,odd ≡

{
ψ ∈ H 4; ψ =

∞∑
m=1

∞∑
n=−∞

ξ2m−1,n cos
[
(2m − 1)(αx + θ) + ny

]}
,

H 4
α,θ,even ≡

{
ψ ∈ H 4; ψ =

∑
m,n

ξ2m,n cos
[
2m(αx + θ) + ny

]}
.

We see that φα,θ , φ∗
α,θ ∈ H 4

α,θ,odd,

�−2LRα :H 4
α,θ,odd �→ H 4

α,θ,odd, �−2LRα :H 4
α,θ,even �→ H 4

α,θ,even
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and

Pα,θ :H 4
α,θ,odd �→ H 4

α,θ,odd, Pα,θ :H 4
α,θ,even �→ H 4

α,θ,even.

By the manipulation given in (16), we observe that

�−2J (ψ1,�ψ2) ∈ H 4
α,θ,odd, if either (ψ1,ψ2) or (ψ2,ψ1) ∈ H 4

α,θ,odd × H 4
α,θ,even

and

�−2J (ψ1,�ψ2) ∈ H 4
α,θ,even, if either ψ1,ψ2 ∈ H 4

α,θ,odd or ψ1, ψ2 ∈ H 4
α,θ,even.

These findings together with (18) imply φ1 = φα,θ ∈ H 4
α,θ,odd,

λ1 = 1

〈φα,θ ,�φ∗
α,θ 〉

〈
J (φ1,�φ1),φ

∗
α,θ

〉= 0,

and

φ2 = Rα

(
�−2LRα

)−1
Pα,θ�

−2J (φ1,�φ1) ∈ H 4
α,θ,even.

By induction, for a given odd integer j � 3, let us assume

λn = 0, φn ∈ H 4
α,θ,odd, φn+1 ∈ H 4

α,θ,even, for n odd and n � j − 2.

It remains to prove

λj = 0, φj ∈ H 4
α,θ,odd, φj+1 ∈ H 4

α,θ,even.

Indeed, by (18), we have

φj = Rα

(
�−2LRα

)−1
Pα,θ

(
j−1∑
m=1

�−2J (φm,�φj−m) −
j−2∑
m=1

λmφj−m

)

= Rα

(
�−2LRα

)−1
Pα,θ

(
j−1∑
m=1

�−2J (φm,�φj−m) −
(j−3)/2∑

m=1

λ2mφj−2m

)
.

This gives φj ∈ H 4
α,θ,odd and moreover, by (18),

λj = 1

〈φα,θ ,�2φ∗
α,θ 〉

〈
j∑

m=1

J (φm,�φj+1−m) −
j−1∑
m=1

λm�2φj+1−m,φ∗
α,θ

〉

= 1

〈φα,θ ,�2φ∗
α,θ 〉

〈
j∑

m=1

J (φm,�φj+1−m) −
(j−1)/2∑

m=1

λ2m�2φj+1−2m, φ∗
α,θ

〉

= 0.

Similarly, Eq. (18) gives

φj+1 = Rα

(
�−2LRα

)−1
Pα,θ

(
j∑

m=1

�−2J (φm,�φj+1−m) −
(j−1)/2∑

m=1

λ2mφj+1−2m

)

∈ H 4
α,θ,even.

We thus obtain the desired assertion.
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It should be noted that for the function R = R(ε) close to Rα , Matsuda and Miyatake [9]
proved R(′′)(0) > 0. Thus

λ2,α = −R(′′)(0)

R2
α

< 0.

Finally, it follows from Lemmas 3.1 and 3.3 that (2)–(4) admit exactly mα critical values
{Rkα}mα

k=1. The previous steps provide the proof of Theorem 2.1 when k = 1 for any real value
0 < α < 1 and so substantiate the proof of Theorem 2.1 for any k with 0 < kα < 1 after taking
(10) and Lemma 3.3 into account. The proof of Theorem 2.1 is complete.

4.2. Global branches of the bifurcating solutions

As a consequence of Rabinowitz global bifurcation theorem [15], we now extend the local
branches of bifurcating solutions constructed in the previous subsection globally.

For given θ � 0, we see that the spectral problem

LRφ = 0, φ ∈ H 4
mαα,mαθ = H 4

mαα,mαθ+π ⊂ H 4
α,θ

has a unique critical value Rmαα . By Theorem 2.1 and the Rabinowitz global bifurcation theorem
[15], bifurcating steady-state solutions exist in H 4

mαα,mαθ for any R > Rmαα , whenever R satisfies
the condition

R + ‖ψmαα,R,mαθ‖H 4 + ‖ψmαα,R,mαθ+π‖H 4 < ∞.

By (2), (3), we obtain∥∥�2ψmαα,R,mαθ

∥∥
L2

� R‖∇ψmαα,R,mαθ‖L2‖∇�ψmαα,R,mαθ‖L2 + ‖ cosy‖L2

� R

m2
αα2

‖∇�ψmαα,R,mαθ‖2
L2

+ ‖ cosy‖L2 .

Multiplying (2) by �ψmαα,R,mαθ and integrating by parts, we have

‖∇�ψmαα,R,mαθ‖2
L2

= 〈cosy,�ψmαα,R,mαθ 〉
� 1

2m4
αα4

‖ cosy‖2
L2

+ 1

2
‖∇�ψmαα,R,mαθ‖2

L2
.

We thus derive the result

‖ψmαα,R,mαθ‖H 4 � cR + c < ∞
for some constant c and therefore the steady-state solution

ψmαα,R,mαθ ∈ H 4
mαα,mαθ

exists for all R > Rmαα . If mα � 2, then by the Rabinowitz global bifurcation theorem [15], we
also obtain the global existence of the bifurcation solution

ψ(mα−1)α,R,(mα−1)θ ∈ H 4
(mα−1)α,(mα−1)θ

for any R > R(mα−1)α . By induction, we obtain the existence of the bifurcating steady-state
solution ψkα,R,kθ in H 4

kα,kθ of (2), (3) for all R > Rkα . We thus obtain the secondary flows
bifurcating from the mα bifurcating points {(ψ0,Rkα)}mα .
k=1
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Appendix A. Proof of (22)

To prove (22), it is sufficient to verify that

an+1 � 4a2an, n � 2,

for {an} defined by the difference equation

an+1 =
n∑

m=2

aman+2−m with the initial value a2 > 0 (n � 2). (A.1)

Indeed, let [a] be the integer part of a such that [a] � a < [a] + 1 and the summation∑j
m=i bm = 0 whenever j < i. It follows from (A.1) that

an+1 = 2a2an +
n−1∑
m=3

aman+2−m � 2a2an + 2
[n/2]+1∑

m=3

aman+2−m.

Thus it remains to show

a2an �
[n/2]+1∑

m=3

aman+2−m (n � 2),

which is valid if the following inequality

a2an −
[n/2]+1∑

m=3

aman+2−m

�
k∑

m=2

k∑
i=m

aiak+m−ian+3−k−m −
[n/2]∑
m=2k

m−k+1∑
i=k+1

aiam+2−ian+1−m (A.2)

holds true for any integer 4 � 2k � [n/2] + 2, since the second term on the right-hand side
of (A.2) vanishes when 2k > [n/2].

To prove the validity of (A.2), an induction approach is introduced commencing at k = 2. By
using (A.1) repeatedly, we find that

a2an = 2a2
2an−1 +

n−2∑
m=3

a2aman+1−m

� 2a2
2an−1 + 2

[n/2]∑
m=3

a2aman+1−m

= 2a2
2an−1 +

[n/2]∑
m=3

(
am+1 −

m−1∑
i=3

aiam+2−i

)
an+1−m

= 2a2
2an−1 +

[n/2]∑
m=3

am+1an+1−m −
[n/2]∑
m=4

m−1∑
i=3

aiam+2−ian+1−m,

which becomes
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a2an = a2
2an−1 + a3an−1 +

[n/2]+1∑
m=4

aman+2−m −
[n/2]∑
m=4

m−1∑
i=3

aiam+2−ian+1−m

= a2
2an−1 +

[n/2]+1∑
m=3

aman+2−m −
[n/2]∑
m=4

m−1∑
i=3

aiam+2−ian+1−m.

This gives (A.2) for the case k = 2. Suppose that (A.2) is valid for an integer k � 2. We verify
that (A.2) is also valid for k replaced by k + 1. Let Ak,n denote the right-hand side of (A.2). It is
now sufficient to show that Ak,n � Ak+1,n. Applying (A.1), we have

Ak,n =
k∑

m=2

k∑
i=m

aiak+m−ian+3−k−m −
[n/2]∑
m=2k

m−k+1∑
i=k+1

aiam+2−ian+1−m

=
k∑

m=2

k∑
i=m

aiak+m−ian+3−k−m − 2
[n/2]∑
m=2k

ak+1am+1−kan+1−m

+ a2
k+1an+1−2k −

[n/2]∑
m=2k+2

m−k∑
i=k+2

aiam+2−ian+1−m. (A.3)

The first three terms on the right-hand side of this equation can be written as

k∑
m=2

k∑
i=m

aiak+m−ian+3−k−m − ak+1

[n/2]+1−k∑
m=k+1

2aman+2−k−m + a2
k+1an+1−2k

= ak+1

(
an+1−k −

[n/2]+1−k∑
m=k+1

2aman+2−k−m

)

+
k∑

m=3

k∑
i=m

aiak+m−ian+3−k−m + a2
k+1an+1−2k

�
k∑

m=2

2ak+1aman+2−k−m +
k∑

m=3

k∑
i=m

aiak+m−ian+3−k−m + a2
k+1an+1−2k

=
k∑

m=2

2ak+1aman+2−k−m +
k∑

m=2

k∑
i=m+1

aiak+1+m−ian+2−k−m + a2
k+1an+1−2k

=
k∑

m=2

k+1∑
i=m

aiak+1+m−ian+2−k−m + a2
k+1an+1−2k

=
k+1∑
m=2

k+1∑
i=m

aiak+1+m−ian+2−k−m

= Ak+1,n +
[n/2]∑

m=2k+2

m−k∑
i=k+2

aiam+2−ian+1−m.

This together with (A.3) gives the desired assertion. The proof is complete.
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