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Abstract

By constructing a suitable Lyapunov function, we show that for the system parameters in some specified
regions, the solutions of the Chen system are globally bounded.
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1. Introduction

As a dual system to the classical Lorenz system, the Chen system has been seriously studied
in recent years (see [1-3,5,8,10—12] and some references therein).
The Chen system is described by

x=a(y —x),
y=(c—a)x —xz+cy, (1.1)
Z=xy —bz,

where a > 0, b > 0, and ¢ > 0 are constant parameters.
Despite the fact that many qualitative and quantitative results on the Chen system have been
obtained, there is a fundamental question that has not been completely answered so far: are the
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solutions of the Chen system globally bounded? In other words, is there a global trapping region
where the system attractor exists?

It is well known that the orbits of the Lorenz system are ultimately trapped in a bounded
region for all positive parameters [6]. One can easily show ([7, Appendix C] and [4]) that there
is a bounded ellipsoid in R3, which all orbits of the Lorenz system will eventually enter. For the
case of ¢ < 0 in the Chen system, one can similarly show [8] that there is an ellipsoid in R>,
which traps all system orbits. For the case of ¢ > 0, however, the situation is totally different and
so far the answer is unknown. Li et al. only gave in [4] the two dimensional bounds with respect
to x — z for the Chen system. Generally speaking, a chaotic attractor is ensured by two things: one
is that the system must have a trapping region which guarantees the existence of a attractor, the
other is that the system displays chaotic behavior on the attractor. For the Chen system, chaotic
behavior has been confirmed in [11,12], while the problem of the existence of a trapping region
remains open. In this paper, by constructing a suitable Lyapunov function, we show that for the
case of ¢ > 0 the solutions of the Chen system are globally bounded if the system parameters are
restricted to certain regions.

In searching for a global bounded region, one generally would like to choose a Lyapunov
function, as simple as possible, and apply the Lyapunov stability criteria. However, for the case
of ¢ > 0 in the Chen system, it seems that a quadratic Lyapunov function is not sufficient for this
purpose, which is quite different from the Lorenz system. Note that the coefficient of variable y in
the second equation is ¢ > 0, which is different from the Lorenz system. Therefore, the approach
applicable to the Lorenz system does not work for the Chen system. We overcome this difficulty
by introducing a quartic term and a cross term.

2. Main result and its proof
The main result of this paper is summarized as follows.

Theorem 2.1. All solutions of system (1.1) with a > ¢ > 0 and b > 2¢ > 0 are globally
bounded for t € [0, 4+00). In particular, if a > 2¢c > 0 and b > 2¢ > 0, then the system solu-
tions (x(t), y(t), z(t)) — (0,0,0) as t — +o0.

To prove the theorem, some preliminaries are first needed.
Throughout the paper, assume a, b, ¢ > 0 in system (1.1). Let

—a a
A - < ) ,
c—a c
and consider the following matrix equation:

ATB+BA=C, 2.1

where, with new parameters p,q >0 and r, «, 8, v,

(7 L) =G Y)

It is easy to see that Eq. (2.1) is equivalent to

—aa+(c—a)p=—p/2,
{ ap+cy =—q/2, 2.2)
ac+ (c—a)B+(c—a)y =r,
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which has a unique solution (a, 8, y), if a # ¢ and a # 2c, given by
_@—o(p+q)—2cr
N 2a(a — 2¢)
_cpt(a—c)g—2cr
p=- 2(a — c)(a — 20¢)
_ap+2(a—c)g—2ar
T 2(a—c)(a—2c)

There are three cases to discuss:

k]

3

447

(2.3)

(2.4)

(2.5)

Case 1: a > 2c. In this case, matrix A has two negative eigenvalues, so that Eq. (2.1) has a
positive definite matrix solution if the matrix C is negative definite [9]; that is, for p > 0, ¢ > 0,

and r =0, Eq. (2.2) has a solution («, 8, y) satisfyingo > 0, y > 0, and oy > B2.

Case 2: a = 2c. In this case, let p > 0, ¢ > 0 with p > g, and r = (p 4 ¢q)/2. Then, Eq. (2.2)

has a solution,
a=p/l, B=—p/2, y=p/c—q/2c,
satisfying o > 0, y > 0, and ay > B2.
Case 3: ¢ < a < 2c. In this case, it follows from (2.3)—(2.5) that

o fpgr)
=P = a2k

where
1
f(p.g.r)= ;((a —¢)(p+q) —2cr)(ap +2(a — c)g —2ar)

(cp +(a—c)g — 2cr)2.
a—c

Assuming g = 0, one has

1 2
f(p,0,r)= ;((a —c)p— 2CI‘) (ap —2ar) — (cp — 2cr)~.

a—c
Choosing » = p/2 + p/2m with m > 0 satisfying
mQ2c—a)+c> cz/(a —0),

one has o > 0, 8 > 0, and
p? c?
f(p,0,r)=5|mQc—a)+c——|>0,
m a—c

which implies that ay > 2.

Since f and the solutions «, 8, and y are all continuous in g, one may choose gog > 0 such
that for 0 < g < qo, p > 0, and r = p/2 + p/2m, Eq. (2.2) has a solution («, B, y) satisfying

>0,y >0,and ay > 2.

In summary, for p > 0, 0 < g < ¢*, where g* is a positive constant depending on the cho-
sen p, and for some real constant r, Eq. (2.1) has a positive definite matrix solution provided that

a>c>0.
It should be noted that in all the above cases, § < 0.
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From the above discussion, for a > ¢ > 0, one also has

(2.6)

Therefore, if there is a constant K > c¢/a, then one may choose g > 0 sufficiently small such that

K>—B/y.
Next, let

2a8p 9 88 -8B
b = b T = b
2a +Db 2a+b 2a(2a + b)

where constant § > 0 is to be determined later. Also, let

H=Yy =

For notational simplicity, denote

4b 8ab
k=— ' h=—
2a +b (2a + b)?

Lemma 2.2. Ifa > ¢ > 0 and b > 2¢ > 0, then w > 0 for a suitably chosen § > 0.

Proof. If 1 < 1, then taking § = 1/4/1 — h > 0 leads to
w>0 & 8abut > (8 + 1)2p2
& kSy(—=p) > [(1 —h)8> +28 +1]p2

ké —B
< > —
(1—h)82+25+1 y
2b -B
_— > —.
2a + b+ |2a — b| y
Note that
2b | b/2a ifaz=b/2,
2a+b+12a—b |1 ifa<b/2.
If b > 2c¢, then b/2a > c/a. Consequently, if b > 2c, then
2b c

- = o
2a+b+12a—b| a
since a > c. Thus, one may choose ¢ sufficiently small so that
2b -
=~ . F

2a + b+ |2a — b| y

El

and, hence, w > 0.
If h=1,then k=2 and

0 & X P
> — > —
@ 26+1 y
26 -

o 2 P

26417y

2.7

(2.8)
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Therefore, one may choose § > 0 sufficiently large such that
268 c
—_— > —_—
2641 a
since a > c. To this end, taking a small ¢ > 0 yields
268 —p

. O
2W+1 Ty

Since it is required that « > 0, y > 0, and oy > ,32, one may choose positive constants 1 > 0
and &y > 0 such that

(@ —e(y —e2) = B2,
so that

ax® +2Bxy +yy* =e1x? + (0x + py)” + 2y,

where
o= va—e
and
p=A+y — e
Now, let

V(x,y,2) —ax?+ 2Bxy + yy2 +pz? +20x%z +txt = 2rz —|—r2/y

x4+ 285y 4 o2 4 2P (15 x2 2+ r\?
=ax xXy+yy 2ath V2az NeT 14 B+ y

2a8(—B) x2\?2 r\?
_ 2 2 2 _ __
=e1x" 4+ (ox + py)” + &y +72a+b <Z o +v(z )

Thus, along the trajectories of the Chen system (1.1), one has

V(x,y,2) =2axi +2Bxy +2Bxy +2yyy + 2uzz + 40xzx 4+ 20x%; + 4rx’x — 2r
= [—2aa +2(c — a),B]x2 + [2aB8 + ZC)/]y2 —datrx* = 2buz?
+ [2aoz +2(c—a)p+2(c—a)y — 2r]xy + 2u+4ab —2y)xyz
+ (4at +20)x>y — (4ab + 2b0 + 28)x*z + 2brz
=—px? —qy* —datx* —2(6 + ) Bx>z — 2buz* + 2brz

s+1)B \?
= —px2 - qy2 - (2«/arx2 + %z) — w7+ 2brz.

In the above, the last two equalities follow from (2.2), (2.7), and (2.8).
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Proof of Theorem 2.1. By Lemma 2.2, w > 0 and

2 2.2

. r b*r
V(x,y,z)é—pxz—qyz—w<z——> +—.
w w

Hence, one may take dj sufficiently large such that

2 5 br\?> b2
px"+qy tolz——) >
1) w

provided that (x, y, z) satisfies
Vix,y,2)=d
with d > dy. Consequently, on the surface
[y [V, y.2) =d),
where d > dj, one has V(x, v, z) <0, which implies that the set

{0, 3,21 V(x,y,2) <d}

is a trapping region, implying that the solutions of system (1.1) are globally bounded.
If, furthermore, a > 2c¢, then one can choose r = 0, so that

2a8(— x2 2
V(’C’Y’Z):81)‘2+€2y2+J/22+(<nc+py)2+M ==,
2a +b 2a

and

. G+1B 2
V.7) = — 2 _gx2—|(2 2 MR 2
V(x,y,z2) = —px° —qx < JatxT + N z wz

< —pxz—qyz—a)z2 <0.

Therefore, V decreases to 0 along any orbit (x(¢), y(¢), z(¢)) of the system, as t — +o00. Conse-
quently, (x(¢), y(#), z(¢)) — (0,0,0) as t — +00, since V is positive definite. In conclusion, the
origin is a globally asymptotically stable equilibrium. O

Finally, it should be remarked that the above Lyapunov function is constructed only for qual-
itative analysis, which by no means gives an optimal result [4,6].

3. Conclusion

In this paper, we have shown the global boundedness of the Chen system but only for some
cases with ¢ > 0, which did not include the most interesting situation with the chaotic attractor
of the Chen system (with parameters a = 35, b = 3, ¢ = 28 [1,8,11]), leaving an important and
yet nontrivial open problem for future research.
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