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On the boundedness of solutions of the Chen system
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Abstract

By constructing a suitable Lyapunov function, we show that for the system parameters in some specified
regions, the solutions of the Chen system are globally bounded.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

As a dual system to the classical Lorenz system, the Chen system has been seriously studied
in recent years (see [1–3,5,8,10–12] and some references therein).

The Chen system is described by{
ẋ = a(y − x),

ẏ = (c − a)x − xz + cy,

ż = xy − bz,

(1.1)

where a > 0, b > 0, and c > 0 are constant parameters.
Despite the fact that many qualitative and quantitative results on the Chen system have been

obtained, there is a fundamental question that has not been completely answered so far: are the
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solutions of the Chen system globally bounded? In other words, is there a global trapping region
where the system attractor exists?

It is well known that the orbits of the Lorenz system are ultimately trapped in a bounded
region for all positive parameters [6]. One can easily show ([7, Appendix C] and [4]) that there
is a bounded ellipsoid in R3, which all orbits of the Lorenz system will eventually enter. For the
case of c < 0 in the Chen system, one can similarly show [8] that there is an ellipsoid in R3,
which traps all system orbits. For the case of c > 0, however, the situation is totally different and
so far the answer is unknown. Li et al. only gave in [4] the two dimensional bounds with respect
to x−z for the Chen system. Generally speaking, a chaotic attractor is ensured by two things: one
is that the system must have a trapping region which guarantees the existence of a attractor, the
other is that the system displays chaotic behavior on the attractor. For the Chen system, chaotic
behavior has been confirmed in [11,12], while the problem of the existence of a trapping region
remains open. In this paper, by constructing a suitable Lyapunov function, we show that for the
case of c > 0 the solutions of the Chen system are globally bounded if the system parameters are
restricted to certain regions.

In searching for a global bounded region, one generally would like to choose a Lyapunov
function, as simple as possible, and apply the Lyapunov stability criteria. However, for the case
of c > 0 in the Chen system, it seems that a quadratic Lyapunov function is not sufficient for this
purpose, which is quite different from the Lorenz system. Note that the coefficient of variable y in
the second equation is c > 0, which is different from the Lorenz system. Therefore, the approach
applicable to the Lorenz system does not work for the Chen system. We overcome this difficulty
by introducing a quartic term and a cross term.

2. Main result and its proof

The main result of this paper is summarized as follows.

Theorem 2.1. All solutions of system (1.1) with a > c > 0 and b > 2c > 0 are globally
bounded for t ∈ [0,+∞). In particular, if a > 2c > 0 and b > 2c > 0, then the system solu-
tions (x(t), y(t), z(t)) → (0,0,0) as t → +∞.

To prove the theorem, some preliminaries are first needed.
Throughout the paper, assume a, b, c > 0 in system (1.1). Let

A =
( −a a

c − a c

)
,

and consider the following matrix equation:

AT B + BA = C, (2.1)

where, with new parameters p,q > 0 and r,α,β, γ ,

C =
(−p r

r −q

)
, B =

(
α β

β γ

)
.

It is easy to see that Eq. (2.1) is equivalent to{−aα + (c − a)β = −p/2,

aβ + cγ = −q/2, (2.2)

aα + (c − a)β + (c − a)γ = r,
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which has a unique solution (α,β, γ ), if a �= c and a �= 2c, given by

α = (a − c)(p + q) − 2cr

2a(a − 2c)
, (2.3)

β = −cp + (a − c)q − 2cr

2(a − c)(a − 2c)
, (2.4)

γ = ap + 2(a − c)q − 2ar

2(a − c)(a − 2c)
. (2.5)

There are three cases to discuss:

Case 1: a > 2c. In this case, matrix A has two negative eigenvalues, so that Eq. (2.1) has a
positive definite matrix solution if the matrix C is negative definite [9]; that is, for p > 0, q > 0,
and r = 0, Eq. (2.2) has a solution (α,β, γ ) satisfying α > 0, γ > 0, and αγ > β2.

Case 2: a = 2c. In this case, let p > 0, q > 0 with p > q , and r = (p + q)/2. Then, Eq. (2.2)
has a solution,

α = p/2c, β = −p/2c, γ = p/c − q/2c,

satisfying α > 0, γ > 0, and αγ > β2.

Case 3: c < a < 2c. In this case, it follows from (2.3)–(2.5) that

αγ − β2 = f (p,q, r)

4(a − 2c)2(a − c)
,

where

f (p,q, r) = 1

a

(
(a − c)(p + q) − 2cr

)(
ap + 2(a − c)q − 2ar

)
− 1

a − c

(
cp + (a − c)q − 2cr

)2
.

Assuming q = 0, one has

f (p,0, r) = 1

a

(
(a − c)p − 2cr

)
(ap − 2ar) − 1

a − c
(cp − 2cr)2.

Choosing r = p/2 + p/2m with m > 0 satisfying

m(2c − a) + c > c2/(a − c),

one has α > 0, β > 0, and

f (p,0, r) = p2

m2

[
m(2c − a) + c − c2

a − c

]
> 0,

which implies that αγ > β2.
Since f and the solutions α, β , and γ are all continuous in q , one may choose q0 > 0 such

that for 0 < q < q0, p > 0, and r = p/2 + p/2m, Eq. (2.2) has a solution (α,β, γ ) satisfying
α > 0, γ > 0, and αγ > β2.

In summary, for p > 0, 0 < q < q∗, where q∗ is a positive constant depending on the cho-
sen p, and for some real constant r , Eq. (2.1) has a positive definite matrix solution provided that
a > c > 0.

It should be noted that in all the above cases, β < 0.
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From the above discussion, for a > c > 0, one also has

lim
q→0+

−β

γ
= c

a
. (2.6)

Therefore, if there is a constant K > c/a, then one may choose q > 0 sufficiently small such that
K > −β/γ .

Next, let

μ = γ − 2aδβ

2a + b
, θ = δβ

2a + b
, τ = −δβ

2a(2a + b)
, (2.7)

where constant δ > 0 is to be determined later. Also, let

ω = 2bμ − (δ + 1)2

4aτ
β2. (2.8)

For notational simplicity, denote

k = 4b

2a + b
, h = 8ab

(2a + b)2
.

Lemma 2.2. If a > c > 0 and b > 2c > 0, then ω > 0 for a suitably chosen δ > 0.

Proof. If h < 1, then taking δ = 1/
√

1 − h > 0 leads to

ω > 0 ⇔ 8abμτ > (δ + 1)2β2

⇔ kδγ (−β) >
[
(1 − h)δ2 + 2δ + 1

]
β2

⇔ kδ

(1 − h)δ2 + 2δ + 1
>

−β

γ

⇔ 2b

2a + b + |2a − b| >
−β

γ
.

Note that

2b

2a + b + |2a − b| =
{

b/2a if a � b/2,

1 if a < b/2.

If b > 2c, then b/2a > c/a. Consequently, if b > 2c, then

2b

2a + b + |2a − b| >
c

a

since a > c. Thus, one may choose q sufficiently small so that

2b

2a + b + |2a − b| >
−β

γ
,

and, hence, ω > 0.
If h = 1, then k = 2 and

ω > 0 ⇔ kδ

2δ + 1
>

−β

γ

⇔ 2δ
>

−β
.

2δ + 1 γ
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Therefore, one may choose δ > 0 sufficiently large such that

2δ

2δ + 1
>

c

a

since a > c. To this end, taking a small q > 0 yields

2δ

2δ + 1
>

−β

γ
. �

Since it is required that α > 0, γ > 0, and αγ > β2, one may choose positive constants ε1 > 0
and ε2 > 0 such that

(α − ε1)(γ − ε2) = β2,

so that

αx2 + 2βxy + γy2 = ε1x
2 + (σx + ρy)2 + ε2y

2,

where

σ = √
α − ε1

and

ρ = √
γ − ε2.

Now, let

V (x, y, z) = αx2 + 2βxy + γy2 + μz2 + 2θx2z + τx4 − 2rz + r2/γ

= αx2 + 2βxy + γy2 + δ(−β)

2a + b

(√
2a z − x2

√
2a

)2

+ γ

(
z − r

γ

)2

= ε1x
2 + (σx + ρy)2 + ε2y

2 + 2aδ(−β)

2a + b

(
z − x2

2a

)2

+ γ

(
z − r

γ

)2

.

Thus, along the trajectories of the Chen system (1.1), one has

V̇ (x, y, z) = 2αxẋ + 2βẋy + 2βxẏ + 2γyẏ + 2μzż + 4θxzẋ + 2θx2ż + 4τx3ẋ − 2rż

= [−2aα + 2(c − a)β
]
x2 + [2aβ + 2cγ ]y2 − 4aτx4 − 2bμz2

+ [
2aα + 2(c − a)β + 2(c − a)γ − 2r

]
xy + (2μ + 4aθ − 2γ )xyz

+ (4aτ + 2θ)x3y − (4aθ + 2bθ + 2β)x2z + 2brz

= −px2 − qy2 − 4aτx4 − 2(δ + 1)βx2z − 2bμz2 + 2brz

= −px2 − qy2 −
(

2
√

aτx2 + (δ + 1)β

2
√

aτ
z

)2

− ωz2 + 2brz.

In the above, the last two equalities follow from (2.2), (2.7), and (2.8).
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Proof of Theorem 2.1. By Lemma 2.2, ω > 0 and

V̇ (x, y, z) � −px2 − qy2 − ω

(
z − br

ω

)2

+ b2r2

ω
.

Hence, one may take d0 sufficiently large such that

px2 + qy2 + ω

(
z − br

ω

)2

>
b2r2

ω

provided that (x, y, z) satisfies

V (x, y, z) = d

with d > d0. Consequently, on the surface{
(x, y, z) | V (x, y, z) = d

}
,

where d > d0, one has V̇ (x, y, z) < 0, which implies that the set{
(x, y, z) | V (x, y, z) � d

}
is a trapping region, implying that the solutions of system (1.1) are globally bounded.

If, furthermore, a > 2c, then one can choose r = 0, so that

V (x, y, z) = ε1x
2 + ε2y

2 + γ z2 + (σx + ρy)2 + 2aδ(−β)

2a + b

(
z − x2

2a

)2

,

and

V̇ (x, y, z) = −px2 − qx2 −
(

2
√

aτx2 + (δ + 1)β

2
√

aτ
z

)2

− ωz2

� −px2 − qy2 − ωz2 < 0.

Therefore, V decreases to 0 along any orbit (x(t), y(t), z(t)) of the system, as t → +∞. Conse-
quently, (x(t), y(t), z(t)) → (0,0,0) as t → +∞, since V is positive definite. In conclusion, the
origin is a globally asymptotically stable equilibrium. �

Finally, it should be remarked that the above Lyapunov function is constructed only for qual-
itative analysis, which by no means gives an optimal result [4,6].

3. Conclusion

In this paper, we have shown the global boundedness of the Chen system but only for some
cases with c > 0, which did not include the most interesting situation with the chaotic attractor
of the Chen system (with parameters a = 35, b = 3, c = 28 [1,8,11]), leaving an important and
yet nontrivial open problem for future research.
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