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Abstract

In this paper, we use operational rules associated with three operators corresponding to a generalized Her-
mite polynomials introduced by Szegé to derive, as far as we know, new proofs of some known properties
as well as new expansions formulae related to these polynomials.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Lowering operators; Raising operators; Transfer operators; Quasi-monomiality; Brenke polynomials;
Generalized Hermite polynomials; Dunkl operator; Connection coefficients; Linearization coefficients

1. Introduction

A sequence of polynomials {P,},>0, with coefficients in C, is called polynomial set if
deg P, =nforalln=0,1,....
For a given polynomial set { P,,},>0, we define three operators, not depending on 7, by

AP, =nP,—;, pP,=P,y1 and tB,=P,, n=0,1,..., (1.1)
where P_1 =0 and {B,},>0 verifies
AB,=nB,_1, Bp(0)=1 and B,(0)=0, n=1,2,.... (1.2)

A, p and 7 are called respectively the lowering, the raising and the transfer operators associated
to the polynomial set {P,}, >0 while {B,},>0 is called basic sequence associated to A.
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These operators satisfy the following commutation formulae
Ap—pAi=1 and TA=AT.

The lowering and the raising operators play the role analogous to that of derivative and multi-
plicative operators on monomials. The operational rules associated to these two operators are
known as quasi-monomiality principle. The polynomial set {P;},>¢ is called quasi-monomial
under the action of A and p.

The monomiality principle was introduced by Dattoli et al. [18] in order to derive properties
of special polynomials starting from the corresponding ones of monomials. The associated op-
erational rules were used to explore new classes of isospectral problems leading to nontrivial
generalizations of special functions [15,16].

Ben Cheikh [2] proved that every polynomial set can be viewed as quasi-monomial and [1]
that any operator acting on analytic functions and reducing the degree of polynomials by exactly
one has a sequence of basic polynomials. Furthermore, for a given polynomial set there exists
a unique power series A(t) = ZZO:O ant”, ap # 0, such that t = A(A), where 7 is the transfer
operator corresponding to the considered polynomial set. This last is then called a A-Appell
polynomial set of transfer power series A.

The operational rules associated to lowering, transfer and raising operators were used to study
many problems arising in the theory of polynomials. Most of the properties of polynomial sets
can be deduced by using operational rules with these operators. The main properties considered
are related to generating functions, differential equations, Rodrigues formula and orthogonality.
Sufficient condition, in terms of the lowering and raising operators, to ensure the orthogonality
of any polynomial set, was given in [30]. The linear functional for which the orthogonality holds
was also stated by means of the lowering operator and the transfer power series. These results
were applied to recover the orthogonality of the ordinary Sheffer orthogonal polynomials.

In many works, new and known results related to Hermite polynomials, Laguerre polynomi-
als [17], Laguerre—Konhauser polynomials [8], Legendre polynomials [19], Appell polynomi-
als [22], Gould—Hopper polynomials [23], Boas—Buck polynomials [5], Sheffer polynomials [3]
and d-orthogonal polynomials [7] were derived by using the monomiality principle.

In this paper, we consider the generalized Hermite polynomials generated by [26]

—42 > m " 1 3 5
€ elt(ZXt)ZZHn(X);, /LE(C,,u;é—E,_

— ==, ., (1.3)
27 2
n=0
where
o n
X
ey(x)=») —,
g 20 Viu ()
with
1
Vu(2m+6)=22’"+ém!(u+€+5) , €=1,2, (1.4)
m
_ D(a+n)
where (a), = F“(a)” .

This polynomial set was introduced by Szeg6 [32] as a set of real polynomials orthogonal with
respect to the weight |x|2“e_x2, uw > —%, then investigated by Chihara in his PhD thesis [13]
and further studied by Rosenblum in [26] in connection with a Bose-like oscillator calculus. This
family reduces to the ordinary Hermite polynomial set when © = 0.
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Many other authors investigated properties of these polynomials, using classical methods well
known in the special functions theory. For instance, some characterization problems related to
this polynomial set were given in [6,20].

The purpose of this work is, starting from the generating function (1.3), to give the lower-
ing, the transfer and the raising operators associated with the generalized Hermite polynomials.
Then we show how to derive some corresponding properties using operational rules related to
these operators. The method we propose allows us to obtain other proofs of some well-known
properties of these polynomials as well as some expansions formulae.

The paper is organized as follows: In Section 2, following the prescription of the monomiality
point of view, we derive some properties of the generalized Hermite polynomials, a recurrence re-
lation from which we deduce the orthogonality, the functional vector for which the orthogonality
holds and a differential equation satisfied by these polynomials. In Section 3, using a technique
based on lowering and transfer operators, we give some expansion formulae for Brenke poly-
nomial sets. We use the resulting formulae to derive duplication, connection and linearization
coefficients associated to generalized Hermite polynomials as well as a convolution type for-
mula which generalizes an old formula for ordinary Hermite polynomials due to Runge [27].
The expansion formulae derived in this section appear to be new.

2. Properties of generalized Hermite polynomials
2.1. Operators associated to generalized Hermite polynomials

A useful tool, based on a suitable generating function of the considered polynomial set to
derive the three aforementioned operators, is given by

Proposition 2.1. [1,2] Let { P, },>0 be a polynomial set generated by

o]

G(x,1) = A()Go(x, 1) =Z

n=0

Pp(x)
n!

", with Go(0,1) = 1.

Then A, p and t are characterized by
AGo(x,t) =t Go(x,t), A=Ay,

pG(x,t):aa—(t;(x,t), P = Px, (2.1)
T=A).

As application, we consider the so-called Brenke polynomials which will be largely exploited
in this work.

Proposition 2.2. The Brenke polynomial set { P,}, >0 generated by [14]

P, (x) e
n!

o]

A(t)B(xt) = Z

n=0

(2.2)

where A(t) = Z,fio aktk and B(t) = Z}:io bktk such that agby # 0 Vk, is quasi-monomial under
the action of

A=Dy and p= A (Dy)A(Dp)+xDD; ", 2.3)
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where A(f) = ﬁ and Dy, is given by

b, b
Dp(1) =0, Db(x")z';)—lx”*] and Db_l(x")zb "lx"H, n=1,2,.... 24)
n n—

The transfer power series associated to { P, },>0 is boA.

According to (1.3), the generalized Hermite polynomial set can be viewed as a Brenke set
with A(t) = e_tz and B(x) = e, (2x). Hence, by virtue of (2.3), {(HE }n>0 is quasi-monomial
under the action of

Dy -1
A= > and p=-D,+ 2xDDM , 2.5)
where
Du(x) = 2 nt 6", Gy =14 (— 1), 2.6)
Yu(n —1)

Then the generalized Hermite polynomials is a (%Dﬂ)-Appell polynomial set of transfer power

t

series A(t) = e~ * The sequence of basic polynomials for D, is {B,(x) = #(!n)x"},@o. This

means that
_Dk Yu(n)
e (x") = 2"””! H (x). 2.7)
D,, is the well-known Dunkl operator associated with the parameter 1 on the real line [26]. In
fact, for a given analytic function f(x) = Z;’;O onx", we have

oo oo o0
Du()) =Y+ pub)onx""" =Y npux" " 421 pon1x™
n=1 n=0

n=1
= Df(x) + %(f(x) — f(=x). 2.8)

The differential-difference operator D,,, recovered in (2.8), is a special case of operators set down
by Dunkl in his work on root systems associated with finite reflection groups [21].

2.2. Recurrence relation and orthogonality

In this section, we give a new proof of the three term recurrence relation satisfied by the
generalized Hermite polynomials and then we recover the orthogonality and the linear functional
for which the orthogonality holds. First, we recall the following.

We denote by &2 the vector space of polynomials with coefficients in C and by & its al-
gebraic dual. (&, f) designates the effect of the linear functional . € £’ on the polynomial
fe?.

A polynomial sequence {P,}, > is called orthogonal polynomial set with respect to the func-
tional .7 if it satisfies the following condition

(&, PnPp) =cnbym, cn#0, n,meN. 2.9)

The so-called Favard Theorem asserts that the orthogonality may be deduced from the fact that
the sequence { Py, },,>0 satisfies a three term recurrence relation with regularity conditions [14].
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The three term recurrence relation satisfied by the generalized Hermite polynomials can be
derived directly from the expression of the associated raising operator given by (2.5).

Hy () = p(HA) (x) = =Dy HY (x) + 2x DD, HE (x)

1
= —2n'H’L 1 (0) + p—— xD'Hn_H(x)

1
= —2nM,_(x) + —— n 1 (XD Hy () = pHyy () + wHy (=)
= 2 () + 2 ) — "HHnH(x).
Then, we obtain
On
2fo;=< + B +1)Hn+] +2nHY . (2.10)

It follows, from the Favard Theorem, that {H/ }n>0 is an orthogonal polynomial set.
When {P,},>0 is a A-Appell polynomial set of transfer power series A, an explicit expression
of its dual sequence was given by means of its corresponding lowering and transfer operators.
Recall first, that the dual sequence {IP,},>0 associated to a given polynomial set {P,},>0 is
defined by

(P, Py) =6pm, n,m=0. (2.11)

The action of this dual sequence on any polynomial is given by [1]

1~
(]P’n,f)z;[A”A(A)(f)(x)]xzo, n=0,1,..., fe 2. (2.12)

Moreover, if {P,},>0 is a A-Appell orthogonal polynomial set of transfer power series A, then
the linear functional %, for which we have the orthogonality, is given by . = Py: The first
vector of the dual sequence defined by (2.11). It follows from (2.12) that

(Z, ) =AW (HX)x=0 (f € P). (2.13)

In the following proposition we give, by means of the transfer power series, an explicit expression
of the moments associated to any orthogonal Brenke polynomial set.

Proposition 2.3. Let { P, },>0 be an orthogonal polynomial set of Brenke type generated by (2.2).
Then the moments associated to the functional £, for which the orthogonality holds, are given
by

N R 1 o0 o0
(.f, x”) = Z—, where A(t) = m = Z&ktk and B(t) = Zbktk. (2.14)
k=0

n

Proof. {P,},>0 is Dp-Appell of transfer power series b A(z). It follows from (2.13) that

(g,x”)_—A(Db) ZakD =0

1 " n—k Qn
= — ak X _nN= T D
bo Z by |x—0 by




16 H. Chaggara/ J. Math. Anal. Appl. 332 (2007) 11-21

Applying Proposition 2.3 to generalized Hermite polynomials with A(¢) = e~ and B() =
e,,(2t) and according to (1.4), we obtain

J//L(ZP)
(,Z, x”) =1 plyu(0)2%
0 ifn=2p+1,

1 .
—(u+d), ifn=2
(t3)p ifn=2p. (2.15)

which can be written as [26]

| +00
(f,x"):ﬁ/x"e_xﬂﬂz“dx.
F(M+§)_OO

2.3. Differential equation

In this section, we derive, by means of the lowering and the raising operators, a new proof of
the second order differential equation satisfied by the generalized Hermite polynomials. We have

Proposition 2.4. The following relation holds
6
2xnHE =2(x* — ) DHY — x DM + E e, (2.16)
X
Proof. As any polynomial set { P, },>¢ is quasi-monomial, it follows that P, is an eigenfunction
of the operator pA associated to the eigenvalues n. That is to say:

PAP, =nPy, (2.17)
which can be viewed, if A and p have a differential realization, as a differential equation satisfied
by the considered polynomial set.

Using this fact for the generalized Hermite polynomials {#, }n>0, we obtain
1 1

nHY = paH! = 5(—2)“ +2xDD, ") D, HY = xDH) — EDin;.

Multiplying by 2x and using the trivial following relation, which can be easily derived from (2.8)
xDy =xD*+ (2u+1)D — Dy,
we obtain

2xnHl = 2x> DM — XDy HI = 2x* DHY — x D*HI — 2uDHY — (D — Dy)HA,

which, by virtue of the relation (D — D, )H, = —%9,, H,, gives (2.16). O
Notice that Egs. (2.10) and (2.16) were already given, respectively, in [26] and [32].

For © = 0, these relations reduce, respectively, to the well-known pure recurrence relation and
second-order differential equation satisfied by the ordinary Hermite polynomials.

3. Connection and linearization coefficients
In this section, we deal with some expansion formulae associated to generalized Hermite

polynomials. In particular, we solve the corresponding connection and linearization problems
which are defined as follows:
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Given two polynomial sets {S,},>0 and { P, },>0. The so-called connection problem between
them asks to find the coefficients C,, (n) in the expression:

S$u(x) =Y Cu(n) Py (x), 3.1)

m=0

which, for S, (x) = x" is known as the inversion problem for the polynomial set { P, },,>0, and for
Sy (x) = P,(a-x), a being a nonzero complex number, is reduced to duplication or multiplication
problem associated with the polynomial set {P,,},,>0.

When S;; j(x) = Q;(x)R;(x) in (3.1), {Q}, and {R,}, being two polynomial sets, we are
faced to the general linearization problem

i+j
Qi()R;(x) = Z Lij (k) Pr(x). (3.2)

k=0

Particular case of this problem is the standard linearization problem or Clebsch—Gordan-type
problem if Q, =R, = P,.

The computation of the connection and linearization coefficients plays an important role in
many situations of pure and applied mathematics and also in physical and quantum chemical
applications [28,29]. The literature on this topic is extremely vast and a wide variety of methods,
based on specific properties of the involved polynomials, have been devised for computing the
linearization coefficients L;; (k) either in closed form or by means of recursive relations.

A general method, based on lowering and transfer operators, generating functions and a simple
manipulation of formal power series, was developed to solve connection [4,5], duplication [12]
and linearization [3,11] problems. This approach does not need particular properties of the poly-
nomials involved in the problems. In fact, according to (2.12), we have for every polynomial
f € & of degree n the generalized expansion

n

fF@) =Y AW O]

k=0

Py (x)
k'

(3.3)

Then we derive a simple and general formula to compute Cy, (n) and L;;(k) which consists in
putting, respectively, in (3.3) f =S, and f = O; R;.

Next, we apply such a technique to solve inversion, connection, duplication and linearization
problems for generalized Hermite polynomials.

We begin by recalling a result giving the connection coefficients between two A-Appell poly-
nomials.

Lemma 3.1. [4, Corollary 3.4] Let {P,},>0 and {Qu}n>0 be two A-Appell polynomial sets of
transfer power series, respectively, A1 and Aj;. Then

n o

HOEDY ::l—!‘ozn,m Pn(x), where 2?8 - ];aktk. (3.4)

m=0 "

Since {Hﬁf},@o and {B,(x) = )/21:1(','1!))(”},,20 are two (%DM)-Appell of transfer power series,
respectively, e~ and 1, we obtain the following explicit, inversion and connection formulae
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H“(x) [3] (=)™ (2x)n—2m

mX:: mlyu(n—2m) (3.5)
Qor L oH )
Yu(n) Z o ml(n — 2m)!’ (3.6)

and, by composition,

2]

Hfﬁx) Z i (=1)"P yu, (n—2m+2p) \ Hils, (X) 37)
p:O(m—p)!p!yM(n—Zm—i-Zp) (n—2m)!" '

On the other hand, {Hff},@o possess the generalized addition formula

n 2n—kn|

T/HE(x) =Y

n—kaqsm
Y M (), (3-83)
= yu(n — kk! k

and the relation of convolution type
2/ S (M u n
T =Y () OH ), (3.9)
k=0

where T;‘ =e, (YD), T, y“ is, in fact, a generalized translation operator which is reduced to the
ordinary one when p = 0.

The obtained formulae can be used to recover some known expansion associated to Hermite
and Laguerre polynomials. For instance, according to (1.4) and the explicit formula (3.5), we
obtain

(—D"Q2n +¢€)! L u— +e(x2)

(x)= €=0,1, (3.10)
2n+e (n+ 2)n+e
where L% designates the Laguerre polynomial defined by [24]
(a + 1)n —n
o
Ly =—"1F( ). (3.11)

where , F; denotes the hypergeometric function with p numerator and g denominator parame-
ters.
Combining (3.10) with (3.11) and using (1.4), we get

B n m 1k o
L; (x) _ Z Z (=1 (o + 1)}1—m+k Ln_m(x) ’ (3.12)
B+Dn =\ iz K=Y B + Dn-m+k ) @+ Dn—m
which, in view of the useful identities
CD" _ i @m0, (3.13)
(n —m)! n! (1—=6—n),

and the Chu—Vandermonde reduction formula [31],

2F1<_k’b;1>=(c_b)", c£0,—1,-2,... (3.14)
¢ ()
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gives the well-known connection relation [24]

L) =Z(ﬂk7a)k (). (3.15)

k=0

Corollary 3.2. The Brenke polynomials {P,},>0, generated by (2.2) possess a multiplication
formula of the form

n

Puax) =Y (Z)amﬁn—m(a)Pm(x), where =5 POk (3.16)

m=0

As an immediate consequence of (3.16) we obtain the duplication formula

it S\ a1 —a 2y HE L, ()
. 3.17
Z m! (n —2m)! ( )
Using (2.7) and (3.17), we obtain the operational rule
D/% n X
e_THﬁ(x)zﬁH#(E) (3.18)

which, in view of (3.9), gives the convolution-type expression

28T (%) = (Z)H;‘_k(y)ﬁ,‘j(x). (3.19)
k=0

That reduces, for u = 0, to the known Runge formula [27]

n
: - + y) (n>
22H, | —= ) = Hy i (y) H (x).
(5 > (i)
The following result, which gives an explicit expression of the linearization coefficients as-

sociated to three Brenke polynomial sets, is a generalization of products formulae associated to
Appell and g-Appell polynomials obtained by Carlitz in [10].

Corollary 3.3. Let {Py},>0, {On}n>0 and {Ry},>0 be three Brenke polynomial sets generated,
respectively, by

AL()B1(xt), Ax(t)Ba(xt) and As(t)Bi(xt), (3.20)
where
o0 o0
Ap) =) a”t" and B,()=) b of’bP 0, p=1,2,3. (3.21)
= k=0

Then the linearization coe]ﬁcients in (3.2) are given by

l]' b b 2@ 4P 0 . 9
Lij(k) = ZZ sl k=0,1,....i+ (3.22)

.I'OS‘O r+s

-~ (1
where A (t) = All(z) =Y a,E s




20 H. Chaggara/ J. Math. Anal. Appl. 332 (2007) 11-21

The application of Corollary 3.3 allows us to solve the linearization problem for the general-
ized Hermite polynomials.

Taking into account the orthogonality and the symmetry of this family (M) (—x) =
(—1)"HE (x)), the linearization formula (3.2) can be reduced to

min(i, j)
HPOHP () = Y Lijli+j—20HE 5 (0.
k=0

By virtue of (3.22) we obtain the coefficients explicitly

o ilj! Vi G+ =20 +5) (“K)rgs
byt =20= (+]—2k)'k'ZZym(z 2y (G —2s8)  rls!t 6.2

Note that, the linearization problem associated to generalized Hermite polynomials was already
studied by recurrent approaches. Starting from the fact that this polynomial set is semi-classical,
it was shown in [25] that the linearization coefficients L;; (k) satisfy a linear recurrence relation
involving only the k index. The coefficients of this recurrence relation are very complicated and
can only be obtained using a symbolic manipulation package like Mathematica, the obtained
coefficients filled many pages [25].

Applying formula (3.23) to Laguerre polynomial sets, we obtain, in view of (1.4) and (3.10),

R A e e e
2f —k:=B—i,—i;—y —j,—J;
Lf(x)L;(x):( j ) Z le{oz(_a_i_j,—i—jy:—;J—:J l’l>

k=0
—o —
x (1 n —Pkpe o, (3.24)
where qu:;r designates the Kampé de Fériet function defined as follows [31]:
Fp,<(a,,) (Br); (er): y) _ i [aplnsm[brlnlerdm X" y™ (325)
(ag) + (Bs)s (V)3 [aq]n+m[ﬂs]n[ys]m I’l' I’l’l’

where [ap], = Hj?:l(aj)n e
We remark that there is no difficulty in proving the corresponding formula for the linearization
of an arbitrary number of generalized Hermite polynomials.

Hir (OHE (1) - H; " ()
ip! (=Drttrp

- ¥ o >
N it 4+in 4 +i,—2k)! k—ri—-—rp)!
Uiyt (itiz+-+ip ) 211 <, 4..,2rp<ip( ! r)

)/M(ll-i-lz-f- iy =20+t rp))
i1+in+-+i —2k(x)'
rileerplyy, (i —2ry) - V;Lp(l —2rp) 1 4

The previous formula contains, as particular case, the product of several Hermite and Laguerre
polynomials obtained by Carlitz in [9].
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