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We completely solve the equivalence problem for Euler–Bernoulli equation using Lie
symmetry analysis. We show that the quotient of the symmetry Lie algebra of the Bernoulli
equation by the infinite-dimensional Lie algebra spanned by solution symmetries is a
representation of one of the following Lie algebras: 2A1, A1 ⊕ A2, 3A1, or A3,3 ⊕ A1.
Each quotient symmetry Lie algebra determines an equivalence class of Euler–Bernoulli
equations. Save for the generic case corresponding to arbitrary lineal mass density and
flexural rigidity, we characterize the elements of each class by giving a determined set
of differential equations satisfied by physical parameters (lineal mass density and flexural
rigidity). For each class, we provide a simple representative and we explicitly construct
transformations that maps a class member to its representative. The maximally symmetric
class described by the four-dimensional quotient symmetry Lie algebra A3,3 ⊕ A1 corre-
sponds to Euler–Bernoulli equations homeomorphic to the uniform one (constant lineal
mass density and flexural rigidity). We rigorously derive some non-trivial and non-uniform
Euler–Bernoulli equations reducible to the uniform unit beam. Our models extend and
emphasize the symmetry flavor of Gottlieb’s iso-spectral beams [H.P.W. Gottlieb, Isospectral
Euler–Bernoulli beam with continuous density and rigidity functions, Proc. R. Soc. Lond.
Ser. A Math. Phys. Eng. Sci. 413 (1987) 235–250].

Published by Elsevier Inc.

1. Introduction

Da Vinci and Galileo foresaw the need for a theory of vibrating thin beams. However they suggested theories that were
either incomplete or erroneous. Da Vinci’s theory was more descriptive and based on detailed sketches rather than physical
laws and equations: he lacked tools such as Hooke’s law, Newton’s laws, and calculus which postdate him. In Galileo’s
approach, the nemesis was an incorrect calculation of the load carrying capacity of transversely loaded beams. We owe the
first consistent thin beams theory to the Bernoullis. Jacob Bernoulli developed an elasticity theory in which the curvature
of an elastic beam is proportional to its bending moment. Relying on his uncle elasticity theory, Daniel Bernoulli derived
a partial differential equation governing the motion of a thin vibrating beam. Leonard Euler extended and applied the
Bernoullis theory to loaded beams.

E-mail addresses: wafosoh@yahoo.com, celestin.wafo@jsums.edu.
1 In loving memory of my brother Léopold Fotso Simo.
0022-247X/$ – see front matter Published by Elsevier Inc.
doi:10.1016/j.jmaa.2008.04.023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:wafosoh@yahoo.com
mailto:celestin.wafo@jsums.edu
http://dx.doi.org/10.1016/j.jmaa.2008.04.023


388 C. Wafo Soh / J. Math. Anal. Appl. 345 (2008) 387–395
In Euler–Bernoulli beam theory, the transversal motion of an unloaded thin elastic beam is governed by the partial
differential equation

∂2

∂x2

(
f (x)

∂2u

∂x2

)
+ m(x)

∂2u

∂t2
= 0, t > 0, 0 < x < L, (1)

where f (x) > 0 is the flexural rigidity, m(x) > 0 is the lineal mass density, and u(t, x) is the transversal displacement at
time t and position x from one end of the beam taken as origin. Eq. (1) must be solved subject to initial and boundary
conditions such as clamped ends, hinged ends, and free ends boundary conditions.

In this paper, our focus is on the equivalence problem for Eq. (1): we seek necessary and sufficient conditions under
which two equations of the form (1) can be mapped to each other using an invertible change of the dependent and inde-
pendent variables. A particular case of this equivalence problem was tackled by Gottlieb [1] who was interested in equations
of the form (1) that are equivalent to the uniform (constant f and m) beam equation. In the same vein, Bluman and Kumei
[2, Chapter 6, Section 6.5] studied the problem of reducing a linear partial differential equation to a constant coefficient one.
In [3], the authors obtained some general results about the symmetries of linear partial differential equations of any order.

The layout of this paper is the following. There are four sections including this introduction. Section 2 deals with the
complete Lie symmetry classification of Eq. (1). Section 3 is dedicated to the construction of equivalence transformations.
We recapitulate our findings in Section 4.

2. Symmetry analysis of Euler–Bernoulli equation

Our goal in this section is to study the symmetry breaking of Eq. (1). We assume that the reader is familiar with the
rudiments of Lie’s symmetry theory [2,4,5]. Detailed implementations of Lie’s symmetry algorithm on models arising in
applications may be found in the papers [6–10] and references therein.

A vector field

X = τ (t, x, u)
∂

∂t
+ ξ(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
(2)

is a Lie symmetry of Eq. (1) if

X [4]
(

∂2

∂x2

(
f (x)

∂2u

∂x2

)
+ m(x)

∂2u

∂t2

)∣∣∣∣
Eq. (1)

= 0, (3)

where X [4] is the fourth prolongation of X which is calculated using the formulas

X [k] = X +
∑

1�| J |�k

η J
∂

∂u J
, J = ( j1, j2), | J | = j1 + j2, (4)

u J = ∂ | J |u/∂t j1 ∂x j2 , (5)

η J = D J (η − τut − ξux) + τu J ,t + ξu J ,x, u J ,r = ∂u J /∂r, (6)

D J = D j1 D j2 , D j1 = (Dt)
j1 , D j2 = (Dx)

j
2, (7)

Dt = ∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ utx

∂

∂ux
+ · · · , (8)

Dx = ∂

∂x
+ ux

∂

∂u
+ utx

∂

∂ut
+ uxx

∂

∂ux
+ · · · . (9)

Since the symmetry coefficients τ , ξ and τ do not depend explicitly on the derivatives of u, the left-hand side of Eq. (2)
is a polynomial in the derivatives of u. Thus we may set its coefficients to zero to obtain an over-determined system of
linear partial differential equations. In order to avoid the appearance of the integral

∫
(m/ f )1/4 dx in our calculations, we

express the lineal mass density as follows.

m(x) = (
g′(x)

)4
f (x). (10)

After some calculations, the determining equations for the symmetries simplify to

τ = 4c1t + c2, (11)

ξ = 2c1 g

g′ + 2c3

g′ , (12)

η = −
(

c1 f ′ g
f g′ + c3 f ′

f g′ + 3c1 gg′′

g′ 2
+ 3c3 g′′

g′ 2
+ c4

)
u + a(t, x), (13)

( f axx)xx + g′ 4 f att = 0, (14)
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c1 H11 + c3 H12 = 0, (15)

c1 H21 + c3 H22 = 0, (16)

(c1 H11 + c3 H12)xx = 0, (17)

where c1 to c4 are integration constants, and the differential functions Hij are relegated to Appendix A due to their size.
It can be readily seen that Eq. (17) is a mere differential consequence of Eq. (15). Thus the equations we have to solve are
Eqs. (15) and (16).

It is well-known (see for example [2]) that the symmetry Lie algebra of a scalar linear partial differential equation is of
the form Lr ⊕ L∞ , where Lr is a finite-dimensional Lie algebra and L∞ is an infinite-dimensional ideal of the symmetry Lie
algebra spanned by the so-called solution symmetries. In our case

L∞ = 〈
a(t, x)∂u

〉
,

where a(t, x) solves Eq. (14), i.e. Euler–Bernoulli equation. Thus we are left with characterizing Lr . The determining equations
contain four constants viz. c1 to c4 with two constants that are unconstrained. Therefore the dimension of Lr , r, lies between
two and four. Below we elucidate all the possibilities.

Case I: c1 and c3 are arbitrary constants

In this case, Eqs. (15)–(16) split into the following system.

H11 = 0, (18)

H12 = 0, (19)

H21 = 0, (20)

H22 = 0. (21)

The system (18)–(21) is an over-determined system of nonlinear ordinary differential equations for f and g . Thus, a priori,
we are not guaranteed of a solution. Replace Eq. (18) by the combination Eq. (18)− g ×Eq. (19). Solve the resulting equation
for g(3) to obtain

g(3) = 3

10

g′ f ′ 2

f 2
− 2

5

g′ f ′′

f
+ 3

2

g′′ 2

g′ . (22)

Use Eq. (22) to eliminate the derivative g(3) and g(4) from Eq. (19). It results the equation

f (4) = f ′ f (3)

f
+ 11

10

f ′′ 2

f
− 12

5

f ′ 2 f ′′

f 2
+ 9

10

f ′ 4

f 3
. (23)

Employing Eqs. (22)–(23) to get rid of the derivatives g(3) to g(6) , f (4) , and f (5) from Eqs. (20)–(21), we discover that
Eqs. (20)–(21) are identically satisfied. To sum up, we have established that the over-determined system of Eqs. (18)–(21) is
equivalent to the determined system formed by Eqs. (22)–(23). Thus provided Eqs. (22)–(23) are satisfied, the finite part of
the symmetry Lie algebra, L4, is spanned by the operators

X1 = ∂

∂t
, X2 = u

∂

∂u
, (24)

X3 = 4t
∂

∂t
+ 2g

g′
∂

∂x
−

(
f ′ g
f g′ + 3gg′′

g′ 2

)
u

∂

∂u
, (25)

X4 = 2

g′
∂

∂x
−

(
f ′

f g′ + 3g′′

g′ 2

)
u

∂

∂u
. (26)

Simple computations show that the nonzero commutators of the symmetry generators are

[X1, X3] = 4X1, [X3, X4] = −2X4.

By making the change of basis

e1 = X1, e2 = 1√
2

X4, e3 = 1

4
X3, e4 = X2,

it can be seen that L4 is equivalent to A3,3 ⊕ A1 in Patera and Winternitz [11] classification scheme.
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Case II: c1 is arbitrary and c3 = 0

The determining equations (15)–(16) become

H11 = 0, (27)

H21 = 0. (28)

We aim at rewriting the constraints (27)–(28) in terms of lowest possible derivatives of f and g . In order to achieve this
goal, we first solve Eq. (27) for g(4) to obtain

g(4) = 6
g′′ g(3)

g′ − 2
g′ g(3)

g
− 2

5

g′ f (3)

f
+ 6

g′′ 3

g′ 2
+ 3

g′′ 2

g
+ 4

5

g′′ f ′′

f
− 3

5

f ′ 2 g′′

g
+ g′ f ′ f ′′

f

− 4

5

g′ 2 f ′′

g f
− 3

5

g′ f ′ 3

f 3
+ 3

5

g′ 2 f ′ 2

f 2 g
. (29)

Employ Eq. (29) to get rid of the derivatives g(4) to g(6) from Eq. (28) and solve the resulting equation for f (5) to obtain

f (5) = −18 f ′ 5

5 f 4
+ 18 f ′ 4 g′

5 f 3 g
+ 54 f ′ 3 f ′′

5 f 3
− 48 f ′ 2 g′ f ′′

5 f 2 g
− 7 f ′ f ′′ 2

f 2
+ 22g′ f ′′ 2

5 f g
− 18 f ′ 4 g′′

5 f 3 g′ + 48 f ′ 2 f ′′ g′′

5 f 2 g′

− 22 f ′′ 2 g′′

5 f g′ − 22 f ′ 2 f (3)

5 f 2
+ 4 f ′ g′ f (3)

f g
+ 16 f ′′ f (3)

5 f
− 4 f ′ g′′ f (3)

f g′ + 2 f ′ f (4)

f
− 4g′ f (4)

g
+ 4g′′ f (4)

g′ . (30)

Thus the constraints Eqs. (27)–(28) are equivalent to the simplified constraints (29)–(30). Provided f and g fulfilled
Eqs. (29)–(30), the finite part of the symmetry Lie algebra, L3,1, is spanned by X1, X2, and X3. This Lie algebra corresponds
to A1 ⊕ A2 in Patera and Winternitz [11] classification of lower-dimensional Lie algebras.

Case III: c1 = 0 and c3 is arbitrary

Here, Eqs. (27)–(28) are equivalent to the system of equations

H21 = 0, (31)

H22 = 0. (32)

By following the same modus operandi as in Case II, we arrive at the following simplified constraints on f and g .

g(4) = −3 f ′ 3 g′

5 f 3
+ f ′ g′ f ′′

f 2
− 3 f ′ 2 g′′

5 f 2
+ 4 f ′′ g′′

5 f
− 6g′′ 3

g′ 2
− 2g′ f (3)

5 f
+ 6g′′ g(3)

g′ , (33)

f (5) = −18 f ′ 5

5 f 4
+ 54 f ′ 3 f ′′

5 f 3
− 7 f ′ f ′′ 2

f 2
− 18 f ′ 4 g′′

5 f 3 g′ + 48 f ′ 2 f ′′ g′′

5 f 2 g′ − 22 f ′′ 2 g′′

5 f g′ − 22 f ′ 2 f (3)

5 f 2

+ 16 f ′′ f (3)

5 f
− 4 f ′ g′′ f (3)

f g′ + 2 f ′ f (4)

f
+ 4g′′ f (4)

g′ . (34)

The finite portion of the symmetry Lie algebra, L3,2, is spanned by X1, X2 and X4. The Lie algebra L3,2 is nothing but the
three-dimensional Abelian Lie algebra denoted by 3A1 in Patera and Winternitz [11] classification of lower-dimensional Lie
algebras.

Case IV: c1 = 0 = c3

This is the generic case: there are no constraints on f and g . The finite part of the Lie algebra, L2, is generated by X1
and X2. It is the two-dimensional Abelian Lie algebra 2A1.

Remark. Note that in the analysis above, we have excluded the possibility c3 = mc1, m �= 0, since the equivalence transfor-
mation g(x) �→ g(x) + m reduces this case to Case II.

To sum up, we have established the following result.

Theorem 1. Denote the symmetry Lie algebra of Euler–Bernoulli equation by S, and L∞ the infinite-dimensional Lie algebra generated
by the solution symmetries. Then, S/L∞ = A3,3 ⊕ A1, A1 ⊕ A2,3A1,2A1 , depending on wether f and g respectively satisfy Eqs. (22)–
(23), Eqs. (29)–(30), Eqs. (33)–(34), or are arbitrary.
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3. Equivalence classes and mapping to canonical elements

From a symmetry standpoint there are essentially four classes of Euler–Bernoulli equations. Equations of the same class
share the same symmetry structure, and are homeomorphic. Our aim in this section is to select a simple representative for
the non-generic classes (i.e. all the cases save the case where f and g are arbitrary), and constructively show how class
members are mapped to their representative.

In the sequel, we shall use capitalized variables to describe representative of each class. The rational behind this choice
shall be apparent as this section unfold. We denote by [L] the set of all Euler–Bernoulli equations having L as the finite
part of their symmetry Lie algebra. Notations not introduce here are those of the previous sections.

3.1. The class [A3,3 ⊕ A1]

3.1.1. Construction of similarity transformations
It can be readily verified that f (x) = 1 and g(x) = x satisfy Eqs. (22)–(23). Thus, we select as representative element of

this class the equation

U X X X X + U T T = 0. (35)

The finite part of the symmetry Lie algebra of Eq. (35) is generated by the vectors

Y1 = ∂

∂T
, Y2 = U

∂

∂U
, Y3,1 = 4T

∂

∂T
+ 2X

∂

∂ X
, Y4 = 2

∂

∂ X
. (36)

The invertible transformation

T = T (t, x, u), X = X(t, x, u), U = U (t, x, u) (37)

maps an element of [A3,3 ⊕ A1] to Eq. (35) if and only if the same transformation maps 〈X1, X2, X3, X4〉 to 〈Y1, Y2, Y3,1, Y4〉.
We look for a transformation (37) such that

X1 �→ Y1, (38a)

X2 �→ Y2, (38b)

Y3,1 �→ X3 + μ1 X1 + μ2 X4, (38c)

Y4 �→ X4. (38d)

Recall that the transformation defined by Eq. (37) maps a vector field Γ depending on t, x and u to the vector field
Γ (T )∂T + Γ (X)∂X + Γ (U )∂U . Thus, in order to realize Eqs. (38a)–(38b), and Eq. (38c), we have to impose

X1(T ) = 1, X1(X) = 0, X1(U ) = 0, (39)

X2(T ) = 0, X2(X) = 0, X2(U ) = U , (40)

X4(T ) = 0, X4(X) = 2, X4(U ) = 0. (41)

Solving Eqs. (39)–(41), we obtain

T = t + k1, X = g + k2, U = k3u
√

f g′ 3, (42)

where k1, k2, and k3 �= 0 are constants. It can be readily verify that Eq. (38b) is satisfied for μ1 = k1 and μ2 = k2. We
summarize the findings of this subsection as follows.

Theorem 2. Equations of [A3,3 ⊕ A1] are homeomorphic to Eq. (35). A transformation that maps an arbitrary element of [A3,3 ⊕ A1]
to Eq. (35) is given by Eq. (42).

3.1.2. Examples of non-uniform beams homeomorphic to uniform beams: generalization and symmetry justification
of Gottlieb’s iso-spectral models

Here we look for closed-form solutions of the uncoupled system of Eqs. (22)–(23).
We may rewrite Eq. (22) as

{g, x} = 3

10

f ′ 2

f 2
− 2

5

f ′′

f
, (43)

where {y, x} = y′′′/y′ − (3/2)(y′′/y′)2 is the so-called Schwartzian ‘derivative’ (it is not really a derivative but a differential
invariant!) of y with respect to x. From the well-known result on inversion of the Schwartzian derivative [12], we infer that

g = y2(x)
, (44)
y1(x)
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where y1 and y2 are two linearly independent solutions of the second-order linear ordinary differential equation

y′′ + 1

20

(
3

f ′ 2

f 2
− 4

f ′′

f

)
y = 0. (45)

We are now left with solving Eq. (23). Its symmetry Lie algebra is spanned by the operators

Γ1 = ∂

∂x
, Γ2 = x

∂

∂x
, Γ2 = f

∂

∂ f
. (46)

Since the Lie algebra 〈Γ1,Γ2,Γ3〉 is solvable (its second derived algebra is trivial), we may use successive reduction [13,14]
to depress the order of Eq. (23) by three to obtain an Abelian equation of the second kind which we could not solve in
closed-form. One has to be careful when doing successive reduction of order: a wrong reduction of order viz. a reduction
of order without using an ideal of the symmetry Lie algebra, may result in the disappearance of point symmetries or/and
the appearance of non-local symmetries [15]. For details about the successive reduction of Eq. (23), we refer the reader to
Appendix B. Due to the lack of closed-formed solution of the reduced equation, we look for an invariant solution of Eq. (23).
The most general invariant solution under a linear combination of Γ1 to Γ3 are

f = K (Ax + B)m, (47a)

f = CeDx, (47b)

where K , A to D , and m are constants. Note that the second ansatz Eq. (47b) satisfies Eq. (23) if and only if D = 0, and this
possibility is already included in the first ansatz. The substitution of Eq. (47a) into Eq. (23) yields the constraint

m
(
4m3 − 32m2 + 79m − 60

) = 0. (48)

Solving Eq. (48), we obtain

m ∈
{

0,
3

2
,

5

2
,4

}
. (49)

Using the ansatz Eq. (47a) into Eq. (46) yields

y′′ + A2m(4 − m)

20(Ax + B)2
y = 0. (50)

The general solution of Eq. (50) is

y =
{

k1 + k2(Ax + B) if m ∈ {0,4},
k1(Ax + B)1/4 + k2(Ax + B)3/4 if m ∈ {3/2,5/2}, (51)

where k1 and k2 are arbitrary constants. We infer from Eq. (44) that

g =
⎧⎨
⎩

L+M(Ax+B)
P+Q (Ax+B)

if m ∈ {0,4},
L(Ax+B)1/4+M(Ax+B)3/4

P (Ax+B)1/4+Q (Ax+B)3/4 if m ∈ {3/2,5/2},
(52)

where L, M , P and Q are constants satisfying L Q − M P �= 0.
The models defined by Eqs. (47a), (49) and (52) generalize Gottlieb’s [1] iso-spectral models.

3.2. The class [A1 ⊕ A2]

A particular solution of the system (29)–(30) that does not satisfy Eqs. (22)–(23) is f (x) = x, g(x) = x. Based on this
particular solution, we choose as representative of [A1 ⊕ A2] the equation

(XU X X )X X + XU T T = 0. (53)

The finite portion of the Lie symmetry algebra of Eq. (53) is generated by Y1, Y2, and Y3,2 = 4T ∂T + 2X∂X − U∂U . An
invertible transformation (37) maps an element of [A1 ⊕ A2] to Eq. (53) if and only if it maps 〈X1, X2, X3〉 to 〈Y1, Y2, Y3,2〉.
We search for such a transformation by mapping the basis elements as follows.

X1 �→ Y1, X2 �→ Y2, X3 �→ Y3,2. (54)

Simple calculations show that Eq. (54) is realized if and only if

T = t + l1 g2, X = 2l2 g, U = l3u

√
f g′ 3

g
, (55)

where l1, l2 �= 0, and l3 �= 0 are constants.
Thus we have proved the following theorem.
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Theorem 3. Equations of [A2 ⊕ A1] are homeomorphic to Eq. (53). A transformation that maps an arbitrary element of [A2 ⊕ A1] to
Eq. (53) is given by Eq. (55).

3.3. The class [3A1]

A simple solution of Eqs. (33)–(34) which does not satisfy Eqs. (22)–(23) is f (x) = 1, g(x) = ln x. To this solution corre-
sponds the representative

U X X X X + X−4U T T = 0. (56)

The quotient symmetry Lie algebra S/L∞ of Eq. (56) is spanned by Y1, Y2, and Y3,2 = 2X∂X + 3U∂U . An element of [3A1]
will be homeomorphic to Eq. (56) provided the Lie algebras 〈X1, X2, X4〉 and 〈Y1, Y2, Y3,2〉 are similar. We look for a
similarity that transforms the basis vectors as follows.

X1 �→ Y1, X2 �→ Y1, X4 �→ Y3,2. (57)

Elementary reckoning shows that the mapping (57) is realized by the transformation

T = t + m1, X = m2eg, U = m3u
√

f g′ 3e3g, (58)

where m1, m2 �= 0, and m3 �= 0 are constants.
In summary, we have proved the following statement.

Theorem 4. Equations of [3A1] are homeomorphic to Eq. (56). A transformation that maps an arbitrary element of [3A1] to Eq. (56)
is given by Eq. (58).

4. Conclusion

We have studied in details symmetry breaking of Euler–Bernoulli equation. We have shown that the Lie symmetry
algebra of the Euler–Bernoulli equation is one of the following: 2A1 ⊕ L∞ , 3A1 ⊕ L∞ , A1 ⊕ A2 ⊕ L∞ , or A3,3 ⊕ A1 ⊕ L∞ ,
where L∞ is the infinite-dimensional Lie algebra spanned by solution symmetries. Equations admitting a given symmetry
class are characterized completely in terms of a determined set of non-linear ordinary differential equations that physical
parameters (flexural rigidity and lineal mass density) must fulfill. Equations of the same class can be mapped to each other
via invertible transformations. For each class we provided a simple representative and we explicitly constructed similarity
mappings. For the particular class of equations equivalent to the uniform Euler–Bernoulli equation, we rigorously constructed
explicit non-trivial examples that extend and generalize Gottlieb’s [1] iso-spectral models.
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Appendix A. Differential functions appearing in Eqs. (15)–(17)

H11 = 6 f ′ 2

f
− 6g f ′ 3

f 2 g′ − 8 f ′′ + 10g f ′ f ′′

f g′ − 6g f ′ 2 g′′

f g′ 2
+ 8g f ′′ g′′

g′ 2
+ 30 f g′′ 2

g′ 2
− 60 f gg′′ 3

g′ 4
− 4g f (3)

g′

− 20 f g(3)

g′ + 60 f gg′′g(3)

g′ 3
− 10 f gg(4)

g′ 2
,

H12 = −6 f ′ 3

f 2 g′ + 10 f ′ f ′′

f g′ − 6 f ′ 2 g′′

f g′ 2
+ 8 f ′′ g′′

g′ 2
− 60 f g′′ 3

g′ 4
− 4 f (3)

g′ + 60 f g′′g(3)

g′ 3
− 10 f g(4)

g′ 2
,

H21 = 12 f ′ 4

f 3
− 12g f ′ 5

f 4 g′ − 28 f ′ 2 f ′′

f 2
+ 34g f ′ 3 f ′′

f 3 g′ + 10 f ′′ 2

f
− 21g f ′ f ′′ 2

f 2 g′ − 12g f ′ 4 g′′

f 3 g′ 2
+ 6 f ′ 3 g′′

f 2 g′ + 28g f ′ 2 f ′′ g′′

f 2 g′ 2

− 11 f ′ f ′′ g′′

f g′ − 10g f ′′ 2 g′′

f g′ 2
− 12g f ′ 3 g′′ 2

f 2 g′ 3
+ 6 f ′ 2 g′′ 2

f g′ 2
+ 22g f ′ f ′′ g′′ 2

f g′ 3
− 3 f ′′ g′′ 2

g′ 2
− 12g f ′ 2 g′′ 3

f g′ 4
− 60 f ′ g′′ 3

g′ 3

+ 6g f ′′ g′′ 3

g′ 4
+ 120g f ′ g′′ 4

g′ 5
+ 180 f g′′ 4

g′ 4
− 360 f gg′′ 5

g′ 6
+ 10 f ′ f (3)

f
− 12g f ′ 2 f (3)

f 2 g′ + 9g f ′′ f (3)

f g′ − 10g f ′g′′ f (3)

f g′ 2

+ 6g′′ f (3)

′ − 12gg′′ 2 f (3)

′ 3
+ 6g f ′ 3 g(3)

2 ′ 2
− 4 f ′ 2 g(3)

′ − 11g f ′ f ′′ g(3)

′ 2
+ 2 f ′′ g(3)

′ + 12g f ′ 2 g′′ g(3)

′ 3
+ 70 f ′ g′′g(3)

′ 2
g g f g f g f g g f g g
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− 6g f ′′ g′′g(3)

g′ 3
− 180g f ′ g′′ 2 g(3)

g′ 4
− 300 f g′′ 2 g(3)

g′ 3
+ 720 f gg′′ 3 g(3)

g′ 5
+ 6g f (3) g(3)

g′ 2
+ 30g f ′ g(3)2

g′ 3
+ 60 f g(3)2

g′ 2

− 270 f gg′′g(3)2

g′ 4
− 4 f (4) + 3g f ′ f (4)

f g′ + 4gg′′ f (4)

g′ 2
− 2g f ′ 2 g(4)

f g′ 2
− 15 f ′ g(4)

g′ + g f ′′ g(4)

g′ 2
+ 40g f ′ g′′ g(4)

g′ 3

+ 75 f g′′g(4)

g′ 2
− 180 f gg′′ 2 g(4)

g′ 4
+ 60 f gg(3)g(4)

g′ 3
− g f (5)

g′ − 5g f ′ g(5)

g′ 2
− 12 f g(5)

g′ + 30 f gg′′g(5)

g′ 3
− 3 f gg(6)

g′ 2
,

H22 = −12 f ′ 5

f 4 g′ + 34 f ′ 3 f ′′

f 3 g′ − 21 f ′ f ′′ 2

f 2 g′ − 12 f ′ 4 g′′

f 3 g′ 2
+ 28 f ′ 2 f ′′ g′′

f 2 g′ 2
− 10 f ′′ 2 g′′

f g′ 2
− 12 f ′ 3 g′′ 2

f 2 g′ 3
+ 22 f ′ f ′′ g′′ 2

f g′ 3

− 12 f ′ 2 g′′ 3

f g′ 4
+ 6 f ′′ g′′ 3

g′ 4
+ 120 f ′ g′′ 4

g′ 5
− 360 f g′′ 5

g′ 6
− 12 f ′ 2 f (3)

f 2 g′ + 9 f ′′ f (3)

f g′ − 10 f ′ g′′ f (3)

f g′ 2
− 12g′′ 2 f (3)

g′ 3

+ 6 f ′ 3 g(3)

f 2 g′ 2
− 11 f ′ f ′′ g(3)

f g′ 2
+ 12 f ′ 2 g′′g(3)

f g′ 3
− 6 f ′′ g′′g(3)

g′ 3
− 180 f ′ g′′ 2 g(3)

g′ 4
+ 720 f g′′ 3 g(3)

g′ 5
+ 6 f (3) g(3)

g′ 2

+ 30 f ′ g(3)2

g′ 3
− 270 f g′′g(3)2

g′ 4
+ 3 f ′ f (4)

f g′ + 4g′′ f (4)

g′ 2
− 2 f ′ 2 g(4)

f g′ 2
+ f ′′ g(4)

g′ 2
+ 40 f ′ g′′g(4)

g′ 3
− 180 f g′′ 2 g(4)

g′ 4

+ 60 f g(3)g(4)

g′ 3
− f (5)

g′ − 5 f ′ g(5)

g′ 2
+ 30 f g′′g(5)

g′ 3
− 3 f g(6)

g′ 2
.

Appendix B. Successive reduction of the order of Eq. (23)

The Lie brackets of the symmetry operators are [Γ1,Γ2] = Γ1, [Γ1,Γ3] = 0, [Γ2,Γ3] = 0. Thus 〈Γ1〉 and 〈Γ3〉 are ideals
of the symmetry Lie algebra. We may start reduction using Γ1 or Γ3. It is crucial start reduction using an ideal of the
symmetry Lie algebra in order to preserve the remaining symmetries.

A basis of first-order differential invariants of Γ1 is formed by f and f ′ . We define new dependent and independent
variables by

y = f ′, t = f . (B.1)

In the new variables, Eq. (23) reads

y(3) = ÿ

t
− 4

ẏ ÿ

y
− 12

5

ẏ

t2
+ 21

20

ẏ2

y
− 7

ẏ3

y2
+ 9

10

y

t3
, (B.2)

where the over-dot stands for differentiation with respect to t . In the new variables, the symmetries Γ2 and Γ3 are

Γ2 = −y∂y, Γ3 = t∂t − y∂y .

It can be verify that Eq. (B.2) inherits the symmetries Γ2 and Γ3 as expected.
A basis of first-order differential invariant of Γ2 is formed by t and

z = ẏ

y
. (B.3)

In the new variables t and z, Eq. (B.2) becomes

z̈ = ż

t
− 7zż − 12

5
z + 41

20

z2

t
− 16z3 + 9

10

1

t3
. (B.4)

In the variables t and z, the symmetry operator Γ3 becomes

Γ3 = t∂t − z∂z.

A basis of first-order differential invariant of Γ3 is

u = tz, v = tz + t2z′. (B.5)

In the new variables u and v , Eq. (B.5) is

dv

du
= 5 − 7u − 320u3 − 181u2 + 108u − 18

20v
. (B.6)

Eq. (B.6) is an Abelian equation of the second kind.
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