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1. Introduction

The notion of sandwich pairs introduced by Schechter [6] is a useful tool for finding critical points of a functional. Let
W be a Banach space and @ € C1(W, R). Recall that a sequence (u/) ¢ W such that

ow)—c, P'@u)—0 (11)

is called a Palais-Smale sequence for ¢ at the level c, or a (PS). sequence for short, and that @ satisfies the compactness
condition (PS). if every such sequence has a convergent subsequence.

Definition 1.1. We say that A, B C W form a sandwich pair if for any @ € C1(W,R),
—oo<b::ig1f<1><supcb::a<+oo (1.2)
A
implies that @ has a (PS). sequence for some c € [b, a].

Thus, if A, B form a sandwich pair and @ satisfies (1.2) as well as (PS). for all c € [b, a], then & has a critical point.
In [6] sandwich pairs constructed using the eigenspaces of a linear operator were used to solve semilinear elliptic boundary
value problems, and in [4,5] the authors solved quasilinear problems using cones as sandwich pairs. In the present paper
we use more general curved sandwich pairs made up of orbits of a certain group action on product spaces to solve systems
of quasilinear equations.
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We consider the class of problems

—Apu=VyF(x,u) ing, (13)
u=0 on 352, ’
where 2 is a bounded domain in R", n > 1, p = (p1,...,pm) with each p; € (1,00), u = (u1,...,um), Apu =

(Ap,ui, ..., Ap, um) where Apu; = div(|Vu;[Pi~2Vuy;) is the p;-Laplacian of u;, F € C1(£2 x R™), and V,F = (3F /duy, ...,
dF /0upm). We assume that

oF
ou;

m
<C<Z|uj|’ff‘1 +1> V(x,u) € 2 x R™ (1.4)
j=1

for some C > 0 and rj; € (1, pjf(p:f —1)/p}), where

. {nm/(n —pi), pi<n,
pi =
0, pi=n

is the critical exponent for the Sobolev space WS’”‘(.Q) with the norm

1

||ui||i:( IVUilpi) i~ (1.6)
/

W =W Q) x - x WyPm(2) = {u= i, ..., um): uj € WyP' ()} (1.7)

Let

with the norm

|M=@]wa. (1.8)
i=1

Then solutions of (1.3) coincide with critical points of

(D(u):](u)—/F(x,u), ueWw, (1.9)
Q

where
21 I
1w=Y - [1vur =Yl (110)
i Pi i Di
2
Under additional assumptions on F, we will obtain critical points of & using suitable sandwich pairs.

2. Sandwich pairs

In this section we construct sandwich pairs applicable to our problem (1.3). Let W be a Banach space and let X' be the
class of maps o € C(W x [0, 1], W) such that, writing oy = 0o (-, t),

(i) oo =id,
(il) supw,rew xfo,17 loe () —u|l < oco.

We use the customary notation

o'={ueW: dw)<a}, P={ueW: ®u) >a} (21)
for the sublevel and superlevel sets of a functional.
Lemma 2.1. A, B C W form a sandwich pair if

01(A)NB#P Yo € X. (2.2)
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Proof. Let ® € C1(W,R) satisfy (1.2) and set

c:= inf sup @(u). (2.3)
0€X yeoy(A)
Then ¢ > b by (2.2) and c < a since the identity o;(u) =u is in X.
We claim that @ has a (PS) sequence. If not, the (PS). condition holds vacuously and c is not a critical value of @,
so there are & > 0 and 1 € ¥ such that (@) C &°~¢ (see, e.g., Brezis and Nirenberg [1]). Take a o € ¥ such that
o1(A) C @°*¢ and define & € ¥ by

~ o (1), 0<t<1/2,
Ut(u)z{ 20 (1) / (2.4)
me-1(01(Ww)), 1/2<t<1.
Then &1(A) C @°¢, contradicting the definition (2.3) of c. O
Let
S={uew: ul=1} (2.5)
be the unit sphere in W and let
u
s W\ {0} — S, u»m (2.6)

be the radial projection onto S. Now let M be a bounded symmetric subset of W \ {0} radially homeomorphic to S, i.e.,
g=7s|p : M — S is a homeomorphism. Then the radial projection from W \ {0} onto M is given by 7 = g~ ! o 5. For
ACM and r >0, we set

rA={ru: u e A} (2.7)

and

A=my (A Ulo)=JraA. (2.8)
r>0

We denote by SA the suspension of A C W, obtained from A x [—1, 1] by collapsing A x {1} and A x {—1} to different
points, which can be realized in W @ R as the union of all line segments joining the two points (0, £1) € W @& R to points
of A. For a symmetric subset A of W \ {0}, we denote by i(A) the cohomological index of A and recall that

i(SA) =i(A) +1 (2.9)

when A is closed (see Fadell and Rabinowitz [2]).
Theorem 2.2. If Ao, By is a pair of disjoint nonempty closed symmetric subsets of M such that

i(Ag) =i(M \ Bp) < 00 (2.10)
and h is an odd homeomorphism of W such that

dist(h(rAo), h(Bo)) — 0o as r— oo, (211)
then A = h(%), B= h(ﬁ))form a sandwich pair.
Proof. By Lemma 2.1, it suffices to verify (2.2), so suppose there is a o € X with

o1(A)NB=0. (2.12)
By (2.11), there is an R > 1 such that

dist(h(RAo),h(Bo)) >  sup  [or(u) —u] (213)
(u,t)eW x[0,1]
and hence
ot(h(RA0))NB=¢ Vte[0,1]. (2.14)

By (2.12) and (2.14), we can define a map n € C(Ap x [0, 1], W \ B) by
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h((1—3t+3Rtu), ueAp, 0<t<1/3,
n(u,t) =y o3—1(h(Rw)), ueho, 1/3<t<2/3, (2.15)
o1(h(3(1 —t)Ru)), ueAo, 2/3<t<1.

Since n|agxjo; = hla, is odd and n(Ag x {1}) is the single point o1(h(0)), n can be extended to an odd map 7 €
C(SAg, W \ B). Then m( oh~! 07 is an odd continuous map from SAq into M \ By and hence

i(M\ Bp) > i(SAp) =i(Ap) +1 (2.16)

by the monotonicity of the index, contradicting (2.10). O
3. Eigenvalue problems for p-Laplacian systems

In this section we recall some results on eigenvalue problems for p-Laplacian systems proved in Perera et al. [3]. Define
a continuous flow on W, as well as on R™, by

(@, u) > uq = (Joe| VP Tuq, o VP gy (3.1)
for o € R. Noting that the functional in (1.10) satisfies
I(ug) =|all(u) VaoeR, ueW, (3.2)

we consider the eigenvalue problem

{—Apuzwuj(x, u) in 2, (33)
u=0 on 02
associated with our problem (1.3), where J € C1(£2 x R™) is positive somewhere and satisfies
Jx, ug) =la|J(x,u) YaeR, (x,u) e 2 x R™ (3.4)
and the growth condition (1.4) with J in place of F.
For example, taking
J&u) = [ug |- fup ™ (3.5)
with r; € (1, p;) and
m r
Yy =1 (3.6)
i Di
gives
{ —Apui = Ariu | 2 Junl ™ ing2, i=1,...,m, 37)
Uuy=---=up=0 onads.
Let
J(u)=/1(x,u), uew (3.8)
Q
and
M={uew: Iw=1}, M "={ueM: Ju) >0} (3.9)

Then M c W \ {0} is a bounded symmetric C!-Finsler manifold radially homeomorphic to S, M™ is an open submanifold
of M, and positive eigenvalues of (3.3) coincide with critical values of

1
vUu)=—— ueMt (3.10)
J@)
(see Lemmas 10.1.4 and 10.1.5 of Perera et al. [3]). Taking @ = —1 in (3.4) shows that J(x,u) is even in u, so ¥ is even.

Letting F denote the class of symmetric subsets of M™, we can define a positive, nondecreasing, and unbounded sequence
of eigenvalues of (3.3) by

A = Nilnf sup ¥ (u), (3.11)

eF
i)k UM
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and for this particular sequence of eigenvalues
() =i(MT\ )=k (3.12)
when Ag < Agy1 (see Theorem 10.1.8 of Perera et al. [3]).

4. Main result

In this section we give sufficient conditions on F for the existence of a solution to our problem (1.3). Let M be as in
(3.9). Identifying W with {au: ue M, a >0},

h(au) =uy (4.1)
defines an odd homeomorphism of W. For A ¢ M and A defined by (2.8),

h(A) = {ug: ue A, a>0}. (4.2)
We also note that

I(ug) =a, Jugy)=aJu) YueM, x>0 (4.3)
by (3.2) and (3.4), respectively.
Lemma 4.1. If Ay < Agy1 and

MJxu) — WX < FXu) <A Jxu) +W(E) VX, u) e 2 xR (4.4)

for some W e L1(£2), then @ has a (PS). sequence for some c € [—K, K] where K = fQ W (x).

Proof. For u € M and « > 0, integrating (4.4) with u, in place of u gives

M (Ue) — K < [ F(X,uaq) < Met1J(ug) + K, (4.5)
2
and hence
o(1 =t Jw) — K < D(ug) < a1 — 2 Jw) +K (4.6)
by (4.3).

Let Ag=¥* and Bo=¥;,,, U(M\ M™) where M* and ¥ are as in (3.9) and (3.10). Then (3.12) implies (2.10), so
A =h(Ap), B=h(Bg) form a sandwich pair by Theorem 2.2.
By (4.2),

A={ug: uehp, a=>0} B ={uy: u e Bp, a>0}. (4.7)

For u e Ap and o >0, J(u) > 1/, and hence @ (uy) < K by (4.6), so @ < K on A by (4.7). Similarly, J(u) < 1/Ak+1 and
hence ®(uy) > —K forueBgand @« >0,s0 ® > —K on B. O

Let
m
i 0F
H(x,u)=F(x,u) — i o (4.8)
— pi du;
and
1
T =)y —u". (4.9)
— Di
i=1
Note that
T(Uy) =|a|t(u) VYo eR, ueR™. (4.10)

Lemma 4.2. If (4.4) holds, then @ satisfies (PS). for all c € R in the following cases:

(i) Hx,u)<C(t)+1) and H(x):= (li)Tn H(x,u)/T(u) <0,
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(ii) H(x,u)>—C(t)+1) and H(x):= lim H(x,u)/t(u)>0

T(u)—>o0

for some C > 0.

Proof. We give the proof under assumption (i). The proof under (ii) is similar. Let (u/) be a (PS). sequence. By a standard
argument, it suffices to show that {u’/} is bounded, so suppose pj :=I(u/) — oo and set U/ := u{/pj. Then I1(Wf) =1 by

(3.2) and hence a subsequence of (ii/) converges to some % weakly in W, strongly in LP1(£2) x --- x LPm(£2), and a.e. in

2 x---x 2. We have

/ Hxoul) (@' wd), @)/p1, ..., uh/pm)) — @ ()
— —0
Pj Pj

2

by (1.1). On the other hand, ‘L'(uf)/pj = 7(ii/) by (4.10) and hence

J ~
{uz0} {u=0} {uz0}

_ J _ J . . _
lim/ Hx u) < / lim M‘C(ﬁ]) + / limC(t(ﬁJ) + l) = / Hx)t@{@) <O0.
J Pj R T(ul) 5 Pj

It follows that U = 0. But, passing to the limit in

@ (ud) /F(x,uf) / oy
1- = < | A L) +
py py k1) (x, )

2 2

W (x
Pj

gives 1 < Agy1J (@), and hence U # 0 since taking o = 0 in (3.4) shows that J(0) =0, a contradiction.

We now have
Theorem 4.3. Under the hypotheses of Lemmas 4.1 and 4.2, problem (1.3) has a solution.
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