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The subject of this paper is an analytic approximate method for stochastic functional
differential equations whose coefficients are functionals, sufficiently smooth in the sense
of Fréchet derivatives. The approximate equations are defined on equidistant partitions of
the time interval, and their coefficients are general Taylor expansions of the coefficients
of the initial equation. It will be shown that the approximate solutions converge in the
Lp-norm and with probability one to the solution of the initial equation, and also that the
rate of convergence increases when degrees in Taylor expansions increase, analogously to
real analysis.
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1. Introduction and preliminary results

In many circumstances, some of the most frequent and most important stochastic models, when the future states of
systems depend not only on present states, but also on their past history, are described by complex stochastic functional
differential equations. The main interest in the field has often been directed to the existence, uniqueness and stability, as
well as to the study of qualitative and quantitative properties of the solutions. We refer the reader to Mohamed [15] and to
more papers and books by X. Mao [12–14], and the literature cited therein, among others. Moreover, because it is almost
impossible to solve these equations explicitly, it is important to find some analytic and numerical approximations of the
solutions. However, there is only a small amount of papers referring to such problems, Buckwar [3], Mao [14], for example.
The present paper refers to an analytic method, which could lead to some constructions of appropriate numerical methods.

Before stating the main results to be proved, we will briefly reproduce only the essential notations and definitions,
which are necessary in our investigation. Our initial assumption is that all random variables and processes are defined on
a filtered probability space (Ω, F , {Ft}t�0, P ) with a filtration {Ft}t�0 satisfying the usual conditions (that is, it is increasing
and right-continuous, and F0 contains all P -null sets). Let w(t) = (w1(t), w2(t), . . . , wm(t))T , t � 0, be an m-dimensional
standard Brownian motion, Ft -adapted and independent of F0. Let the Euclidean norm be denoted by | · | and, for simplicity,
trace[BT B] = |B|2 for a matrix B , where BT is the transpose of a vector or a matrix.

For a given τ > 0, let C([−τ ,0]; Rd) be the family of continuous functions ϕ from [−τ ,0] to Rd , equipped with the
supremum norm ‖ϕ‖ = sup−τ�θ�0 |ϕ(θ)|. Obviously, (C([−τ ,0]; Rd),‖ · ‖) is a Banach space.

Taking into account the Gaussian white noise, the evolution of such a system can be described with a stochastic func-
tional differential equation of the form

dx(t) = f (xt, t)dt + g(xt, t)dw(t), t ∈ [t0, T ], xt0 = ξ, (1)
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where the functionals

f : C
([−τ ,0]; Rd) × [t0, T ] → Rd, g : C

([−τ ,0]; Rd) × [t0, T ] → Rd × Rm

are Borel measurable, x(t) is a d-dimensional state process and xt = {x(t + θ), θ ∈ [−τ ,0]} is a C([−τ ,0]; Rd)-valued
stochastic process which is regarded as the past history of the state. Because of the past dependence, the initial condition
is defined on the entire interval [t0 − τ , t0], that is

xt0 = ξ = {
ξ(θ), θ ∈ [−τ ,0]}, (2)

where ξ is an Ft0 -measurable and C([−τ ,0]; Rd)-valued random variable such that E‖ξ‖2 < ∞.
A d-dimensional stochastic process {x(t), t ∈ [t0 − τ , T ]} is said to be a solution to Eq. (1) if it is a.s. continuous and

{xt, t ∈ [t0, T ]} is Ft -adapted,
∫ T

t0
| f (xt , t)|dt < ∞ a.s.,

∫ T
t0

|g(xt, t)|2 dt < ∞ a.s., xt0 = ξ a.s. and for every t ∈ [t0, T ], the
integral form of Eq. (1) holds a.s.

A solution {x(t), t ∈ [t0 − τ , T ]} is said to be unique if any other solution {x̃(t), t ∈ [t0 − τ , T ]} is indistinguishable from
it, in the sense that P {x(t) = x̃(t), t ∈ [t0 − τ , T ]} = 1.

The basic existence-and-uniqueness theorem [12, Theorem 5.2.5, p. 153] guarantees that if f and g satisfy the uniform
Lipschitz condition and the linear growth condition, that is, if there exists a constant K > 0 such that∣∣ f (ϕ, t) − f (ψ, t)

∣∣ ∨ ∣∣g(ϕ, t) − g(ψ, t)
∣∣ � K‖ϕ − ψ‖, (3)∣∣ f (ϕ, t)

∣∣ ∨ ∣∣g(ϕ, t)
∣∣ � K

(
1 + ‖ϕ‖) (4)

for all t ∈ [t0, T ] and (ϕ,ψ) ∈ C([−τ ,0]; Rd), then there exists a unique a.s. continuous solution x(t) to Eq. (1). Moreover, if
E‖ξ‖p < ∞ for any p � 2, then E supt0−τ�t�T |x(t)|p < ∞ [12, Theorem 5.4.1, p. 158].

Essentially, the fundamentals of the approximate method considered here go back to papers [1,2] by M.A. Atalla and
[6,7] by S. Janković and D. Ilić. In [1] the solution x = {x(t), t ∈ [0,1]} of an ordinary stochastic differential equation
dx(t) = a(x(t), t)dt + b(x(t), t)dw(t), t ∈ [0,1], x(0) = x0, is approximated by the processes xn = {xn(t), t ∈ [0,1]}, n ∈ N ,
by successively connecting the solutions {xn(t), t ∈ [tk, tk+1]}, k = 0, . . . ,n − 1 of the equations dxn(t) = a(xn(tk), t)dt +
b(xn(tk), t)dw(t), xn(0) = x0, t ∈ [tk, tk+1] at division points tk of an arbitrary partition 0 = t0 < t1 < · · · < tn = 1 of
the time interval. The rate of this approximation in the L p-norm, p � 2, is found to be O (δ

p/2
n ) when n → ∞ and

δn = max0�k�n−1(tk+1 − tk) → 0.
We mention here the key paper [2] by Atalla in which he improved his own result from [1] by using a sequence of

linear stochastic differential equations dxn(t) = [a(xn(tk), t) + a′
x(xn(tk), t)(xn(t) − xn(tk))]dt + [b(xn(tk), t) + b′

x(xn(tk), t))×
(xn(t) − xn(tk))]dw(t), xn(0) = x0, t ∈ [tk, tk+1), k = 0, . . . ,n − 1, that is, the equations in which the drift and diffusion
coefficients are Taylor approximations of a(x, t) and b(x, t) up to the first derivative in x. The rate of this approximation, in
the L p-norm, was O (δ

p
n ) when n → ∞ and δn → 0.

Having in mind that Taylor approximations, as polynomials, could be a useful tool to approximate analytically or numer-
ically the coefficients of stochastic differential equations, Atalla’s concept in [2] is appropriately extended in [6] in the sense
that the drift and diffusion coefficients of approximate equations are taken to be Taylor polynomials in x of degrees m1 and
m2 for a(x, t) and b(x, t), respectively. The rate of this approximation, in the L p-norm, has been found to be O (δ

(m+1)p/2
n )

when n → ∞ and δn → 0, where m = min{m1,m2}. This result was extended in [7] to stochastic integrodifferential equa-
tions.

By following the concepts from papers [6,7], we want to approximate the solution to Eq. (1) with a sequence of solutions
to stochastic functional differential equations the drift and diffusion coefficients of which are Taylor expansions of f and g ,
respectively, up to arbitrary derivatives in x. Having in mind that f and g are functionals, we will approximate them by
using Fréchet derivatives and general Taylor formula. For this reason, in the remainder of this section we first give a brief
survey about these notions referring, in general, to an arbitrary mapping (see [4,5], for example). In the next section we
formulate the problem and present our main results. Note that the proofs of the assertions in the next section are completely
different with respect to the ones from [6,7], since the present and past states of the solution appear in Eq. (1), and also
because of the need to apply Fréchet derivatives and general Taylor formula.

Let V and W be vector spaces on the same scalar field. A mapping T : V k → W is said to be multi-linear
if it is linear in each argument, that is, if T (v1, . . . , vi−1,ai vi + ui, vi+1, . . . , vk) = ai T (v1, . . . , vi−1, vi, vi+1, . . . , vk) +
T (v1, . . . , vi−1, ui, vi+1, . . . , vk) for each 1 � i � k and for all scalars ai and vi, ui ∈ V . Denote by T (V k → W ) a set of
all multi-linear mappings T : V k → W , which itself generates a vector space in a usual way.

Definition 1. Let V and W be Banach spaces and D an open subset of V . A mapping T : D → W is a Fréchet-differentiable
in x ∈ D if there exists a bounded linear operator A ∈ L(V → W ) satisfying

lim
‖h‖→0

‖T (x + h) − T (x) − A(h)‖
‖h‖ = 0.
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The operator A is called the Fréchet derivative of the mapping T at x and it will be denoted by T ′
(x) . If the mapping

T : D → W is Fréchet differentiable on D , then higher order Fréchet derivatives in x, denoted by T (2)
(x) , T (3)

(x) , . . . , T (k)
(x) , are

multi-linear mappings from V to W . These facts suggest a natural identification of the spaces L(V → T (V k → W )) and
T (V k+1 → W ), that is, L(V → T (V k → W ) = T (V k+1 → W ). The spaces L(V → T (V k → W )) and T (V k+1 → W ) are
isometric.

Let D be a convex subset of a Banach space V and let T be an arbitrary n +1 times Fréchet-differentiable mapping on D .
If x and x + h belong to D , then

T (x + h) =
n∑

k=0

1

k! T (k)
(x) (h, . . . ,h︸ ︷︷ ︸

k

) + W (x,h) (5)

is a Taylor approximation of the mapping T in the neighborhood of x, where the Lagrange form of the residuum W (x,h) is

W (x,h) = 1

(n + 1)! T (n+1)

(x+th)
(h, . . . ,h︸ ︷︷ ︸

n+1

) (6)

for some t ∈ (0,1) and∥∥W (x,h)
∥∥ � 1

(n + 1)! sup
t∈[0,1]

∥∥T (n+1)

(x+th)

∥∥ · ‖h‖n+1. (7)

2. Main results

Let us first present Eq. (1) in its equivalent integral form,

x(t) = ξ(0) +
t∫

t0

f (xs, s)ds +
t∫

t0

g(xs, s)dw(s), t ∈ [t0, T ] (8)

with the initial condition (2). Let also

t0 < t1 < · · · < tn = T (9)

be an equidistant partition of the interval [t0, T ], that is, the partition points are

tk = t0 + k

n
(T − t0), k = 0,1, . . . ,n,

with δn = (T − t0)/n ∈ (0,1) for large enough integers n ∈ N .
As it has already been mentioned, the solution x = {x(t), t ∈ [t0 − τ , T ]} to Eq. (8) will be approximated on the partition

(9) by the solutions {xn(t), t ∈ [tk, tk+1]}, k = 0,1, . . . ,n − 1 of the equations

xn(t) = xn(tk) +
t∫

tk

m1∑
i=0

f (i)
(xn

tk
,s)(xn

s − xn
tk
, . . . , xn

s − xn
tk
)

i! ds

+
t∫

tk

m2∑
i=0

g(i)
(xn

tk
,s)(xn

s − xn
tk
, . . . , xn

s − xn
tk
)

i! dw(s), t ∈ [tk, tk+1], (10)

satisfying the initial conditions xt0 = ξ , xn
tk

= {xn(tk + θ), θ ∈ [−τ ,0]}, k = 1,2, . . . ,n − 1, the drift and diffusion coefficients
of which are Taylor expansions of f and g in the first argument in the neighborhood of the points xn

tk
, up to the m1-th and

m2-th Fréchet derivatives, respectively.
By following the concept presented in Section 1, the approximate solution xn = {xn(t), t ∈ [t0 − τ , T ]} will be obtained

as an a.s. continuous process, by connecting successively the initial condition ξ = {ξ(θ), θ ∈ [−τ ,0]} and the processes
{xn(t), t ∈ [tk, tk+1]} at the division points tk whenever k = 0,1, . . . ,n − 1.

Obviously, it must be required that f and g satisfy appropriate conditions, first of all, they must be sufficiently smooth.
With no particular emphasis on conditions, we suppose the existence and uniqueness of the solutions to Eqs. (8) and (10),
and we emphasize only the conditions explicitly used in our discussion. In spite of the assumptions that f and g satisfy
the Lipschitz condition (3) and growth condition (4), we introduce the following assumptions:

A1: The functionals f and g have Taylor expansions in the argument x up to the m1-th and m2-th Fréchet derivatives,
respectively.
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A2: The functionals f (m1+1)
(x,t) and g(m2+1)

(x,t) are uniformly bounded, i.e., there exist positive constants L1, L2 > 0 such that

sup
C([−τ ,0];Rd)×[t0,T ]

∥∥ f (m1+1)
(x,t) (h, . . . ,h)

∥∥ � L1 · ‖h‖m1+1,

sup
C([−τ ,0];Rd)×[t0,T ]

∥∥g(m2+1)
(x,t) (h, . . . ,h)

∥∥ � L2 · ‖h‖m2+1.

A3: There exist unique, a.s. continuous solutions x and xn to Eqs. (8) and (10), respectively, such that, for p � 2,

E sup
t∈[t0−τ ,T ]

∣∣x(t)∣∣p
< ∞, E sup

t∈[t0−τ ,T ]
∣∣xn(t)

∣∣(M+1)2 p � Q < ∞,

where M = max{m1,m2} and Q > 0 is a constant independent of n. Moreover, we suppose that E‖ξ‖(M+1)2 p < ∞ and
that all the Lebesgue and Ito integrals employed further are also well defined.

A4: The initial condition (2) is uniformly Lipschitz continuous, i.e., there exists a constant β > 0 such that, for all −τ �
θ1, θ2 � 0,∣∣ξ(θ2) − ξ(θ1)

∣∣ � β|θ2 − θ1|.

Furthermore, we will apply several times, without special emphasis, the elementary inequality (
∑m

i=1 ai)
q � mq−1 ∑m

i=1 aq
i ,

ai > 0, q ∈ N , the usual Ito isometry, the Hölder inequality to Lebesgue integrals and the well-known Burkholder–Davis–
Gundy inequality to Ito integrals [8,12].

In order to estimate the closeness between the solutions x and xn , we first state some auxiliary results, which can be
treated independently of the mentioned problem, but which are essentially used in the proof of the main result.

Proposition 1. Let {xn(t), t ∈ [tk − τ , tk+1]}, k = 0,1, . . . ,n − 1, be the solution to Eq. (10) and let the condition (4) and the assump-
tions A1 , A2 , A3 be satisfied. Then, for every 2 � r � (M + 1)p,

E sup
s∈[tk,t]

∣∣xn(s) − xn(tk)
∣∣r � C · n−r/2, t ∈ [tk, tk+1], k = 0,1, . . . ,n − 1,

where C is a generic constant independent of n.

Proof. For reasons of notational simplicity, denote that

F
(
xn

t , t; xn
tk

) =
m1∑
i=0

f (i)
(xn

tk
,t)(xn

t − xn
tk
, . . . , xn

t − xn
tk
)

i! ,

G
(
xn

t , t, xn
tk

) =
m2∑
i=0

g(i)
(xn

tk
,t)(xn

t − xn
tk
, . . . , xn

t − xn
tk
)

i! .

Then, in view of A1, for t ∈ [tk, tk+1], k = 0,1, . . . ,n − 1 and θ̄ ∈ (0,1),

f
(
xn

t , t
) = F

(
xn

t , t; xn
tk

) +
f (m1+1)

(xn
tk

+θ̄ (xn
t −xn

tk
),t)

(xn
t − xn

tk
, . . . , xn

t − xn
tk
)

(m1 + 1)! ,

g
(
xn

t , t
) = G

(
xn

t , t; xn
tk

) +
g(m2+1)

(xn
tk

+θ̄ (xn
t −xn

tk
),t)

(xn
t − xn

tk
, . . . , xn

t − xn
tk
)

(m2 + 1)! . (11)

In order to estimate E sups∈[tk,t] |xn(s) − xn(tk)|r , we apply the previously cited elementary inequality to Eq. (10), the
Hölder inequality to the Lebesgue integral and the Burkholder–Davis–Gundy inequality to the Ito integral for r > 2, that is,
Doob inequality for r = 2. So, we find, for all t ∈ [tk, tk+1], k = 0,1, . . . ,n − 1, that

E sup
s∈[tk,t]

∣∣xn(s) − xn(tk)
∣∣r � 2r−1(t − tk)

r−1

t∫
tk

E
∣∣F

(
xn

s , xn
tk
, s

)∣∣r
ds + 2r−1cr(t − tk)

r
2 −1

t∫
tk

E
∣∣G(

xn
s , xn

tk
, s

)∣∣r
ds

≡ 2r−1(t − tk)
r
2 −1[(t − tk)

r
2 J1(t) + cr J2(t)

]
, (12)

where cr is a universal constant from the Burkholder–Davis–Gundy inequality, while J1(t) and J2(t) are the appropriate
integrals. On the basis of Taylor expansion (11), the growth condition (4) and the assumptions A1, A2 and A3, we conclude
that J1(t) can be estimated in the following way,
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J1(t) =
t∫

tk

E
∣∣ f

(
xn

s , s
) − [

f
(
xn

s , s
) − F

(
xn

s , xn
tk
, s

)]∣∣r
ds

≡
t∫

tk

E

∣∣∣∣ f
(
xn

s , s
) −

f (m1+1)

(xn
tk

+θ̄ (xn
s −xn

tk
),s)

(xn
s − xn

tk
, . . . , xn

s − xn
tk
)

(m1 + 1)!
∣∣∣∣r

ds

� 2r−1

[
K r

t∫
tk

E
∣∣ f

(
xn

s , s
)∣∣r

ds + Lr
1

[(m1 + 1)!]r

t∫
tk

E
∥∥xn

s − xn
tk

∥∥(m1+1)r
ds

]

� 2r−1

[
K r2r−1

t∫
tk

(
1 + E

∥∥xn
s

∥∥r)
ds + Lr

1

[(m1 + 1)!]r
2(m1+1)r−1

t∫
tk

(
E
∥∥xn

s

∥∥(m1+1)r + E
∥∥xn

tk

∥∥(m1+1)r)
ds

]

� 22r−1
[

K r(2 + Q )(t − tk) + 2(m1+1)r (1 + Q )Lr
1

[(m1 + 1)!]r
(t − tk)

]
≡ C1(t − tk),

where θ̄ ∈ (0,1) and C1 ≡ C1(K , L1, Q , r,m1) is a generic constant.
Similarly, by repeating the previous procedure, we see that

J2(t) � C2(t − tk),

where C2 ≡ C2(K , L2, Q , r,m2) is a generic constant. Therefore, (12) yields

E sup
s∈[tk,t]

∣∣xn(s) − xn(tk)
∣∣r � 2r−1(t − tk)

r
2
[
C1(T − tk)

r
2 + cr C2

]
� C(t − tk)

r
2

� C · n−r/2, t ∈ [tk, tk+1],
where C is a generic constant independent of n. �

Let us recall that, for the proof of the next assertion, it is of great importance that the partition of the interval [t0, T ] be
equidistant. Then, if we shift for τ two arbitrary points t1, t2 ∈ [tk, tk+1], the points t1 − τ and t2 − τ will also fall into the
same interval [t j, t j+1], j = 0,1, . . . ,k, or into [t0 − τ , t0].

Proposition 2. Let the conditions of Proposition 1 and the assumption A4 be satisfied. Then, for all 2 � r � (M + 1)p,

E
∥∥xn

t − xn
tk

∥∥r � B · n−r/2, t ∈ [tk, tk+1], k = 0,1, . . . ,n − 1,

where B is a generic constant independent of n.

Proof. In order to prove this statement, we must discuss three cases.

Case 1. Assume t − τ < t0. Then both processes xn
t = {xn(t + θ), θ ∈ [−τ ,0]} and xn

tk
= {xn(tk + θ), θ ∈ [−τ ,0]} coincide

with the initial condition for some θ ∈ [−τ ,0]. In accordance with the norm in C([−τ ,0]; Rd), one gets

E
∥∥xn

t − xn
tk

∥∥r = E sup
θ∈[−τ ,0]

∣∣xn(t + θ) − xn(tk + θ)
∣∣r

= E sup
u∈[tk−τ ,tk]

∣∣xn(u + t − tk) − xn(u)
∣∣r

� E sup
u∈[tk−τ ,t0+tk−t]

∣∣xn(u + t − tk) − xn(u)
∣∣r

+ E sup
u∈[t0+tk−t,t0]

∣∣xn(u + t − tk) − xn(u)
∣∣r

+ E sup
u∈[t0,tk]

∣∣xn(u + t − tk) − xn(u)
∣∣r

.

The first term is determined for u + t − tk � t0 and u � t0, the second one for u + t − tk � t0 and u � t0, and the third one
for u + t − tk � t0 and u � t0. Thus, it follows that
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E
∥∥xn

t − xn
tk

∥∥r � E sup
u∈[tk−τ ,t0+tk−t]

∣∣ξ(u + t − tk − t0) − ξ(u − t0)
∣∣r

+ E sup
u∈[t0+tk−t,t0]

∣∣xn(u + t − tk) − ξ(u − t0)
∣∣r

+ E sup
u∈[t0,tk]

∣∣xn(u + t − tk) − xn(u)
∣∣r

≡ (A1 + A2 + A3). (13)

The estimate A1 follows from the assumption A4, i.e., from the Lipschitz condition for the initial data,

A1 � βr(T − tk)
r
2 n−r/2. (14)

To estimate A2, we use the fact that u + t − tk ∈ [t0, t1] whenever u � t0, which is implied by the uniformness of the
partition, and then Proposition 1 and the assumption A4. Finally,

A2 � 2r−1
[

E sup
u∈[t0+tk−t,t0]

∣∣xn(u + t − tk) − xn(t0)
∣∣r + E sup

u∈[t0+tk−t,t0]
∣∣ξ(0) − ξ(u − t0)

∣∣r
]

� 2r−1[C + βr(T − tk)
r
2
]
n−r/2. (15)

In order to estimate A3, we can notice that there exist i ∈ {0, . . . ,k} and v ∈ [ti, ti+1] so that A3 = E|xn(v + t − tk) −
xn(v)|r . Then, we differentiate two cases.

First, let ti � v � v + t − tk � ti+1. In view of Proposition 1 we have

A3 � 2r−1[E
∣∣xn(v + t − tk) − xn(ti)

∣∣r + E
∣∣xn(v) − xn(ti)

∣∣r] � 2r Cn−r/2. (16)

Second, let ti � v � ti+1 � v + t − tk � ti+2. Then, Proposition 1 again yields

A3 � 3r−1[E
∣∣xn(v + t − tk) − xn(ti+1)

∣∣r + E
∣∣xn(ti+1) − xn(ti)

∣∣r + E
∣∣xn(v) − xn(ti)

∣∣r] � 3r Cn−r/2. (17)

Now, (14), (15), (16) and (17) together with (13) gives

E
∥∥xn

t − xn
tk

∥∥r � Bn−r/2,

where B is a generic constant independent of n.

Case 2. Let tk − τ < t0 � t − τ . Now, only the process xn
tk

= {xn(tk + θ), θ ∈ [−τ ,0]} coincides with the initial condition
for some θ ∈ [−τ ,0]. Similarly to Case 1, one gets

E
∥∥xn

t − xn
tk

∥∥r � E sup
u∈[tk−τ ,t0]

∣∣xn(u + t − tk) − xn(u)
∣∣r + E sup

u∈[t0,tk]
∣∣xn(u + t − tk) − xn(u)

∣∣r

� (A2 + A3)

� Bn−r/2.

Case 3. Let tk − τ � t0. Then, in view of Case 1,

E
∥∥xn

t − xn
tk

∥∥r � E sup
u∈[t0,tk]

∣∣xn(u + t − tk) − xn(u)
∣∣r = A3 � Bn−r/2.

Thus, the proof becomes complete. �
Finally, by applying Proposition 2, one can prove the main result in this paper, that the sequence of approximate solutions

{xn, n ∈ N} converges in the p-th moment sense to the solution x of Eq. (8). This conclusion follows from the next theorem,
in which the rate of the closeness between x and xn is given.

Theorem 1. Let x be a solution to Eq. (8) and xn be its approximate solution determined with Eq. (10). Let also the conditions of
Proposition 2 and the Lipschitz condition (3) be satisfied. Then, for p � 2,

E sup
t∈[t0−τ ,T ]

∣∣x(t) − xn(t)
∣∣p � H · n−(m+1)p/2,

where m = min{m1,m2} and H is a generic constant independent of n.
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Proof. For an arbitrary t ∈ [t0, T ], by substituting Eqs. (8) and (10), it follows that

x(t) − xn(t) =
t∫

t0

∑
k: tk�t

[
f (xs, s) − F

(
xn

s , s; xn
tk

)]
I[tk,tk+1)(s)ds

+
t∫

t0

∑
k: tk�t

[
g(xs, s) − G

(
xn

s , s; xn
tk

)]
I[tk,tk+1)(s)dw(s). (18)

Since x and xn satisfy the same initial condition, one obtains

E sup
s∈[t0−τ ,t]

∣∣x(s) − xn(s)
∣∣p � E sup

s∈[t0−τ ,t0]
∣∣x(s) − xn(s)

∣∣p + E sup
s∈[t0,t]

∣∣x(s) − xn(s)
∣∣p

= E sup
s∈[t0,t]

∣∣x(s) − xn(s)
∣∣p

� 2p−1 E sup
s∈[t0,t]

∣∣∣∣∣
s∫

t0

∑
k: tk�s

[
f (xu, u) − F

(
xn

u, u; , xn
tk

)]
I[tk,tk+1)(u)du

∣∣∣∣∣
p

+ 2p−1 E sup
s∈[t0,t]

∣∣∣∣∣
s∫

t0

∑
k: tk�s

[
g(xu, u) − G

(
xn

u, u; xn
tk

)]
I[tk,tk+1)(u)dwu

∣∣∣∣∣
p

� 2p−1(t − t0)
p−1 E

t∫
t0

∣∣∣∣ ∑
k: tk�t

[
f (xu, u) − F

(
xn

u, u; xn
tk

)]
I[tk,tk+1)(u)

∣∣∣∣p

du

+ cp2p−1(t − t0)
p
2 −1 E

t∫
t0

∣∣∣∣ ∑
k: tk�t

[
g(xu, u) − G

(
xn

u, u; xn
tk

)]
I[tk,tk+1)(u)

∣∣∣∣p

du. (19)

Let j = max{i ∈ {0,1,2, . . . ,n − 1}, ti � t � T }. Denote that

Jtk,t(u) = [
f (xu, u) − F

(
xn

u, u; xn
tk

)]
I[tk,t)(u),

J̃ tk,t(u) = [
g(xu, u) − G

(
xn

u, u; xn
tk

)]
I[tk,t)(u).

Then, (19) can be written as

E sup
s∈[t0−τ ,t]

∣∣x(s) − xn(s)
∣∣p � 2p−1(t − t0)

p−1

t∫
t0

E

∣∣∣∣∣
j−1∑
k=0

Jtk,tk+1(u) + Jt j ,t(u)

∣∣∣∣∣
p

du

+ 2p−1cp(t − t0)
p
2 −1

t∫
t0

E

∣∣∣∣∣
j−1∑
k=0

J̃ tk,tk+1(u) + J̃ t j ,t(u)

∣∣∣∣∣
p

du. (20)

Since
j−1∑
k=0

Jtk,tk+1(u) + Jt j ,t(u) =
{

f (xu, u) − F (xn
u, u; xn

tk
), u ∈ [tk, tk+1),

f (xu, u) − F (xn
u, u; xn

t j
), u ∈ [t j, t),

j−1∑
k=0

J̃ tk,tk+1(u) + J̃ t j ,t(u) =
{

g(xu, u) − G(xn
u, u, xn

tk
), u ∈ [tk, tk+1),

g(xu, u) − G(xn
u, u; xn

t j
), u ∈ [t j, t),

whenever k = 0,1, . . . , j − 1, the relation (20) becomes

E sup
s∈[t0−τ ,t]

∣∣x(s) − xn(s)
∣∣p � 2p−1(T − t0)

p−1
j−1∑
k=0

tk+1∫
tk

E
∣∣ f (xu, u) − F

(
xn

u, u; xn
tk

)∣∣p
du

+ 2p−1(T − t0)
p−1

t∫
t

E
∣∣ f (xu, u) − F

(
xn

u, u; xn
t j

)∣∣p
du
j
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+ 2p−1cp(T − t0)
p
2 −1

j−1∑
k=0

tk+1∫
tk

E
∣∣g(xu, u) − G

(
xn

u, u; xn
tk

)∣∣p
du

+ 2p−1cp(T − t0)
p
2 −1

t∫
t j

E
∣∣g(xu, u) − G

(
xn

u, u; xn
t j

)∣∣p
du. (21)

The application of the Lipschitz condition (3), the assumption A2 and Proposition 2 yield

t∫
tk

E
∣∣ f (xu, u) − F

(
xn

u, u; xn
tk

)∣∣p
du

� 2p−1

[ t∫
tk

E
∣∣ f (xu, u) − f

(
xn

u, u
)∣∣p

du +
t∫

tk

E
∣∣ f

(
xn

u, u
) − F

(
xn

u, u; xn
tk

)∣∣p
du

]

� 2p−1 K p

t∫
tk

E
∥∥xu − xn

u

∥∥p
du + 2p−1

t∫
tk

E

∥∥∥∥
f (m1+1)

(xn
tk

+θ̄ (xn
u−xn

tk
),u)

(xn
u − xn

tk
, . . . , xn

u − xn
tk
)

(m1 + 1)!
∥∥∥∥p

du

� 2p−1

[
K p

t∫
tk

E
∥∥xu − xn

u

∥∥p
du + Lp

1

[(m1 + 1)!]p

t∫
tk

E
∥∥xn

u − xn
tk

∥∥(m1+1)p
du

]

� 2p−1

[
K p

t∫
tk

E
∥∥xu − xn

u

∥∥p
du + Lp

1 B

[(m1 + 1)!]p
n−(m1+1)p/2(t − tk)

]
, (22)

whenever k = 0,1, . . . , j and t ∈ [tk, tk+1]. Analogously,

t∫
tk

E
∣∣g(xu, u) − G

(
xn

u, u; xn
tk

)∣∣p
du � 2p−1

[
K p

t∫
tk

E
∥∥xu − xn

u

∥∥p
du + Lp

2 B

[(m2 + 1)!]p
n−(m2+1)p/2(t − tk)

]
. (23)

Now, the estimates (22) and (23) together with (21) yield

E sup
s∈[t0−τ t]

∣∣x(s) − xn(s)
∣∣p � α1

t∫
t0

E
∥∥xu − xn

u

∥∥p
du + α2n−(m+1)p/2(t − t0), (24)

where m = min{m1,m2} and α1,α2 are generic constants independent of n.
In order to estimate the E‖xu − xn

u‖p , we distinguish two cases. First, let u − τ < t0. Then,

E
∥∥xu − xn

u

∥∥p � E sup
θ∈[−τ ,0]

∣∣x(u + θ) − xn(u + θ)
∣∣p = E sup

r∈[u−τ ,u]
∣∣x(r) − xn(r)

∣∣p

� E sup
r∈[u−τ ,t0]

∣∣x(r) − xn(r)
∣∣p + E sup

r∈[t0,u]
∣∣x(r) − xn(r)

∣∣p = E sup
r∈[t0,u]

∣∣x(r) − xn(r)
∣∣p

� E sup
r∈[t0−τ ,u]

∣∣x(r) − xn(r)
∣∣p

.

Let u − τ � t0. Then,

E
∥∥xu − xn

u

∥∥p � E sup
r∈[u−τ ,u]

∣∣x(r) − xn(r)
∣∣p � E sup

r∈[t0−τ ,u]
∣∣x(r) − xn(r)

∣∣p
.

The last estimates and (24) imply

E sup
s∈[t0−τ ,t]

∣∣x(s) − xn(s)
∣∣p � α1

t∫
t0

E sup
r∈[t0−τ ,u]

∣∣x(r) − xn(r)
∣∣p

du + α2 n−(m+1)p/2(t − t0).

The application of the Gronwall–Bellman lemma gives
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E sup
s∈[t0−τ ,t]

∣∣x(s) − xn(s)
∣∣p � α2n−(m+1)p/2(T − t0)eα1(T −t0) ≡ Hn−(m+1)p/2,

where H is a constant. Since the last inequality holds for all t ∈ [t0, T ], it follows that

E sup
s∈[t0−τ ,T ]

∣∣x(s) − xn(s)
∣∣p � Hn−(m+1)p/2,

which completes the proof. �
Therefore, E supt∈[t0−τ ,T ] |x(t) − xn(t)|p → 0 as n → ∞, that is, xn Lp−−→ x as n → ∞. Let us note that the rate of the con-

vergence decreases if the degrees of Taylor expansions of the functionals f and g increase, similarly to Taylor approximation
in real analysis. Moreover, the following assertion is a direct consequence of Theorem 1, that the approximate solutions xn

pathwise converge to the solution x of Eq. (8).

Theorem 2. Let the conditions of Theorem 1 be satisfied. Then, the sequence {xn, n ∈ N} of approximate solutions determined with
Eq. (10), pathwise converges to the solution x of Eq. (8).

Proof. By applying Chebyshev inequality and Theorem 1, we find for an arbitrary η > 0 that

∞∑
n=1

P
(

sup
t∈[t0−τ ,T ]

∣∣x(t) − xn(t)
∣∣ p

2 � n−η
)

�
∞∑

n=1

E sup
t∈[t0−τ ,T ]

∣∣x(t) − xn(t)
∣∣p · n2η � H

∞∑
n=1

n−[(m+1)p−4η]/2.

The series of the right-hand side converges if we choose, for example, η < 1/2 for p = 2, and η < (p/2 − 1)/2 for p > 2.
Then, xn a.s.−−→ x as n → ∞, in view of the Borel–Cantelli lemma. �
3. Conclusions and remarks

• Any other form of the residuum in Taylor expansion for the functionals f and g could be used instead of the
Lagrange form (6). The residuum of the Cauchy form W (x,h) = 1

n! T (n+1)

(x+th)
((1 − t)h, . . . , (1 − t)h,h) for some t ∈ (0,1),

for example, can be estimated with ‖W (x,h)‖ � 1
n! ‖T (n+1)

(x+th)
‖ · ‖h‖n+1, and the residuum in integral form, W (x,h) =

1
n!

∫ 1
0 T (n+1)

(a+th)
((1 − t)h, . . . , (1 − t)h,h)dt for some t ∈ (0,1), with ‖W (x,h)‖ � 1

n! supt∈[0,1] ‖T (n+1)

(x+th)
‖ · ‖h‖n+1. Then, Propo-

sitions 1 and 2 and Theorem 1 hold under the same assumptions, while the appropriate estimates differ only in constants.
• The rate of the closeness between the solution to Eq. (1) and the approximate solution xn could be improved by using

a sequence {qn, n ∈ N}, qn > n, and a partition with equidistant discretization points tk = t0 + kδn , k = 0,1, . . . ,qn , with the
time step δn = (T − t0)/qn .

• If Eq. (1) is autonomous, the presented approximate method is reduced for m = 0 to the well-known Euler–Maruyama
method (see [12, for example]).

• In papers [6,7] the proofs of the assertions are based on the Ito formula and on some difference inequalities. Recall
that similar procedures do not yield desired results in this paper. For this reason, although analogous problems are studied
here, the proofs of the assertions are completely different with respect to the ones in the previously cited papers.

• The method presented in the paper could be appropriately extended to stochastic functional differential equations
including martingales and martingale measures instead of the Brownian motion process.

• The fact that the rate of convergence between the solution x to Eq. (1) and the approximate solution xn decreases
when the degrees of Taylor expansions for f and g increase, indicates that it would be convenient to combine the presented
analytic method with numerical approximations based on Ito–Taylor expansions of higher degrees, described, above all, by
Kloeden and Platen [8,9]. Moreover, in order to derive numerical schemes of higher order, it seems to be reasonable to
replace the solutions in approximate equations, that is, in Taylor polynomials, by lower order approximations, analogously
to the recent papers [10,11] by Kloeden and Jentzen treating random ordinary differential equations.
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