
J. Math. Anal. Appl. 374 (2011) 133–153
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

L1 well posedness of Euler equations with dynamic phase boundaries

Chunguang Chen ∗, Harumi Hattori

Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 August 2009
Available online 17 September 2010
Submitted by H. Liu

Keywords:
Euler equations
Phase transition
Well posedness

We discuss the well posedness of the initial value problem to Euler equations related
to phase transition. The solution contains two phase boundaries moving in opposite
directions. Entropy condition and kinetic relation are used as the main admissibility criteria
to select the physically relevant solution. We show the existence of the entropy solution
under a suitable Finiteness Condition and a Stability Condition guarantees the stability
of the problem in L1 ∩ BV and the existence of a Lipschitz semigroup of solutions. We
also discuss the well posedness of the problem given that the wave speeds do not differ
significantly between different phases.
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1. Introduction

We study the well posedness of the Cauchy problem to Euler equations with two phase boundaries moving in opposite
directions. The system is given by

vt − ux = 0,

ut − fx = 0,

Et − (u f )x = 0, (1.1)

where v , u and E are strain, velocity and total energy, respectively. f = −p is stress where p is pressure. The total energy
E is given by E = e + 1

2 u2, where e is the internal energy and u2/2 is the kinetic energy. We take strain and entropy s
as state variables. Therefore, e and f are functions of v and s. The solution to the system is written as U = (v, u, s). We
assume that e is a smooth function of v and s, es = T > 0, and evs = T v < 0, where T is temperature. We have the following
thermodynamic relation

de = f dv + T ds. (1.2)

The initial value of (1.1) is given by

U (0, x) = Ū = (v̄, ū, s̄) =

⎧⎪⎨
⎪⎩

Ū1, x < x1,

Ū2, x1 < x < x2,

Ū3, x > x2,

(1.3)

where Ū i (i = 1,2,3) are perturbed constant states. Specifically, there exists a function U c that takes constant value on
each of the intervals (−∞, x1), (x1, x2) and (x2,+∞) satisfying Ū − U c ∈ L1 ∩ BV with total variation sufficiently small. We
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Fig. 1.1. The solution to the initial value problem (1.1), (1.3). The upper xt-plane is divided into three regions Ω− , Ωm and Ω+ by the phase boundaries P1

and P2.

Fig. 1.2. An example of a level curve f (v, s) = c.

assume that the solution contains two phase boundaries, denoted by P1 and P2, respectively, moving in opposite directions
(see Fig. 1.1). We consider one interesting case in physics [9] where

the speed of a phase boundary is close to zero such that a phase boundary moves much slower than any shocks (except for contact
discontinuity) or rarefaction waves.

We also assume that there exists a constant c0 such that every level curve f (v, s) = c, where c is a constant satisfying
c > c0, is non-monotone in the vs-plane (see Fig. 1.2, where the curve f v = 0 is also sketched). Note that f v < 0 is inside the
curve f v = 0. This region where f v < 0 is called the spinodal region and the states with the values of (v, s) in this region
are physically unstable and are not observable. For s < sc , the region where f v > 0 is separated into two sub-regions. If v
is on the left and right of f v = 0 and f v(v, s) > 0, v is said to be in the α-phase and β-phase, respectively. In the region
where s < sc and f v > 0, we assume that f v v �= 0 so that the system is genuinely nonlinear. A typical material satisfying
the above assumptions at least locally in the α- and β-phase is the van der Waals fluid where

f = − 8e3s/(8a)

(3v − 1)1+1/a
+ 3

v2

with the positive constant a.
As the weak solutions to the initial value problem with phase transition are not unique, we use the entropy condition

and the kinetic relation as the admissibility criteria to select a physically relevant solution. The entropy condition imposes
that the entropy increases across jump discontinuities. The rate of decay of the entropy is given by

E(v−, s−, v+, s+) = σ(v−, v+)(s+ − s−),
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where σ(v−, v+) = ±
√

f+− f−
v+−v− is the speed of the jump discontinuity and the subscripts − and + denote the states to the

left and right of the discontinuity, respectively. The entropy condition requires that E(v−, s−, v+, s+) � 0 holds across each
discontinuity.

The kinetic relation is proposed by Abeyaratne and Knowles [1,2]. It postulates that there exists a non-decreasing function
φ(g) satisfying φ(0) = 0, where g is called the driving traction, such that the speed of discontinuity is given by

σ = φ(g).

In order that this relation is consistent with the entropy condition, we require that φ′ > 0 so that σ g > 0 holds. In this
paper we choose g = −(s+ − s−) for the driving traction. In particular, we use the following kinetic condition

σp = ε(s− − s+), (1.4)

where ε is a small positive constant. This relation is applied to the solutions satisfying the entropy condition.
We also use the initiation criterion which has been used in [1,2,10]. This criterion imposes that no new phase boundary

occurs from any point unless no solution exists without the creation of a new phase. This ensures that the spontaneous
initiation of a new phase cannot occur from two nearby initial states in the same phase.

In the absence of phase change, J. Glimm proved the existence of the weak solution in the space of bounded variations
in his classical paper [7] for n × n hyperbolic system when the initial data are sufficiently small in BV . Bressan, Crasta and
Piccoli [5] proved that this problem is well posed when the total variation of the initial data u0 ∈ L1 ∩ BV is sufficiently
small and they showed that the entropy solutions constitute a semigroup which is Lipschitz continuous with respect to
time and initial data. Their analysis of stability was then simplified by Bressan, Liu and Yang in [6] where they introduced
a functional that is equivalent to the L1 distance between two different solutions and they showed that this functional
is almost decreasing with respective to time. In the case of n × n hyperbolic system with large initial data, Lewicka and
Trivisa [14] considered the initial value problem which is a Riemann problem solved by two large shocks. They showed
the existence of the weak solutions under suitable Finiteness Condition and the stability under the Stability Condition.
Lewicka [11] considered the general case with m large shocks, 2 < m � n, and showed existence and L1 stability of the
problem under similar Finiteness and Stability Conditions. Moreover, the general case of n × n system of conservation laws
with large non-interacting shocks, contact discontinuities and rarefaction waves was analyzed in [13] with appropriate
Finiteness and Stability Conditions.

In the case of conservation laws involving phase transition, Hattori [8] discussed the existence of weak solutions with
moving phase boundaries. He considered the case where there are two non-interacting phase boundaries moving in the
opposite directions and obtained the existence in BV provided that the wave speeds do not differ significantly between
different phases. The case where the two phase boundaries collide was also mentioned.

The goal of this paper is to show the existence and L1 stability of initial value problem (1.1), (1.3). As in [6,14] we
introduce a functional which is equivalent to the L1 distance between two different solutions. We formulate a Finiteness
Condition and a Stability Condition that are similar to those in [14]. We show that the Finiteness Condition guarantees
the existence of the weak solution and the Stability Condition implies the stability and yields the existence of a Lipschitz
semigroup of entropy solutions.

Hattori [8] obtained the existence of the solution in BV to the initial value problem (1.1), (1.3) given that the wave speeds
do not differ significantly between different phases. We show that both the Finiteness Condition and Stability Condition hold
in this case, such that the weak solution not only exists but also is stable.

This paper consists of five sections. Section 2 is the preliminary where we summarize the solutions of the Riemann
problems discussed in [9] and introduce the Finiteness Condition and Stability Condition. In Section 3, we introduce the front
tracking approximation of the initial value problem and state the main theorem on existence. The L1 Lyapunov functional is
stated in Section 4 whose derivative with respective to time will be analyzed in Section 5.

2. Preliminaries

In this section, we firstly summarize the results in [9] concerning the Riemann problems with dynamic phase transitions.
The configuration of Riemann problems is essential in the front tracking approximations when a phase boundary collides
with a small physical wave. Then we introduce the Finiteness Condition and Stability Condition that will play an important
role in derivation of the existence and stability, respectively, of the initial value problem (1.1), (1.3).

2.1. Phase boundaries

A phase boundary is a line of discontinuity in the xt-plane across which the phase changes. Similar to a shock, the phase
boundary satisfies the Rankine–Hugoniot condition

σP (v − v0) = −(u − u0),

σP (u − u0) = −( f − f0),

σP (E − E0) = −( f u − f0u0),
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where σP is the speed of discontinuity. However, a phase boundary does not belong to any characteristic family. The phase
boundary curve P (U0) is the set of all possible states U = (v, u, s) connected to U0 = (v0, u0, s0) by a phase boundary.
The projection of P (U0) onto the vs-plane is called the Hugoniot locus and denoted by H(v0, s0). As v0 and v are in the
different phases, H(v0, s0) is a semi-infinite curve in vs-plane with an end (v∗

0, s∗
0) in the phase other than the one that

(v0, s0) lies in. In the following lemmas, we discuss the location of (v∗
0, s∗

0) given (v0, s0) and the relations between s0
and s∗

0. This end point plays an important role in the Riemann problems. In what follows, we assume that (v0, s0) and
(v∗

0, s∗
0) are in the α-phase and β-phase, respectively. Integrating both sides of (1.2) along a level curve C : f = f0 in the

vs-plane from (v0, s0) to (v∗
0, s∗

0) gives

e − e0 = f0 +
∫
C

es ds.

Therefore, we have the following lemma (see [9] for more details of the proof).

Lemma 2.1. If e(vβ, sβ) − e0 � f0(vβ − v0), where (vβ, sβ) is the state in the vs-plane at which f v = 0 along a level curve f = f0
(Fig. 1.2), then in the vs-plane the Hugoniot locus H(v0, s0) of the phase boundary curve P (U0) is a semi-infinite curve starting from
the point (v∗

0, s∗
0), with v∗

0 in the other phase, satisfying

f
(
v∗

0, s∗
0

) = f0, e∗
0 − e0 = f0

(
v∗

0 − v0
)
.

Furthermore,
∫

C es ds = 0 holds, where the integral is the path integral along f = f0 from (v0, s0) to (v∗
0, s∗

0).

Next lemma can be regarded as an extension of the Maxwell equal area rule from the isothermal case to non-isothermal
case.

Lemma 2.2. In the vs-plane, if the level curve f = f0 is not monotone, there exists a unique state (vm
0 , sm

0 ) on f (vm
0 , sm

0 ) = f0 with vm
0

in the α-phase such that (v∗
0, s∗

0) = (v∗
0, sm

0 ), i.e., the Hugoniot locus of the phase boundary curve P (U0) starts from the same value of
entropy. This also implies that if s0 > sm

0 , s0 < s∗
0 and if s0 < sm

0 , s0 > s∗
0 . The corresponding result holds if vm

0 is given in the β-phase.

We call the states (v, s) in the α-phase (or β-phase) “stable” if it satisfies that s � sm
0 (or s � sm

0 ) and the states (v, s)
in the α-phase (or β-phase) “metastable” if s > sm

0 (or s < sm
0 ).

2.2. The Riemann problems

The initial data of a Riemann problem is given by

U (0, x) = (v, u, s)(0, x) =
{

Ul = (v., ul, sl), x < 0,

Ur = (vr, ur, sr), x > 0.

We seek a self-similar solution consisting of constant states separated by the backward and forward wave, the phase
boundaries, and contact discontinuity or the stationary phase boundary. The backward and forward waves are shocks and
rarefaction waves. In the case where the speeds of phase boundaries are much smaller than those of the forward and back-
ward waves, we have the configuration of the phase boundaries given the following theorem. For the discussion of the cases
where vl and vr in the same phase, refer to [9].

Theorem 2.3. If vl and vr are specified in different phases, there are four different solution configurations near σp = 0 depending on
the values of s1 and s4 at σp = 0.

(1) If s1 � sm
1 and s4 � sm

4 at σP = 0, then the solution with the stationary phase boundary is the only solution satisfying the entropy
condition.

(2) If s1 > sm
1 and s4 � sm

4 at σP = 0, there is a one-parameter family of solutions with the backward phase boundary.
(3) If s1 � sm

1 and s4 < sm
4 at σP = 0, there is a one-parameter family of solutions with the forward phase boundary.

(4) If s1 > sm
1 and s4 < sm

4 at σP = 0, there are three solution configurations; there are two one-parameter families of solutions, one
with the backward phase boundary and another with forward phase boundary. Also it is possible to construct the solutions with
three phase boundaries where the left phase boundary moves backward, the middle one is stationary and the right one moves
froward. In this case we have a two-parameter family of solutions.

Furthermore, except case (4) there is a unique solution satisfying the kinetic relation (1.4) provided that ε is sufficiently
small. The details of the proof are available in [9]. In what follows, we choose the initial data such that cases (2) and (3) in
Theorem 2.2 will occur.
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Fig. 2.1. The definition of mP1
13 (a) and mP2

31 (b).

2.3. The Finiteness Condition and Stability Condition

Consider the wave interaction pattern in Fig. 2.1(a) where a 1-family wave impinges a backward phase boundary, denoted
by P1, from the right. As in [14], we define the number

mP1
13 = ∂εout

3

∂εin
1

.

Similarly, if a 3-family wave interacts with a forward phase boundary, denoted by P2, from the left (see Fig. 2.1(b)), we
define

mP2
31 = ∂εout

1

∂εin
3

.

We introduce the following Finiteness Condition and Stability Condition that can be regarded as extensions of those in
[14] where the large shocks are replaced by phase boundaries.

Finiteness Condition. There exist positive weights w1, w3 and a number θ ∈ (0,1) such that

w3

w1
· ∣∣mP1

13

∣∣ < θ (2.1)

and

w1

w3
· ∣∣mP2

31

∣∣ < θ, (2.2)

where w2 is a small fixed constant.

Remark 1. In the present situation with two non-colliding phase boundaries, the above Finiteness Condition turns out to be
equivalent to∣∣mP1

13mP2
31

∣∣ < 1. (2.3)

On one hand, multiplying (2.1) with (2.2) gives (2.3). (The weights w1 and w3 in (2.1) and (2.2) are not exactly the same
but close to each other due to the fact that the perturbations are very small.) On the other hand, (2.3) implies (2.1) and
(2.2) if we choose w1 = 1 and w3 = |mP2

31 | + δ with some δ > 0 sufficiently small.

Stability Condition. There exist positive weights w̃1, w̃3 and a number Θ ∈ (0,1) such that

w̃3

w̃1
· ∣∣mP1

13

∣∣ ·
∣∣∣∣λ3(Um

0 ) − σ P1

λ1(Um
0 ) − σ P1

∣∣∣∣ < Θ (2.4)

and

w̃1

w̃3
· ∣∣mP2

31

∣∣ ·
∣∣∣∣λ1(Um

0 ) − σ P2

λ3(Um
0 ) − σ P2

∣∣∣∣ < Θ, (2.5)

where w̃2 is a small fixed constant and Um
0 is a constant state in Ωm defined in (3.3).
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Remark 2. Similarly to (2.3), an equivalence of the Stability Condition is given by∣∣∣∣mP1
13mP2

31 · λ3(Um
0 ) − σ P1

λ1(Um
0 ) − σ P1

· λ1(Um
0 ) − σ P2

λ3(Um
0 ) − σ P2

∣∣∣∣ < 1. (2.6)

This inequality reduces to (2.3) if |σ P1 − σ P2 | is sufficiently small.

We will show in Section 3 the existence of the weak solutions of (1.1) and (1.3) under the Finiteness Condition. As

λ1(Um
0 ) = −

√
f v (Um

0 ), λ3(Um
0 ) =

√
f v(Um

0 ) and σ P1 < 0 < σ P2 , we have

∣∣∣∣λ3(Um
0 ) − σ P1

λ1(Um
0 ) − σ P1

∣∣∣∣ > 1

and ∣∣∣∣λ1(Um
0 ) − σ P2

λ3(Um
0 ) − σ P2

∣∣∣∣ > 1.

Therefore, the Stability Condition is stronger than the Finiteness Condition (for the general n×n hyperbolic system, see [12]).
The Stability Condition is essential in the proof of stability in Section 4 and Section 5.

3. Front tracking approximations

Given the Cauchy problem (1.1), (1.3), we employ the strategy of [3,4,14] to obtain the existence of its solution as follows:

(i) Approximate the initial data Ū by piecewise constant data Ūε .
(ii) Construct an “approximate solution” Uε to (1.1) with Uε(0, ·) = Ūε . The approximating function Uε is piecewise con-

stant with finitely many jumps occurring along straight discontinuity lines. For example, the rarefaction wave will be
approximated by finitely many small discontinuities.

(iii) Show that for some parameter sequence εn → 0, the sequence Uεn has a limit in L1
loc , and that this limit is a solution

to (1.1) and (1.3).

As a phase boundary moves much slower than a forward or backward wave, for convenience, we call a backward phase
boundary (P1) a 1 1

2 -family wave and a forward phase boundary (P2) a 2 1
2 -family wave. Note that a 1 1

2 -family wave or
a 2 1

2 -family wave is just a notation indicating a slow backward or forward phase boundary. Therefore, we have in total 6
families of waves:

1-family: backward shock or rarefaction wave,

1 1
2 -family: backward phase boundary,

2-family: contact discontinuity,

2 1
2 -family: forward phase boundary,

3-family: forward shock or rarefaction wave,

4-family: non-physical wave [4,3,14].

We denote by λk the characteristic speed of a k-family wave for k = 1,2,3. λ1 1
2

= σP1 and λ2 1
2

= σP2 represent the

speeds of the backward and forward phase boundaries, respectively. The speed of a non-physical wave is usually written
as λ̂. Then we have λ1 < λ1 1

2
< λ2 = 0 < λ2 1

2
< λ3 < λ̂. In our problem, the strengths of all waves are very small except for

the phase boundaries.
In the construction of the wave front tracking method, we assume that at most two waves interact with each other

at any moment. We solve the Riemann problem (Ul, Ur) when interaction occurs. One problem in constructing the front
tracking approximation is to keep the number of wave fronts finite for all times t > 0 (see [3]). Therefore, we choose a
threshold number εT and solve a Riemann problem by the Accurate Riemann Solver when the product of the strengths of
the colliding waves is greater than εT . When the product is less than εT , a Riemann problem is solved by the so-called
Simplified Riemann Solver where we let the incoming waves pass through each other, changing their speeds slightly, and
collect the remaining waves into the non-physical wave. If both states Ul and Ur are in the same set Ω− , Ωm or Ω+ , the
wave interaction occurs in the same phase and we solve the Riemann problem as [3]. If a small wave interacts with a phase
boundary, we solve the problem as follows.

(i) Accurate Riemann Solver.
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Fig. 3.1. Approximate Riemann Solver.

This is a self-similar solution with the rarefaction wave replaced by a piecewise constant rarefaction fan [14]. In this
paper, we choose the initial value such that case (2) and case (3) in Theorem 2.3 occur. As the incoming wave is very small,
the configuration of the phase boundary in Theorem 2.3 will not change after interaction.

(ii) Approximate Riemann Solver.

Case 1. A physical wave of family k (k = 2,3) impinges a backward phase boundary from the left. The Riemann problem is
solved as follows (see Fig. 3.1, where the case of k = 3 is shown):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U0 for x/t < σP1 ,

U2 for x/t ∈ (
σP1 , λk(U2, U3)

)
,

U3 for x/t ∈ (
λk(U2, U3), λ̂

)
,

U+ for x/t > λ̂,

where U3 = Ψk(U2, ε) is the state connected to U2 through a 3-family shock-rarefaction curve (when k = 3) or a contact
discontinuity (when k = 2). If k = 2, λk = 0. If k = 3,

λ3(U2, U3) =
{

λ3(U2) if ε > 0,
u2−u0
v0−v2

if ε < 0.

The middle state U2 is defined as follows. Let Ψ1 1
2
(Ul, Ur) = 0 be the backward phase boundary curve connecting the two

states Ul and Ur . Ψk (k = 1,3) is the k-family shock-rarefaction curve. In this case, we have U1 = Ψ3(U0, ε
in). We also use

an equivalent expression U0 = Ψ̃3(U1,−εin). Ψ4 is the non-physical wave curve and U+ = Ψ4(U3, ε̂) or U3 = Ψ̃4(U+,−ε̂).
Let

F
(
U1, U+, εin, εout, ε̂

) = Ψ1 1
2

(
Ψ̃3

(
U1,−εin), Ψ̃3

(
Ψ̃4

(
U+,−ε̂

)
,−εout))

= Ψ1 1
2
(U0, U2) = 0, (3.1)

then

∂ F

∂(εout, ε̂)

(
U1, U+,0,0,0

) =
∂Ψ1 1

2

∂(Ul, Ur)

(
r3(U3), r4

(
U+))

,

where rk are the right eigenvectors of corresponding characteristic families. As r3 and r4 are independent, by the Implicit
Function Theorem, there exits a unique solution for (3.1) and U2 is given by Ψ̃3(Ψ̃4(U+,−ε̂),−εout).

We define the strength of a non-physical wave as the distance between its right and left states. Moreover,

we define the strength a phase boundary to be a fixed number D which is bigger than all strengths of small waves.

The strength of a phase boundary will change slightly after it collides with a small physical wave such that the actual
strength of a phase boundary should be D plus an error term O (ε) where ε is the strength of the small wave. In what
follows, one can see that this error term will be overwhelmed with D in our analysis.
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Definition 3.1 (Approaching waves).

(i) We say that two small (possibly non-physical) fronts α and β , located at xα < xβ and belonging to the characteristic
family kα,kβ ∈ {1,2,3,4}, respectively, approach each other if and only if the two conditions hold:
• xα and xβ lie in the same set Ω− , Ωm or Ω+ .
• Either kα > kβ or kα = kβ and at least one of the waves is a genuinely nonlinear shock.
This case is represented by (α,β) ∈ A.

(ii) We say that a small wave α located at xα is approaching a phase boundary at xβ if and only if kα < kβ and xα > xβ or
kα > kβ and xα < xβ . This case is written as α ∈ Ab if the kβ -wave is a backward phase boundary and α ∈ A f if the
kβ -wave is a forward phase boundary.

Notice that the 2-family is linearly degenerate, such that a 2-wave (contact discontinuity) does not approach other
2-waves.

Let J = {1,1 1
2 ,2,2 1

2 ,3,4} be the set of the indices and assume that {w−
k }k∈ J , {wm

k }k∈ J and {w+
k }k∈ J are three sets of

positive numbers. For a small wave of family k ∈ J and strength εk , that connects two states v1 and v2, we follow the
notation in [14] to define the weighted strength of the wave as

bk =

⎧⎪⎨
⎪⎩

w−
k εk if v1, v2 ∈ Ω−,

wm
k εk if v1, v2 ∈ Ωm,

w−
k εk if v1, v2 ∈ Ω+.

Definition. Let t > 0. The total weighted strength of waves in U (t, ·) is defined by

V (t) =
∑
α

|bα|,

where the summation ranges over all small wave fronts. The (weighted) wave interaction potentials are defined as

Q A(t) =
∑

(α,β)∈A
|bαbβ |,

Q b(t) =
∑

α∈Ab

|bα|,

Q f (t) =
∑

α∈A f

|bα|,

and

Q (t) = κ Q A(t) + Q b(t) + Q f (t).

The Glimm functional is

Γ (t) = V (t) + κ̃ Q (t) + ∣∣U∗(t) − Um
0

∣∣,
where κ, κ̃ > 0 are constants to be specified later. The vector U∗(t) is the right state of the backward phase boundary at
time t .

In order to prove the existence of the solution, we need the following interaction estimate.

Lemma 3.1. If a small wave bα (α = 1,2,3) interacts with a phase boundary, producing outgoing waves c1, c2 and c3 . Then

3∑
k=1

|ck| = O (1)|bα|. (3.2)

Proof. When α = 1 (or α = 2) and the phase boundary moves forward, this estimate is a direct consequence of Lemma 3.2
in [8] where we take a1 = a2 = a3 = 0 and b2 = 0 (or b1 = 0, respectively). When α = 1 and the phase boundary moves
backward, this estimate is implied in Lemma 3.3 in [8] if we let a1 = a2 = a3 = 0. Using Taylor expansions as in Lemma 3.2
and Lemma 3.3 in [8], we can show that (3.2) also holds for other cases. �
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We define for a given δ0 > 0 the domain

D̃δ0 = cl
{

U : R → R3; there exist two points xb < x f in R

such that letting Ũ (x) =

⎧⎪⎨
⎪⎩

U−
0 , x < xb,

Um
0 , xb < x < x f ,

U+
0 , x > x f

we have U − Ũ ∈ L1(R, R3) and T .V .(U − Ũ ) � δ0
}
. (3.3)

Lemma 3.2. We assume that the Finiteness Condition holds. There exist {w−
k }, {wm

k }, {w+
k }, constants κ, κ̃ > 0 and δ > 0 such that

the following holds

lim
x→−∞ U (0, x) = U−

0 , lim
x→∞ U (0, x) = U+

0 .

There exist points xb < x f in R such that

U (x,0) ∈

⎧⎪⎨
⎪⎩

Ω− for x < xb,

Ωm for xb < x < x f ,

Ω+ for x > x f .

If T .V .(U (x,0) − Ũ ) < δ, then for any t > 0 when two wave fronts bα and bβ interact we have

(i)
�Q (t) = Q (t+) − Q (t−)

�
{−c|bαbβ | if both waves are small,

−c|bα| if α wave is small and β wave is a phase boundary,

where the number c is some small positive, uniform constant.
(ii) The same estimate holds for �Γ (t) = Γ (t+) − Γ (t−).

Proof. (i) Let t > 0 be fixed time of interaction of two waves one of which could be a phase boundary or a non-physical
wave.

• Case I. Two small waves interact with each other.

By the standard estimates in [17], we have

�Q b = O (1)|bαbβ |,
�Q f = O (1)|bαbβ |,
�Q A = −|bαbβ | + O (1)V (t−)|bαbβ |.

This is exactly Case I of Proposition 3.4 in [14]. Let C denote the largest uniform constant in the estimates above. If κ � 4C
and V (t) � 1/κ , one sees that (i) holds for c = C .

• Case II. A small wave interacts with the backward phase boundary from the left.

Suppose that the interaction is solved by the Accurate Riemann Solver and the outgoing waves are denoted by ci (i = 1,2,3).
If the small wave belongs to the 3rd characteristic family, we have

�Q b = −|b3|,
�Q f = |c3|,
�Q A = O (1)V (t−)|b3|.

When V (t−) < 1/4κC and we choose a small weight wm
3 for the transpassing wave c3 such that |c3| � |b3|/4, (i) holds for

the constant c = 1/2.
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If the interaction is solved by the Approximate Riemann Solver, we have

�Q b = −|b3|,
�Q f = |c3| + |c4|,
�Q A = O (1)V (t−)|b3|.

As the total strength of non-physical waves remains uniformly small [3], i.e. |c4| < |b3|/4, (i) holds if we choose
c = 1/4.

Similar assertion holds when the incoming small wave is a 2-family wave and we need to choose a small weight wm
2 for

the transpassing wave c2.

• Case III. A small wave interacts with the forward phase boundary from the right.

This case is similar to Case II while we need to choose the weight wm
1 (or wm

2 ) sufficiently small if the incoming wave is a
1-wave (or 2-wave).

• Case IV. A small wave interacts with a backward phase boundary from the right.

We need the Finiteness Condition in this case. Under the assumption that phase boundaries move much slower than a 1- or
3-wave, the small physical wave must be a 1-wave and

�Q b = −|b1|,
�Q f = |c3|,
�Q A = O (1)V (t−)|b1|.

By the Finiteness Condition (2.1),

�Q (t) �
(
CκV (t−) − 1 + θ

)|b1|.
Therefore, (i) holds for c = (1 − θ)/2 if we choose V (t−) � (1 − θ)/2κC .

• Case V. A small wave interacts with a forward phase boundary from the left.

This case is similar to Case IV and we need the Finiteness Condition (2.2).
(ii) Note that

�V (t) = V (t+) − V (t−) �
{

C |bαbβ | in Case I,

C |bα| in Case II and Case III,

by [4] and Lemma 3.1. In Cases I and III U∗(t−) = U∗(t+), so |U∗(t) − Um
0 | does not change across the interaction time t . In

Case II |U∗(t−) − U∗(t+)| = O (1)|bα | by Lemma 3.1. Thus, if κ̃ is large enough, we get (ii) provided that

V (t−) � δ̃ = min

{
1

κ
,

1

4C
,

1 − θ

2κC

}
.

Notice that

V (t−) � Γ (t−) � Γ (0) = V (0) + κ̃ Q (0) + ∣∣U∗(0) − Um
0

∣∣
� C1 · T .V .

(
U (0, ·) − Ũ

) + κ̃
{
κC1 · [T .V .

(
U (0, ·) − Ũ

)]2 + 2C1 · T .V .
(
U (0, ·) − Ũ

)}
,

where C1 is a uniform positive constant. If the constant δ is small enough, the inequality T .V .(U (0, ·) − Ũ ) < δ implies
V (t−) < δ̃ and the result follows. �

As in the case without the presence of large waves [3], Lemma 3.2 results in the following assertions. If U (0, ·) satisfies
the assumption of Lemma 3.2, then our wave front tracking algorithm generates a piecewise constant approximate solution
that has finitely many discontinuity lines for all t ∈ [0,∞). Moreover, the functional Γ is nonincreasing in time, and we
have

Γ (t) � Γ (0),

T .V .
(
U (t, ·) − Û

) = O (1) · Γ (t) = O (1) · T .V .
(
U (t, ·) − Ũ

)
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for some Û in (3.3) as Ũ . The total strength of all non-physical waves occurring at any fixed time t > 0 is of the order
O (1)(δ).

Following [6] and [14], we gather the main properties of the wave front tracking approximate solutions.

Theorem 3.3. Assume that a piecewise constant function U (0, ·) satisfies the assumption of Lemma 3.2. Given ε > 0, for some param-
eters δ > 0 the corresponding wave front tracking algorithm produces the function U [0,+∞) 	→ L1(R; R3) such that:

(i) As a function of two variables, U = U (t, x) is piecewise constant, with discontinuities occurring along finitely many lines in the
t–x plane. Only finitely many wave front interactions occur, each involving exactly two incoming fronts. Jumps can be of four types:
shocks (or contact discontinuities), rarefactions, non-physical waves and phase boundaries denoted as F = S ∪ R ∪ N P ∪ P B.

(ii) Along each shock (or contact discontinuity) x = xα(t),α ∈ S , the values U− .= U (t, xα−) and U+ .= U (t, xα+) are related by

U+ = Skα (σα)
(
U−)

, (3.4)

for some kα ∈ {1,2,3} and some wave size σα . If the kα-family is genuinely nonlinear, then the entropy admissibility condition
σα < 0 also holds. Moreover, the speed of the shock front satisfies∣∣ẋα − λkα

(
U+, U−)∣∣ � ε. (3.5)

(iii) Along each rarefaction front x = xα(t),α ∈ R, one has

U+ = Rkα (σα)
(
U−)

, σα ∈ (0, ε] (3.6)

for some genuinely nonlinear family kα . Moreover,∣∣ẋα − λkα

(
U+)∣∣ � ε. (3.7)

(iv) All non-physical fronts x = xα(t), α ∈ N P have the same speed:

ẋα(t) ≡ λ̂, (3.8)

where λ̂ is a fixed constant strictly greater than all characteristic speeds. The total strength of all non-physical fronts in U (t, ·)
remains uniformly small, namely,∑

α∈N P

∣∣U (t, xα+) − U (t, xα−)
∣∣ � ε for all t � 0. (3.9)

(v) The backward and forward phase boundaries, denoted by P1 and P2 respectively, are determined by Theorem 2.3.

The function U will be called an ε-approximate solution of (1.1) and (1.3).

Now we can obtain the existence of the weak solution to (1.1) and (1.3). The following theorem is similar to Theorem A
in [14].

Theorem 3.4. If the Finiteness Condition is satisfied, then there exists δ0 > 0 such that for every Ū ∈ D̃δ0 there exists a weak solution
to (1.1) and (1.3) defined for all t > 0.

Proof. Take Ū ∈ D̃δ0 , for some δ0 smaller than δ in Lemma 3.2. Given ε > 0, fix a piecewise constant Ūε ∈ D̃δ0 , such that

‖Ū − Ūε‖L1(R,R3) < ε.

Let Uε be the ε-approximation of (1.1) with Uε(0, ·) = Ūε , as in Theorem 3.3. Let ε → 0, we can extract a sequence Uεn

converging in L1
loc to a function U (t, x). By the inequalities in Theorem 3.3, U must be a solution to (1.1) and (1.3). �

We can obtain the existence of the weak solutions by Theorem 3.4 under the Finiteness Condition. However, whether
this condition holds has not been shown for any given system. In what follows we discuss a case where the Finiteness
Condition is satisfied. Let us consider the initial value problem (1.1) and (1.3) given that the wave speeds

√
f v do not

differ significantly between α- and β-phase, i.e. |λ1| ≈ |λ3|. This case is important in physics and the existence of the
weak solutions is obtained in [8]. In the following theorem, we will show that the Finiteness Condition holds therefore the
existence of weak solutions can be derived from Theorem 3.4.

Corollary 3.5. Suppose that the wave speeds
√

f v do not differ significantly between α- and β-phase, the conclusion in Theorem 3.4
holds.



144 C. Chen, H. Hattori / J. Math. Anal. Appl. 374 (2011) 133–153
Proof. We only need to show that the Finiteness Condition holds in this case.
Let us consider the wave interaction pattern shown in Fig. 2.1(a). Obviously, this is a special case of Lemma 3.3 in [8]

with a1 = a2 = a3 = 0 such that we have

c3 = δb1,

where c3 = εout
3 and b1 = εin

1 for some constant δ satisfying 0 < δ < 1. When the incoming wave strength εin
1 is very small,

εout
3

εin
1

≈ ∂εout
3

∂εin
1

= ∣∣mP1
13

∣∣.
Choosing w1 = w3, we have

w3

w1
|mP1

13 | ≈ δ < 1.

Therefore, we have (2.1) for some number θ satisfying δ < θ < 1.
Similarly, considering the wave interaction pattern shown in Fig. 2.1(b), we can see that (2.2) holds for w1 = w3. �

4. The Lyapunov functional and stability

In order to show the L1 stability of the weak solutions, we follow [15,16,6,14] to introduce the Lyapunov functional
Φ(U , V ) satisfying

1

C
· ∥∥U (t, ·) − V (t, ·)∥∥L1 � Φ

(
U (t, ·), V (t, ·)) � C · ∥∥U (t, ·) − V (t, ·)∥∥L1 (4.1)

and

Φ
(
U (t, ·), V (t, ·)) − Φ

(
U (s, ·), V (s, ·)) � C · ε · (t − s), ∀t > s � 0, (4.2)

for any two ε-approximate solutions U and V . The functional is equivalent to the L1 distance between U and V and is
“almost decreasing” in time.

We define

Φ(U , V )
.=

∑
k∈I

+∞∫
−∞

∣∣qk(x)
∣∣Wk(x)dx,

where I = {1,1 1
2 ,2,2 1

2 ,3} is set of the indices without non-physical waves and qk is the size of the k-th shock. The weights
Wk are defined by

Wk(x)
.= 1 + κ1 Ak(x) + κ2

[
Q (u) + Q (v)

]
. (4.3)

The constants κ1 and κ2 are to be defined later. Q is the Glimm’s interaction functional. When k ∈ {1 1
2 ,2,2 1

2 } we simply
take

Ak
.=

[ ∑
xα<x, k<kα�3

+
∑

xα>x, 1�kα<k

]
|εα |.

The summations here extend to waves both of U and V . This is similar to the linearly degenerate case in [14]. When
k ∈ {1,3}, Ak = Bk + Ck where

Bk
.=

[ ∑
α∈F (U )∪F (V )
xα<x, k<kα�3

+
∑

α∈F (U )∪F (V )
xα>x, 1�kα<k

]
|εα |,

Ck
.=

⎧⎪⎨
⎪⎩

[∑α∈F (U )\P B
xα<x, kα=k

+∑
α∈F (V )\P B
xα>x, kα=k

]|εα | if qk(x) < 0,

[∑α∈F (V )\P B
xα<x, kα=k

+∑
α∈F (U )\P B

xα>x,kα=k
]|εα | if qk(x) > 0.

We can always assume that

1 � Wk(x) � 2 (4.4)

given that Wk(x) does not contain any phase boundaries and
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1 + mκ1 D � Wk(x) � 2 + mκ1 D (4.5)

if Wk(x) contains m phase boundaries. As there are in total 4 phase boundaries in both U and V , we have m � 4 and

1 � Wk(x) � 2 + 4κ1 D. (4.6)

Thus,

1

2 + 4κ1 D

∣∣U (x) − V (x)
∣∣ �

∑
k∈I

|qk(x)| � (2 + 4κ1 D)
∣∣U (x) − V (x)

∣∣
and (4.1) holds.

Theorem 4.1. If the Stability Condition is satisfied, there exist δ0 > 0, L > 0, a closed domain Dδ0 ⊂ L1
loc(R, R3) containing D̃δ0 , and a

continuous semigroup S : [0,+∞) × Dδ0 → Dδ0 such that

(i) S(0, Ū ) = Ū , S(t + s) = S(t, S(s, Ū )), ∀t, s � 0, ∀Ū ∈ Dδ0 .

(ii) ‖S(t, Ū ) − S(s, V̄ )‖L1 � L(|t − s|) + ‖Ū − V̄ ‖L1 , ∀t, s � 0, ∀Ū , V̄ ∈ Dδ0 .

(iii) Each trajectory t 	→ S(t, Ū ) is a weak solution of (1.1), (1.3).

Proof. This is a standard proof in [6,14] given that (4.1) and (4.2) hold. �
Theorem 4.1 shows the stability of the weak solution under the Stability Condition, while it remains unknown whether

this condition holds in any given system. Similar to Corollary 3.5, we consider the case where the wave speeds
√

f v do not
differ significantly between α- and β-phase. We will show that the Stability Condition also holds in this case and the L1

stability of the weak solution can be obtained consequently.

Corollary 4.2. Suppose that the wave speeds
√

f v do not differ significantly between α- and β-phase, i.e. |λ1| ≈ |λ3|, the conclusions
in Theorem 4.1 hold.

Proof. We only need to verify that the Stability Condition holds in this case.
Firstly, we consider the wave interaction pattern shown in Fig. 2.1(a). We know from the assumption that

λ3 = −λ1 + ε0,

where λ1 < 0 and λ3 > 0 are the characteristic speeds of the 1- and 3-wave, respectively, and ε0 is constant satisfying that
|ε0| � |λi | (i = 1,3). Hence,∣∣∣∣λ3 − σP1

λ1 − σP1

∣∣∣∣ =
∣∣∣∣−λ1 + ε0 − σP1

λ1 − σP1

∣∣∣∣ =
∣∣∣∣λ1 − σP1 − ε + 2σP1

λ1 − σP1

∣∣∣∣
=

∣∣∣∣1 + 2σP1 − ε

λ1 − σP1

∣∣∣∣ � 1 +
∣∣∣∣2σP1 − ε

λ1 − σP1

∣∣∣∣ � 1 + O
(|σP1 | + |ε|),

where the last inequality holds because the phase boundary moves much slower than a 1- or 3-wave, i.e. |λ1| � |σP1 |, in
our problem.

Choosing the weights w̃1 = w̃3, we have

w̃3

w̃1

∣∣mP1
13

∣∣∣∣∣∣λ3 − σP1

λ1 − σP1

∣∣∣∣ = ∣∣mP1
13

∣∣(1 + O
(|σP1 | + |ε|)) ≈ ∂εout

3

∂εin
1

≈ εout
3

εin
1

= δ < 1,

where δ is the same as in Corollary 3.5 and last inequality is derived from Lemma 3.3 in [8]. Therefore, (2.4) holds if we
choose some number Θ satisfying δ < Θ < 1. Similarly, (2.5) holds with w̃1 = w̃3 if we consider the wave interaction
pattern shown in Fig. 2.1(b). �

In order to prove (4.2), we differentiate the functional Φ at a time t which is not the interaction time of the waves in
U (t, ·) or V (t, ·) to show that

d

dt
Φ

(
U (t), V (t)

) =
∑
α∈F

∑
k∈I

{∣∣qk(xα−)
∣∣Wk(xα−) − ∣∣qk(xα+)

∣∣W (xα+)
}

ẋα

=
∑ ∑{∣∣qk(xα+)

∣∣W (xα+)
(
λk(xα+) − ẋα

) − ∣∣qk(xα−)
∣∣W (xα−)

(
λk(xα−) − ẋα

)}
ẋα, (4.7)
α∈F k∈I



146 C. Chen, H. Hattori / J. Math. Anal. Appl. 374 (2011) 133–153
where ẋα is the speed of the discontinuity at the α wave. Let

Eα,k = ∣∣qα+
k

∣∣W α+
k

(
λα+

k − ẋα

) − ∣∣qα−
k

∣∣W α−
k

(
λα−

k − ẋα

)
,

where qα+
k = qk(xα+), λα+

k = λk(xα+) and so on. Then (4.7) becomes

d

dt
Φ

(
U (t), V (t)

) =
∑
α∈F

∑
k∈I

Eα,k.

Our main goal will be to establish

∑
k∈I

Eα,k = O (1) · |εα |, ∀α ∈ N P, (4.8)

∑
k∈I

Eα,k � 0, ∀α ∈ P B, (4.9)

∑
k∈I

Eα,k = O (1) · ε|εα |, ∀α ∈ S ∪ R. (4.10)

Also we need that all weights Wk(x) decrease after an interaction of wave fronts in U or V . Recalling Lemma 3.1 and
Lemma 3.2(i). One sees this statement holds if κ2 � κ1 in (4.3).

The proof of (4.8) is the same as [6,14] and thus omitted. In next section, we will show that (4.9) and (4.10) hold in
different wave interaction patterns. Combining (4.8), (4.9) and (4.10), recalling (3.9) and the uniform bound on the total
strengths of waves, denoted by the functional Γ (t), we have

d

dt
Φ

(
U (t), V (t)

)
� C · ε.

Integrating this inequality gives (4.2).

5. Stability of approximate solution

In this section, we will prove (4.9) and (4.10). In what follows, we drop the notation α to write Eα,k as

Ek = ∣∣q+
k

∣∣W +
k

(
λ+

k − ẋα

) − ∣∣q−
k

∣∣W −
k

(
λ−

k − ẋα

)
without any ambiguity. We will need to choose different weights w̃k (k ∈ {1,2,3}) in proving (4.9) and (4.10). In general, all
weights will be chosen very small while some should be relatively larger than others. We summarize the sizes of the weights
as follows:

(i) In the domain Ω− , w̃−
1 is small relative to w̃−

2 and w̃−
3 .

(ii) In the domain Ω+ , w̃+
3 is small relative to w̃+

1 and w̃+
2 .

(iii) All the weights in the domain Ωm are small. Moreover, w̃m
1 and w̃m

3 need to satisfy (2.4) and (2.5).

5.1. Cases of phase boundaries – the estimate (4.9)

We consider the cases where the discontinuities in U or V are phase boundaries. Under the assumption that a phase
boundary moves much slower than a 1- or 3-wave, we have in total four different cases.

Case 1. See Fig. 5.1.
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Fig. 5.1. Case 1.

As there is no phase boundary in the solution of the Riemann problem (U , V −), q−
1 1

2
= 0 and

E1 1
2

= ∣∣q+
1 1

2

∣∣W +
1 1

2

(
λ+

1 1
2

− ẋα

)
.

Therefore, (4.4) implies that

E1 1
2

� D · 4|σP1 |,
where |q+

1 1
2
| = D is the strength of the phase boundary.

Notice that λ±
1 < 0, we can always assume that λ±

1 − ẋα < −c < 0 due to the fact that the speed of a phase boundary
|ẋα | = |σP1 | is very small compared with characteristic speeds |λ±

k | (k = 1,3). Thus,

E1 = ∣∣q+
1

∣∣(W +
1 − W −

1

)(
λ+

1 − ẋα

) + W −
1

[∣∣q+
1

∣∣(λ+
1 − ẋα

) − ∣∣q−
1

∣∣(λ−
1 − ẋα

)]
� −∣∣q+

1

∣∣ · κ1 D · ∣∣λ+
1 − ẋα

∣∣ + 2
∣∣q−

1

∣∣ · ∣∣λ−
1 − ẋα

∣∣, (5.1)

where W +
1 − W −

1 = κ1 D . The 2-family wave is a contact discontinuity whose characteristic speed, λ±
2 , is always 0 in

Lagrange coordinates. Such that

E2 = (∣∣q−
2

∣∣W −
2 − ∣∣q+

2

∣∣W +
2

)
ẋα

� −2κ1 D
∣∣q−

2

∣∣ · |ẋα | + (κ1 D + 2) · ∣∣q+
2

∣∣ · |ẋα |, (5.2)

where the inequality holds because 1 + 2κ1 D � W −
2 � 2 + 2κ1 D and 1 + κ1 D � W +

2 � 2 + κ1 D by (4.5). Notice that
λ±

3 − ẋα > 0, we have

E3 = ∣∣q+
3

∣∣W +
3

(
λ+

3 − ẋα

) − ∣∣q−
3

∣∣W −
3

(
λ−

3 − ẋα

)
� (3κ1 D + 2) · ∣∣q+

3

∣∣ · ∣∣λ+
3 − ẋα

∣∣ − 4κ1 D · ∣∣q−
3

∣∣ · ∣∣λ−
3 − ẋα

∣∣. (5.3)

Summing (5.1), (5.2) and (5.3) gives∑
k=1,1 1

2 ,2,3

Ek � 4D · |σP1 | − κ1 D · ∣∣q+
1

∣∣ · ∣∣λ+
1 − ẋα

∣∣ − 2κ1 D
∣∣q−

2

∣∣ · |ẋα | + κ1 D · ∣∣q+
2

∣∣ · |ẋα | + 3κ1 D
∣∣q+

3

∣∣ · ∣∣λ+
3 − ẋα

∣∣
− 4κ1 D · ∣∣q−

3

∣∣ · ∣∣λ−
3 − ẋα

∣∣ + 2
∣∣q−

1

∣∣ · ∣∣λ−
1 − ẋα

∣∣ + 2
∣∣q+

3

∣∣ · |λ − ẋα | + 2
∣∣q+

2

∣∣ · |ẋα |. (5.4)

Similar to Lemma 5.1(iv) in [14], we have the following lemma.

Lemma 5.1. In Case 1, we have∣∣ε+
2

∣∣ + ∣∣ε+
3

∣∣ � O (1)
(∣∣ε−

2

∣∣ + ∣∣ε−
3

∣∣),
where ε±

k are the unweighted strengths of corresponding waves.

Proof. If ε−
2 = ε−

3 = 0, by the uniqueness of the solution to the Riemann problem (U , V +), ε+
2 = ε+

3 = 0. Then the result
follows from the Lipschitz continuity of the problem. �

If we choose the constant κ1 very large and the weights w̃−
2 and w̃−

3 big enough, then (4.9) holds by Lemma 5.1.

Case 2. See Fig. 5.2.
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Fig. 5.2. Case 2.

Fig. 5.3. The definition of V̂ .

As there is no phase boundary in the solution of the Riemann problem (U+, V ), q+
1 1

2
= 0 and

E1 1
2

= −∣∣q−
1 1

2

∣∣W −
1 1

2

(
λ−

1 1
2

− ẋα

)
� D · 4|σP1 |. (5.5)

Moreover, we have

E1 = ∣∣q+
1

∣∣W +
1

(
λ+

1 − ẋα

) − ∣∣q−
1

∣∣W −
1

(
λ−

1 − ẋα

)
� −2κ1 D · ∣∣q+

1

∣∣ · ∣∣λ+
1 − ẋα

∣∣ + (κ1 D + 2) · ∣∣q−
1

∣∣ · ∣∣λ−
1 − ẋα

∣∣, (5.6)

and

E2 = (∣∣q−
2

∣∣W −
2 − ∣∣q+

2

∣∣W +
2

)
ẋα

= [∣∣q−
2

∣∣(W −
2 − W +

2

) + W +
2

(∣∣q−
2

∣∣ − ∣∣q+
2

∣∣)]ẋα

� −κ1 D
∣∣q−

2

∣∣ · |ẋα | + 2
∣∣q+

2

∣∣ · |ẋα |, (5.7)

where 1 � W +
2 � 2 by (4.4) as W +

2 does not contain any phase boundaries. We also have

E3 = ∣∣q+
3

∣∣W +
3

(
λ+

3 − ẋα

) − ∣∣q−
3

∣∣W −
3

(
λ−

3 − ẋα

)
� (2κ1 D + 2)

∣∣q+
3

∣∣ · ∣∣λ+
3 − ẋα

∣∣ − 3κ1 D · ∣∣q−
3

∣∣ · ∣∣λ−
3 − ẋα

∣∣. (5.8)

Summing up (5.5) through (5.8) gives∑
k=1,1 1

2 ,2,3

Ek � −2κ1 D · ∣∣q+
1

∣∣ · ∣∣λ+
1 − ẋα

∣∣ + κ1 D · ∣∣q−
1

∣∣ · ∣∣λ−
1 − ẋα

∣∣ − κ1 D
∣∣q−

2

∣∣ · |ẋα | + 2κ1 D
∣∣q+

3

∣∣ · ∣∣λ+
3 − ẋα

∣∣
− 3κ1 D · ∣∣q−

3

∣∣ · ∣∣λ−
3 − ẋα

∣∣ + 4D|σP1 | + 2
∣∣q−

1

∣∣ · ∣∣λ−
1 − ẋα

∣∣ + 2
∣∣q+

2

∣∣ · |ẋα | + 2
∣∣q+

3

∣∣ · ∣∣λ+
3 − ẋα

∣∣. (5.9)

When q+
2 = q+

3 = 0, (4.9) holds for a large κ1 and a small weight w̃−
1 . When q+

2 ,q+
3 �= 0, we define V̂ = S1(U+,q+

1 ) to
be the state connected to U on the right through a 1-shock (see Fig. 5.3).

Lemma 5.2. For the states U−, U+, V , V̂ and the waves q+
i and q̂−

i (i = 1,2,3) defined in Fig. 5.3, we have the following estimates

q−
1 = q̂−

1 + R2,

q−
2 = q̂−

2 + q+
2 + R2,

q−
3 = q̂−

3 + q+
3 + R2,

where R2 = O (|q̂−|(|q+| + |q+|)) is a second order error term.
3 2 3
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Fig. 5.4. The wave interaction pattern (U −, V̂ ) + (V̂ , V ) → (U −, V ).

Fig. 5.5. Case 3.

Proof. In the wave interaction pattern (U−, V̂ ) + (V̂ , V ) → (U−, V ) in Fig. 5.4, q̂−
3 approaches q+

2 and q+
3 . Such that the

lemma holds by Theorem 19.2 in [17]. �
Notice that

2κ1 D
∣∣q−

3 − q̂−
3

∣∣ · ∣∣λ+
3 − ẋα

∣∣ − 3κ1 D · ∣∣q−
3

∣∣ · ∣∣λ−
3 − ẋα

∣∣
� 2κ1 D

(∣∣q−
3

∣∣ + ∣∣q̂−
3

∣∣) · ∣∣λ+
3 − ẋα

∣∣ − 3κ1 D · ∣∣q−
3

∣∣ · ∣∣λ−
3 − ẋα

∣∣
= −κ1 D · ∣∣q−

3

∣∣ · ∣∣λ−
3 − ẋα

∣∣ + 2κ1 D
∣∣q̂−

3

∣∣ · ∣∣λ+
3 − ẋα

∣∣ + 2κ1 D
∣∣q−

3

∣∣ · (∣∣λ+
3 − ẋα

∣∣ − ∣∣λ−
3 − ẋα

∣∣)
� −κ1 D · ∣∣q−

3

∣∣ · ∣∣λ−
3 − ẋα

∣∣ + 2κ1 D
∣∣q̂−

3

∣∣ · ∣∣λ+
3 − ẋα

∣∣ + 2κ1 D
∣∣q−

3

∣∣ · ∣∣λ+
3 − λ−

3

∣∣
� −κ1 D · ∣∣q−

3

∣∣ · ∣∣λ−
3 − ẋα

∣∣ + 2κ1 D
∣∣q̂−

3

∣∣ · ∣∣λ+
3 − ẋα

∣∣ + 2κ1 D
∣∣q−

3

∣∣ · O
(∣∣q̂−

3

∣∣),
where the last inequality holds because |λ+

3 − λ−
3 | = O (|q+

3 − q−
3 |) = O (|q̂−

3 |). Thus, (5.9) becomes∑
k=1,1 1

2 ,2,3

Ek � −2κ1 D · ∣∣q+
1

∣∣ · ∣∣λ+
1 − ẋα

∣∣ + κ1 D · ∣∣q̂−
1

∣∣ · ∣∣λ−
1 − ẋα

∣∣ − κ1 D
∣∣q−

2

∣∣ · |ẋα | − κ1 D · ∣∣q−
3

∣∣ · ∣∣λ−
3 − ẋα

∣∣
+ 2κ1 D

∣∣q̂−
3

∣∣ · ∣∣λ+
3 − ẋα

∣∣ + 2κ1 D · O (1)
(∣∣q−

3

∣∣ · ∣∣q̂−
3

∣∣) + O
(|σP1 | +

∣∣q−
1

∣∣ + ∣∣q+
2

∣∣ + ∣∣q+
3

∣∣) + R2. (5.10)

By the Stability Condition (2.4), we have in the wave interaction pattern shown in Fig. 5.3(b) that there exist weights w̃+
1

and ŵ−
3 such that |q̂−

3 | · |λ+
3 − ẋα | � Θ|q+

1 | · |λ+
1 − ẋα |. Thus,∑

k=1,1 1
2 ,2,3

Ek � −2(1 − Θ)κ1 D · ∣∣q+
1

∣∣ · ∣∣λ+
1 − ẋα

∣∣ + κ1 D · ∣∣q̂−
1

∣∣ · ∣∣λ−
1 − ẋα

∣∣
− κ1 D

∣∣q−
2

∣∣ · |ẋα | − κ1 D · ∣∣q−
3

∣∣ · ∣∣λ−
3 − ẋα

∣∣ + O (1),

where O (1) = 2κ1 D · O (1)(|q−
3 | · |q̂−

3 |) + O (|σP1 | + |q−
1 | + |q+

2 | + |q+
3 |) + R2 which will be overwhelmed by other terms if we

choose κ1 very large. Then (4.9) holds if we choose κ1 large and w̃−
1 very small relative to other weights.

Case 3. See Fig. 5.5.

This case is similar to Case 1. (4.9) holds if we choose κ1 and the weights w̃+
1 , w̃+

2 large enough.

Case 4. See Fig. 5.6.

This case is similar to Case 2. If we choose κ1 large and the weight w̃+
3 small enough, (4.9) holds under the Stability

Condition.
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Fig. 5.6. Case 4.

Fig. 5.7. Case A.

5.2. Cases of small physical waves – the estimate (4.10)

We consider the cases where the discontinuities in U or V are physical waves. (4.10) can be obtained in the same way
as [6], if both U and V lie in the same region, stable or metastable, near x = xα . Such that, under the assumption that a
phase boundary moves slower than any 1- or 3-waves, we only need to consider the following four cases.

Case A. See Fig. 5.7.

When kα = 1, we have

E1 1
2

= ∣∣q+
1
2

∣∣(W +
1 1

2
− W −

1 1
2

)(
λ+

1 1
2

− ẋα

) + W −
1 1

2

[∣∣q+
1 1

2

∣∣(λ+
1 1

2
− ẋα

) − ∣∣q−
1 1

2

∣∣(λ−
1 1

2
− ẋα

)]
� D

(−κ1|εα |)∣∣λ+
1 1

2
− ẋα

∣∣ + O (1)
∣∣λ+

1 1
2

− λ−
1 1

2

∣∣
� −κ1 D · |εα | · ∣∣λ+

1 1
2

− ẋα

∣∣ + O (1)|εα|. (5.11)

The estimation of E1 can be divided into two cases. If q−
1 q+

1 > 0, we have

E1 = ∣∣q±
1

∣∣(W +
1 − W −

1

)(
λ±

1 − ẋα

) + W ∓
1

[∣∣q+
1

∣∣(λ+
1 − ẋα

) − ∣∣q−
1

∣∣(λ−
1 − ẋα

)]
� −∣∣q±

1

∣∣ · κ1|εα | · ∣∣λ±
1 − ẋα

∣∣ + (
O (1) + κ1 D

)[(∣∣q+
1

∣∣ − ∣∣q−
1

∣∣)(λ+
1 − ẋα

) + ∣∣q−
1

∣∣(λ+
1 − λ−

1

)]
�

(
O (1) + κ1 D

)[
O (1)

∣∣q+
1 − q−

1

∣∣ + O (1)
∣∣q−

1

∣∣ · |εα |]. (5.12)

Otherwise, if q−
1 q+

1 < 0, then W +
1 = W −

1 and

E1 �
(

O (1) + κ1 D
)[

O (1)
∣∣q+

1 − q−
1

∣∣ + O (1)
∣∣q−

1

∣∣ · |εα |]. (5.13)

For E2, we have

E2 = [∣∣q−
2

∣∣(W −
2 − W +

2

) + W +
2

(∣∣q−
2

∣∣ − ∣∣q+
2

∣∣)]ẋα

� −κ1|εα | · ∣∣q−
2

∣∣ · |ẋα | + (
O (1) + κ1 D

) · ∣∣q+
2 − q−

2

∣∣ · |ẋα |
�

(
O (1) + κ1 D

) · ∣∣q+
2 − q−

2

∣∣ · |ẋα |. (5.14)

In addition, as W +
3 = W −

3 , we have

E3 = ∣∣q+
3

∣∣(W +
3 − W −

3

)(
λ+

3 − ẋα

) + W −
3

[∣∣q+
3

∣∣(λ+
3 − ẋα

) − ∣∣q−
3

∣∣(λ−
3 − ẋα

)]
�

(
O (1) + κ1 D

)[(∣∣q+
3

∣∣ − ∣∣q−
3

∣∣)(λ+
3 − ẋα

) + ∣∣q−
3

∣∣(λ+
3 − λ−

3

)]
�

(
O (1) + κ1 D

)[
O (1)

∣∣q+ − q−∣∣ + O (1)
∣∣q−∣∣ · |εα |]. (5.15)
3 3 3
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Summing (5.11), (5.12) (or (5.13)), (5.14) and (5.15) gives∑
k=1,1 1

2 ,2,3

Ek � −κ1 D · |εα | · ∣∣λ+
1 1

2
− ẋα

∣∣ + O (1)|εα| + O (1)(1 + κ1 D)

· [∣∣q+
1 − q−

1

∣∣ + ∣∣q+
2 − q−

2

∣∣ + ∣∣q+
3 − q−

3

∣∣ + (∣∣q−
1

∣∣ + ∣∣q−
3

∣∣)|εα |].
Such that (4.9) holds if we choose κ1 large enough and all the weights w̃±

k very small. (Notice that |εα | will not be changed.)
When kα = 2, ẋα = 0. Hence

E1 1
2

= ∣∣q+
1
2

∣∣W +
1 1

2
λ+

1 1
2

− ∣∣q−
1 1

2

∣∣W −
1 1

2
λ−

1 1
2

= D
[(

W +
1 1

2
− W −

1 1
2

)
λ+

1 1
2

+ W −
1 1

2

(
λ+

1 1
2

− λ−
1 1

2

)]
� −Dκ1|εα | · |σP1 | + O (1)D|εα| (5.16)

and

E1 = ∣∣q+
1

∣∣(W +
1 − W −

1

)
λ+

1 + W −
1

[∣∣q+
1

∣∣λ+
1 − ∣∣q−

1

∣∣λ−
1

]
� −∣∣q+

1

∣∣ · κ1|εα | · ∣∣λ+
1

∣∣ + (
O (1) + κ1 D

) · [(∣∣q+
1

∣∣ − ∣∣q−
1

∣∣)λ+
1 + ∣∣q−

1

∣∣(λ+
1 − λ−

1

)]
�

(
O (1) + κ1 D

)[
O (1)

∣∣q+
1 − q−

1

∣∣ + O (1)
∣∣q−

1

∣∣ · |εα |]. (5.17)

We can see by the definition that E2 = 0. Moreover,

E3 = ∣∣q+
3

∣∣(W +
3 − W −

3

)
λ+

3 + W −
3

[∣∣q+
3

∣∣λ+
3 − ∣∣q−

3

∣∣λ−
3

]
� −κ1|εα | · ∣∣q+

3

∣∣ · ∣∣λ+
3

∣∣ + (
O (1) + κ1 D

) · [(∣∣q+
3

∣∣ − ∣∣q−
3

∣∣)(λ+
3 + ∣∣q−

3

∣∣(λ+
3 − λ−

3

))]
�

(
O (1) + κ1 D

)[
O (1)

∣∣q+
3 − q−

3

∣∣ + O (1)
∣∣q−

3

∣∣ · |εα |]. (5.18)

Summing (5.16), (5.17) and (5.18) gives∑
k=1,1 1

2 ,2,3

Ek � −Dκ1|εα | · |σP1 | + O (1)D|εα| + (
O (1) + κ1 D

)

· [O (1)
∣∣q+

1 − q−
1

∣∣ + O (1)
∣∣q+

3 − q−
3

∣∣ + O (1)
∣∣q−

1

∣∣ · |εα |]
and (4.9) holds if we choose κ1 large and all the weights w̃±

k small enough.

The case where kα = 3 is similar to that where kα = 1. We have

E1 1
2

� −κ1 D · |εα | · ∣∣λ+
1 1

2
− ẋα

∣∣ + O (1)|εα|.

Since W +
1 = W −

1 ,

E1 �
(

O (1) + κ1 D
)[

O (1)
∣∣q+

1 − q−
1

∣∣ + O (1)
∣∣q−

1

∣∣ · |εα |].
We have

E2 �
(

O (1) + κ1 D
) · ∣∣q+

2 − q−
2

∣∣ · |ẋα |
and

E3 �
(

O (1) + 3κ1 D
)[

O (1)
∣∣q+

3 − q−
3

∣∣ + O (1)
∣∣q−

3

∣∣ · |εα |].
Thus, ∑

k=1,1 1
2 ,2,3

Ek � −κ1 D · |εα | · ∣∣λ+
1 1

2
− ẋα

∣∣ + O (1)|εα| + O (1)(1 + κ1 D)

· [∣∣q+
1 − q−

1

∣∣ + ∣∣q+
2 − q−

2

∣∣ + ∣∣q+
3 − q−

3

∣∣ + (∣∣q−
1

∣∣ + ∣∣q−
3

∣∣)|εα |].
Also (4.9) holds if we choose κ1 large and all the weights w̃±

k small enough.

Case B. See Fig. 5.8.
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Fig. 5.8. Case B.

Fig. 5.9. Case C.

Fig. 5.10. Case D.

In this case, we have U ∈ Ωm which is stable and V ∈ Ω− which is metastable, such that the solution to the Riemann
problem (U , V ) contains a forward phase boundary P2. The analysis of this case is similar to Case A with the large negative
term given by E2 1

2
instead of E1 1

2
. We also have (4.10) by choosing all the weights w̃±

k small enough.

Case C. See Fig. 5.9.

As U ∈ Ω+ is metastable and V ∈ Ωm is stable, the solution to the Riemann problem (U , V ) contains a backward phase
boundary. Therefore, this case is similar to Case A.

Case D. See Fig. 5.10.

This case is similar to Case B and the large negative term is given by E2 1
2

.

6. Discussion

We have obtained the existence of solutions of the initial value problem of Euler equations ((1.1), (1.3)) involving two
phase boundaries moving in opposite directions (Fig. 1.1) under the Finiteness Condition (Theorem 3.4). The Finiteness
Condition ((2.1), (2.2)) says that when a small 1-wave hits a backward phase boundary from the right, the weighted strength
of the outgoing 3-wave is smaller than that of the incoming wave (Fig. 2.1(a)). Symmetrically, when a small 3-wave hits a
forward phase boundary from the left, the weighted strength of the outgoing 1-wave is smaller than that of the incoming
wave (Fig. 2.1(b)). In Theorem 4.1, we show that the Stability Condition ((2.4), (2.5)) guarantees the L1 stability of solutions
and the existence of a semigroup of solutions. The Stability Condition is stronger than the Finiteness Condition [12] and has
similar physical interpretations.

The initial value problem discussed in this paper ((1.1), (1.3)) is not a perturbed Riemann problem as the initial value
contains three constant states with perturbations. It is trivial to extend our conclusions to a Riemann problem involving two
phase boundaries (other waves have zero strengths) under the configuration given by Theorem 3.4(4) in [9]. Similar to (1.1),
(1.3), the left and right states are metastable and middle state is stable.

Lewicka [11] also studies the well posedness of the initial value problem of an n × n hyperbolic system which is a
perturbed Riemann problem solved by M (2 � M � n) large shocks. The Finiteness Condition and Stability Condition in
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[11] imply that when a small wave hits a large shock, the TOTAL weighted strength of the outgoing small waves are smaller
than the weighted strength of the incoming wave. For Euler equations with phase transition, a general Riemann problem in the
configuration given by Theorem 3.4(4) in [9] contains three large physical waves, including a 1-wave, a 3-wave and a contact
discontinuity, and two phase boundaries. We can show that when both 1- and 3-waves are shocks, the L1 well posedness
holds under a Finiteness Condition and a Stability Condition that are similar to those in [11]. However, it remains unknown
whether the Finiteness Condition and Stability Condition hold for Euler equations. In other words, we do not know whether
there exist such weights wi in the Finiteness Condition (or w̃i in the Stability Condition) that the total weighted strength
of the outgoing small waves are smaller than the weighted strength of the incoming wave when a small wave hits a large
shock or a phase boundary.

Another open problem is the well posedness of the initial value problem with two colliding phase boundaries. Hattori
[8] showed the existence of the weak solution in BV when the left and right states are close to each other. It should be
interesting to discuss the well posedness of this case under some suitable Finiteness Condition and Stability Condition.
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