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This paper is devoted to studying initial–boundary value problems for semilinear wave
equations and derivative semilinear wave equations with variable coefficients on exterior
domain with subcritical exponents in n space dimensions. We will establish blow-up
results for the initial–boundary value problems. It is proved that there can be no global
solutions no matter how small the initial data are, and also we give the life span estimate
of solutions for the problems.
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1. Introduction and main results

In this paper, we will consider the blow-up of solutions of the initial–boundary value problems for the following two
semilinear wave equations on exterior domain⎧⎪⎨

⎪⎩
utt − ∂i

(
aij(x)∂ ju

) = |u|p, (x, t) ∈ Ωc × (0,+∞), n � 3,

u(0, x) = ε f (x), ut(0, x) = εg(x), x ∈ Ωc,

u(t, x)|∂Ω = 0, for t � 0,

(1.1)

and⎧⎪⎨
⎪⎩

utt − ∂i
(
aij(x)∂ ju

) = |ut |p, (x, t) ∈ Ωc × (0,+∞), n � 1,

u(0, x) = ε f (x), ut(0, x) = εg(x), x ∈ Ωc,

u(t, x)|∂Ω = 0, for t � 0,

(1.2)

where A(x) = {aij(x)}n
i, j=1 denotes a matrix valued smooth function of the variable x ∈ Ωc , which takes values in the real,

symmetric, n × n matrices, such that for some C > 0,

C−1|ξ |2 � aij(x)ξiξ j � C |ξ |2, ∀ξ ∈ Rn, x ∈ Ωc,

here and in the sequence, a repeated sum on an index is never indicated, and
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aij(x) = δi j, when |x| � R,

where δi j stands for the Kronecker delta function. Ω is a smooth compact obstacle in Rn , Ωc is its complement, n � 3
for (1.1) and n � 1 for (1.2). Without loss of generality, we assume that 0 ∈ Ω � B R , where B R is a ball of radius R
centered at the origin and supp{ f , g} ⊂ B R . We consider dimensions n � 3 and exponents p ∈ (1, p1(n)) for problem (1.1),
and dimensions n � 1 and exponents p � p2(n) for problem (1.2), where p1(n) is the larger root of the quadratic equation
(n − 1)p2 − (n + 1)p − 2 = 0, and p2(n) = 2

n−1 + 1, respectively. The number p1(n) is known as the critical exponent of the
semilinear wave equation (1.1) (see, e.g., [24]) and the number p2(n) is known as the critical exponent of the semilinear
wave equation (1.2) (see, e.g., [34]). And we consider compactly supported nonnegative data ( f , g) ∈ H1(Ωc) × L2(Ωc) for
problem (1.1) and f , g ∈ C∞

0 (Ωc) for problem (1.2).
If aij = δi j , we say problems (1.1), (1.2) are of constant coefficients. In the case of Cauchy problems of subcritical semilin-

ear wave equation with constant coefficients, there is an extensive literature which we shall review briefly, for details, see
[4–6,9,11–13,17,20,23–26,28,30–34].

For the problem (1.1) with constant coefficients, the case n = 3 was first done by F. John [9] in 1979, he showed that
when n = 3 global solutions always exist if p > p1(3) = 1 + √

2 and initial data are suitably small, and moreover, the
global solutions do not exist if 1 < p < p1(3) = 1 + √

2 for any nontrivial choice of f and g . The number p1(3) = 1 + √
2

appears to have first arisen in Strauss’ work on low energy scattering for the nonlinear Klein–Gordon equation [23]. This
led him to conjecture that when n � 2 global solutions of (1.1) should always exist if initial data are sufficiently small
and p is greater than a critical power p1(n). The conjecture was verified when n = 2 by R.T. Glassey [6]. In higher space
dimensions, the case n = 4 was proved by Y. Zhou [33] and V. Georgiev, H. Lindblad and C. Sogge [4] showed that when
n � 4 and p1(n) < p � n+3

n−1 , (1.1) has global solutions for small initial values (see also [14]). Later, a simple proof was given
by D. Tataru [27] in the case p > p1(n) and n � 4. R.T. Glassey [5] and T.C. Sideris [20] showed the blow-up result of
1 < p < p1(n) for n = 2 and all n � 4, respectively. Sideris’ proof of the blow-up result is quite delicate, using sophisticated
computation involving spherical harmonics and other special functions. His proof was simplified by M.A. Rammaha [16].
In 2005, the proof was further simplified by B. Yordanov and Q.S. Zhang [28] by using a simple test function, also, more
importantly they use their method to establish blow-up phenomenon for wave equations (1.1) with constant coefficients
and a potential. On the other hand, for the critical case p = p1(n), it was shown by J. Schaeffer [17] that the critical
power also belongs to the blow-up case for small data when n = 2,3 (see also [25,31,32]). B. Yordanov, and Q.S. Zhang
[29] and Y. Zhou [35] independently have extended Sideris’ blow-up result to p = p1(n) for all n � 4 by different methods
respectively.

For the problem (1.2) with constant coefficients, the blow-up part was first proved by F. John [10] and the global ex-
istence part was first obtained by T.C. Sideris [21] in the case n = 3, and both by J. Schaeffer [18] in the case n = 5.
The blow-up part in the case n = 2 was proved by J. Schaeffer [19] for p = p2(2). Later, R. Agemi [1] proved it for
1 < p � p2(2) by different method from [19]. The case n = 1 is essentially due to K. Masuda [15] who proved the blow-up
result in the case n = 1,2,3 and p = 2. A simple proof of blow-up part was later given by Y. Zhou [34].

Recently, K. Hidano et al. [7] has established global existence for problem (1.1) with p > p1(n) and n = 3,4. For related
result, one can see C.D. Sogge and C.B. Wang’s work [22]. However, to the best of our knowledge, there are no blow-up
results concerning initial–boundary value problems for semilinear wave equations with variable coefficients on exterior
domain. In this paper, we shall establish blow-up results for the initial–boundary value problem for subcritical values of p.
We shall also estimate the life span T (ε) for small initial data of size ε. Our result is complement to the global existence
result of K. Hidano et al. [7]. For the problem (1.1), we obtain our result by constructing two test functions φ0 and ψ1 (see
Section 2), which is motivated by the work of B. Yordanov and Q.S. Zhang [28]. For the problem (1.2), we still use the test
function ψ1 and by introducing an auxiliary function G0(t) (see Section 4), we reduced the problem to a Riccati equation.
This proof is new even in the constant coefficients case.

We are interested in showing the “blow-up” of solutions to problems (1.1) and (1.2). For that, we require

1 < p < p1(n) for (1.1), and p � p2(n) for (1.2), (1.3)

where p1(n) is the larger root of the quadratic equation (n − 1)p2 − (n + 1)p − 2 = 0, and p2(n) = 2
n−1 + 1. We are also

interested in estimating the time when “blow-up” occurs. For initial data of the form

u(0, x) = ε f (x), ut(0, x) = εg(x), (1.4)

with constant 0 < ε � 1, smallness can be measured conveniently by the size of ε for fixed f , g . We define “life span” T (ε)

of the solutions of (1.1) or (1.2) to be the largest value such that solutions exist for x ∈ Ωc , 0 � t < T (ε).
For problem (1.1), we consider compactly supported nonnegative data ( f , g) ∈ H1(Ωc) × L2(Ωc), n � 3 and satisfy

f (x) � 0, g(x) � 0, a.e., f (x) = g(x) = 0, for |x| > R, and f (x) �≡ 0. (1.5)

We establish the following theorem for (1.1):
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Theorem 1.1. Let ( f , g) ∈ H1(Ωc) × L2(Ωc) and satisfy (1.5), ∂Ω is smooth, and Ω satisfies the exterior ball conditions, space
dimensions n � 3. Suppose that problem (1.1) has a solution (u, ut) ∈ C([0, T ), H1(Ωc) × L2(Ωc)) such that

supp(u, ut) ⊂ {
(x, t): |x| � t + R

} ∩ (
Ωc × R+)

.

If 1 < p < p1(n), then T < ∞, and there exists a positive constant A1 which is independent of ε such that

T (ε) � A1ε
− 2p(p−1)

2+(n+1)p−(n−1)p2 . (1.6)

Remark 1.1. Exterior ball condition may not be necessary, but in certain point of our proof, we use strong maximum
principle for the elliptic equation, so this condition is needed technically.

For problem (1.2), we consider compactly supported nonnegative data f , g ∈ C∞
0 (Ωc), n � 1 and satisfy

f (x) � 0, g(x) � 0, f (x) = g(x) = 0, for |x| > R and g(x) �≡ 0. (1.7)

Similarly, we establish the following theorem for (1.2):

Theorem 1.2. Let f , g are smooth functions with compact support f , g ∈ C∞
0 (Ωc) and satisfy (1.7), space dimensions n � 1. Suppose

that problem (1.2) has a solution (u, ut) ∈ C([0, T ), H1(Ωc) × Lq(Ωc)), where q = max(2, p) such that

supp(u, ut) ⊂ {
(x, t): |x| � t + R

} ∩ (
Ωc × R+)

.

If p � p2(n), then T < ∞, moreover, we have the following estimates for the life span T (ε) of solutions of (1.2):

(i) If (n − 1)(p − 1) < 2, then there exists a positive constant A2 which is independent of ε such that

T (ε) � A2ε
− p−1

1−(n−1)(p−1)/2 . (1.8)

(ii) If (n − 1)(p − 1) = 2, then there exists a positive constant B2 which is independent of ε such that

T (ε) � exp
(

B2ε
−(p−1)

)
. (1.9)

The rest of the paper is arranged as follows. We state several preliminary propositions in Section 2, Section 3 is devoted
to the blow-up proof for our Theorem 1.1 and we prove Theorem 1.2 in Section 4.

2. Preliminaries

To prove the main results in this paper, we will employ the following important ODE result:

Lemma 2.1. (See [20].) Let p > 1, a � 1, and (p − 1)a > q − 2. If F ∈ C2([0, T )) satisfies

(1) F (t) � δ(t + R)a,

(2) d2 F (t)
dt2 � k(t + R)−q[F (t)]p ,

with some positive constants δ, k, and R, then F (t) will blow up in finite time, T < ∞. Furthermore, we have the following estimate for
the life span T (δ) of F (t):

T (δ) � cδ− (p−1)
(p−1)a−q+2 , (2.1)

where c is a positive constant depending on k and R but independent of δ.

Proof. For the proof of blow-up result part see Sideris [20]. We only prove the estimate of the life span of F (t) as following:

Let us make a translation τ = tδ
(p−1)

(p−1)a−q+2 and define

H(τ ) = δ
(q−2)

(p−1)a−q+2 F (t) = δ
(q−2)

(p−1)a−q+2 F
(
τδ

−(p−1)
(p−1)a−q+2

)
,

then we have⎧⎨
⎩ H(τ ) �

(
δ

(p−1)
(p−1)a−q+2 R + τ

)a
,

H ′′(τ ) � k
(
δ

(p−1)
(p−1)a−q+2 R + τ

)−q
H p(τ ).

(2.2)
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So when δ � 1, easy computation shows that{
H(τ ) � τ a,

H ′′(τ ) � k(R + τ )−q H p(τ ).
(2.3)

So H(τ ) will blow up in finite time and the life span of F (t) satisfies (2.1). This completes the proof. �
Lemma 2.2. There exists function φ0(x) ∈ C2(Ωc), space dimensions n � 3, satisfying the following boundary value problem:⎧⎪⎨

⎪⎩
∂i

(
aij∂ jφ0(x)

) = 0, in Ωc, n � 3,

φ0|∂Ω = 0,

|x| → ∞, φ0(x) → 1.

(2.4)

Moreover, φ0(x) satisfies: for ∀x ∈ Ωc, 0 < φ0(x) < 1.

Proof. To solve φ0(x), let φ̃0 be solution for the following boundary value problem on exterior domain:⎧⎪⎨
⎪⎩

∂i
(
aij∂ jφ̃0(x)

) = 0, in Ωc, n � 3,

φ̃0|∂Ω = −1,

|x| → ∞, φ̃0(x) → 0,

(2.5)

by the theory of second order elliptic partial differential equation [2] (see also [3]), this problem is well-posed, it has
unique solution φ̃0(x), and by maximum principle, we can easily obtain −1 < φ̃0(x) < 0, for ∀x ∈ Ωc, then we can easily
check that φ0(x) = 1 + φ̃0(x) satisfy the boundary value problem (2.4). This proves the existence of φ0 in (2.4) and satisfies
0 < φ0(x) < 1 for ∀x ∈ Ωc , n � 3. The proof is complete. �

Similarly, we have the following:

Lemma 2.3. There exists a function φ1(x) ∈ C2(Ωc), space dimensions n � 1, satisfying the following boundary value problem:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂i
(
aij∂ jφ1(x)

) = φ1, in Ωc, n � 1,

φ1|∂Ω = 0,

|x| → ∞, φ1(x) →
∫

Sn−1

ex·ω dω.
(2.6)

Moreover, φ1(x) satisfies: there exists positive constant C1 , for ∀x ∈ Ωc , 0 < φ1(x) � C1(1 + |x|)−(n−1)/2 · e|x| .

Proof. To solve φ1(x), let φ̃1 be solution for the following boundary value problem on exterior domain:⎧⎪⎨
⎪⎩

∂i
(
aij∂ jφ̃1(x)

) = φ̃1(x) − w(x), in Ωc, n � 1,

φ̃1|∂Ω = −h(x)|∂Ω,

|x| → ∞, φ̃1(x) → 0,

(2.7)

where h(x) = ∫
Sn−1 ex·ω dω, w(x) = ∂i((aij − δi j)∂ jh), since the function h satisfies �h = h, so by the condition of aij(x), we

get w(x) ∈ C∞
c (Ωc), so by the theory of second order elliptic partial differential equation [2] (see also [3]), the problem

(2.7) is well-posed, it has unique solution φ̃1(x), then we can easily check that φ1(x) = h(x) + φ̃1(x) satisfies the boundary
value problem (2.6), this proves the existence of φ1 in (2.6). To derive the estimate of φ1(x) in Ωc , we rewrite the boundary
value problem (2.6) as the following form:⎧⎪⎨

⎪⎩
−∂i

(
aij∂ jφ1(x)

) + φ1(x) = 0, in Ωc, n � 1,

φ1|∂Ω = 0,

|x| → ∞, φ1(x) → h(x).

(2.8)

So by maximum principle, we can easily get

φ1(x) > 0, for ∀x ∈ Ωc. (2.9)

Next we analyze φ̃1(x) in order to get the estimation of φ1(x), we will prove that φ̃1(x) is bounded by some positive
constant C , that is, |φ̃1(x)| � C for ∀x ∈ Ωc . Here and hereafter, we shall denote by C (or c) a positive constant in the
estimates, and the meaning of C (or c) may change from line to line.
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For this purpose, we rewrite problem (2.7) as follows⎧⎪⎨
⎪⎩

−∂i
(
aij∂ jφ̃1(x)

) + φ̃1(x) = w(x), in Ωc, n � 1,

φ̃1|∂Ω = −h(x)|∂Ω,

|x| → ∞, φ̃1(x) → 0.

(2.10)

For the purpose of employing the maximum principle, we denote C = maxx∈∂Ω |h(x)| + maxx∈Ωc |w(x)| > 0, because the
function w(x) is compactly supported function in Ωc , so the above expression C is well defined. By the maximum principle,
we can get the upper bound of φ̃1(x) as follows:

We rewrite the equation of φ̃1(x) as following⎧⎪⎨
⎪⎩

−∂i
(
aij∂ j

(
φ̃1(x) − C

)) + (
φ̃1(x) − C

) = w(x) − C � 0, in Ωc, n � 1,

(φ̃1 − C)|∂Ω = (−h(x) − C
)∣∣

∂Ω
� 0,

|x| → ∞,
(
φ̃1(x) − C

) → −C � 0.

(2.11)

So we apply maximum principle to (φ̃1(x) − C), we can obtain for ∀x ∈ Ωc , φ̃1(x) − C � 0, that is, φ̃1(x) � C, in Ωc .
In a similar way, we can get −φ̃1(x) � C, in Ωc .
Thus we conclude that |φ̃1(x)| � C for any x ∈ Ωc .
Hence we have for ∀x ∈ Ωc ,

φ1(x) = φ̃1(x) + h(x) � C + h(x) � C ′h(x) � C1
(
1 + |x|)−(n−1)/2 · e|x|, (2.12)

for the estimate of h(x), see F. John’s book [8].
This together with (2.9) implies that φ1(x) satisfies

0 < φ1(x) � C1
(
1 + |x|)−(n−1)/2 · e|x|, in Ωc, n � 1. (2.13)

This proves Lemma 2.3. �
In order to describe the following lemmas, we define the following test function

ψ1(x, t) = φ1(x)e−t, ∀x ∈ Ωc, t � 0. (2.14)

We have

Lemma 2.4. Let p > 1. Assume that φ1 satisfies the conditions in Lemma 2.3, ψ1(x, t) is as in (2.14). Then for ∀t � 0,∫
Ωc∩{|x|�t+R}

[
ψ1(x, t)

]p/(p−1)
dx � C(t + R)n−1−(n−1)p′/2,

where p′ = p/(p − 1) and C is a positive constant.

Proof. Let I(t) be the integral in Lemma 2.4, by the property of φ1(x), we have

I(t) =
∫

Ωc∩{|x|�t+R}

[
ψ1(x, t)

]p/(p−1)
dx =

∫
Ωc∩{|x|�t+R}

[
φ1(x)e−t]p/(p−1)

dx

�
∫

Ωc∩{|x|�t+R}

[
C1

(
1 + |x|)−(n−1)/2 · e|x|]p/(p−1) · e−tp′

dx

�
∫

{|x|�t+R}

[
C1

(
1 + |x|)−(n−1)/2 · e|x|]p/(p−1) · e−tp′

dx

= area
(

Sn−1)C p/(p−1)

1

t+R∫
0

(1 + r)−(n−1)p′/2 · ep′rrn−1e−tp′
dr, (2.15)

where p′ = p/(p − 1) and Sn−1 is the unit sphere in Rn . It is sufficient to show that

I(t) � Ce−tp′
t+R∫

(1 + r)n−1−(n−1)p′/2 · ep′r dr � C(t + R)n−1−(n−1)p′/2. (2.16)
0
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This estimate is evident after splitting the last integral into two parts, that is,

t+R∫
0

(1 + r)n−1−(n−1)p′/2 · ep′r dr =
[ (t+R)/2∫

0

+
t+R∫

(t+R)/2

]
(1 + r)n−1−(n−1)p′/2 · ep′r dr,

(t+R)/2∫
0

(1 + r)n−1−(n−1)p′/2 · ep′r dr � (1 + t + R)q1

(t+R)/2∫
0

ep′r dr

= (1 + t + R)q1 · 1

p′
(
ep′(t+R)/2 − 1

)

� (1 + t + R)q1 · 1

p′ ep′(t+R)/2 = ep′ R/2

p′ (1 + t + R)q1 ep′t/2, (2.17)

where q1 = max(0,n − 1 − (n − 1)p′/2), and

t+R∫
(t+R)/2

(1 + r)n−1−(n−1)p′/2 · ep′r dr � 2−q2(1 + t + R)n−1−(n−1)p′/2

t+R∫
(t+R)/2

ep′r dr

= 2−q2(1 + t + R)n−1−(n−1)p′/2 · 1

p′
(
ep′(t+R) − ep′(t+R)/2)

� 2−q2 ep′ R

p′ · (1 + t + R)n−1−(n−1)p′/2ep′t,

where q2 = min(0,n − 1 − (n − 1)p′/2).
This proves Lemma 2.4. �

Lemma 2.5. Let p > 1. Assume that φ0 and φ1 satisfy the conditions in Lemma 2.2 and Lemma 2.3, respectively, ψ1(x, t) is as in (2.14),
∂Ω and Ω satisfy the conditions in Theorem 1.1. Then for ∀t � 0,∫

Ωc∩{|x|�t+R}

[
φ0(x)

]−1/(p−1) · [ψ1(x, t)
]p/(p−1)

dx � C(t + R)n−1−(n−1)p′/2, (2.18)

where p′ = p/(p − 1) and C is a positive constant.

Proof. To estimate the integral in Lemma 2.5, we split it into two parts as follows∫
Ωc∩{|x|�t+R}

[
φ0(x)

]−1/(p−1) · [ψ1(x, t)
]p/(p−1)

dx

=
∫

Ωc∩B R

[
φ0(x)

]−1/(p−1) · [ψ1(x, t)
]p/(p−1)

dx +
∫

Bc
R∩{|x|�t+R}

[
φ0(x)

]−1/(p−1) · [ψ1(x, t)
]p/(p−1)

dx

= I1(t) + I2(t). (2.19)

We will estimate I1(t) and I2(t) separately.
First let us estimate I2(t). Since for ∀x ∈ Ωc , 0 < φ0(x) < 1, we remark that there exists a constant c ∈ (0,1), such that

when x ∈ Bc
R ∩ {|x| � t + R}, φ0(x) � c. By Lemma 2.4, we have

I2(t) =
∫

Bc
R∩{|x|�t+R}

[
φ0(x)

]−1/(p−1) · [ψ1(x, t)
]p/(p−1)

dx

�
∫

Bc
R∩{|x|�t+R}

c−1/(p−1) · [ψ1(x, t)
]p/(p−1)

dx

� c−1/(p−1)

∫
c

[
ψ1(x, t)

]p/(p−1)
dx
Ω ∩{|x|�t+R}
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� c−1/(p−1)C(t + R)n−1−(n−1)p′/2

= C2(t + R)n−1−(n−1)p′/2. (2.20)

Next we estimate I1(t). On the one hand, because of regularity of φ1(x), the first derivative of φ1(x) is bounded in
Ωc ∩ B R , this lead to φ1(x) = φ1(x) − φ1(y) � C3|x − y|, for ∀y ∈ ∂Ω . Therefore by taking the infimum on ∂Ω we have,∣∣φ1(x)

∣∣ � C3 dist(x, ∂Ω).

On the other hand, φ0(x) obeys the maximum (minimum) principle, and assumes its minimum value (zero) on ∂Ω , since
Ω satisfies exterior ball condition, so by [3, Hopf’s lemma, p. 330], it follows that, for any y ∈ ∂Ω, there exists an open ball
B ⊂ Ωc with y ∈ ∂ B , then we have, for any y ∈ ∂Ω,

∂φ0

∂ν
(y) > 0, (2.21)

where ν is the inner unit normal to Ωc at y. By the compactness of ∂Ω , we have, for ∀y ∈ ∂Ω , we have

∂φ0

∂ν
(y) � C∗ > 0,

where C∗ is a positive constant.
For ∀x ∈ Ωc ∩ B R , there exists a y ∈ ∂Ω such that (x − y)//ν(y), i.e., (x−y)

|x−y| = ν(y), ν(y) is the outer unit normal to ∂Ω

at y. So we have

∇φ0(y) · (x − y)

|x − y| = ∂φ0(y)

∂ν
� C∗ > 0,

φ0(x) = φ0(x) − φ0(y) =
1∫

0

∇φ0
(
sx + (1 − s)y

)
ds · (x − y)

=
1∫

0

∇φ0
(
sx + (1 − s)y

)
ds · (x − y)

|x − y| · |x − y|, (2.22)

by the continuity, for ∀x ∈ Ωc ∩ B R and |x − y| � 1, we know that (sx + (1 − s)y) is sufficiently close to y, so we can
guarantee that

∇φ0
(
sx + (1 − s)y

) · (x − y)

|x − y| � 1

2
C∗ > 0.

So there exists a positive constant ε0 > 0 such that the above expression holds for ∀x ∈ Ωc ∩ B R and dist(x, ∂Ω) < ε0.
We discuss in the following in two cases respectively:
One case is that for x ∈ Ωc ∩ B R , and dist(x, ∂Ω) < ε0, we have

∣∣φ0(x)
∣∣ � 1

2
C∗|x − y| � 1

2
C∗ dist(x, ∂Ω). (2.23)

The other case is that when x ∈ Ωc ∩ B R , and dist(x, ∂Ω) � ε0, on the one hand, by the property of the function φ0(x),
there is a positive constant c1 ∈ (0,1), such that

φ0(x) � c1 > 0,

on the other hand, for x ∈ Ωc ∩ B R , there definitely exists a positive constant c′ > 0 such that dist(x, ∂Ω) � c′, so we have

φ0(x)

dist(x, ∂Ω)
� φ0(x)

c′ � c1

c′ = c′′ > 0, for x ∈ Ωc ∩ B R , and dist(x, ∂Ω) � ε0, (2.24)

that is

φ0(x) � c′′ dist(x, ∂Ω),

where c′′ is a positive constant.
So combining the above two cases, for ∀x ∈ Ωc ∩ B R , we have

φ0(x) � C∗∗ dist(x, ∂Ω),

where C∗∗ is a positive constant.
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Hence, we have

I1(t) =
∫

Ωc∩B R

[
φ0(x)

]−1/(p−1) · [ψ1(x, t)
]p/(p−1)

dx

�
∫

Ωc∩B R

[C∗∗]−1/(p−1)
[
dist(x, ∂Ω)

]−1/(p−1) · [ψ1(x, t)
]p/(p−1)

dx

=
∫

Ωc∩B R

[C∗∗]−1/(p−1)
[
dist(x, ∂Ω)

]−1/(p−1) · e−tp′[
φ1(x)

]p/(p−1)
dx

�
∫

Ωc∩B R

[C∗∗]−1/(p−1)
[
dist(x, ∂Ω)

]−1/(p−1) · e−tp′
C p/(p−1)

3

[
dist(x, ∂Ω)

]p/(p−1)
dx

= e−tp′
∫

Ωc∩B R

[C∗∗]−1/(p−1)C p/(p−1)

3 dist(x, ∂Ω)dx

= Ce−tp′
∫

Ωc∩B R

dist(x, ∂Ω)dx � C4e−tp′
, (2.25)

where p′ = p/(p − 1).
So we conclude that∫

Ωc∩{|x|�t+R}

[
φ0(x)

]−1/(p−1) · [ψ1(x, t)
]p/(p−1)

dx = I1(t) + I2(t)

� C4e−tp′ + C2(t + R)n−1−(n−1)p′/2

� C5(t + R)n−1−(n−1)p′/2, (2.26)

where C5 is a positive constant. The proof is complete. �
Lemma 2.6. Let p > 1. Assume that φ1 satisfies the conditions in Lemma 2.3, ψ1(x, t) is as in (2.14). Then for ∀t � 0,∫

Ωc∩{|x|�t+R}
ψ1 dx � C(t + R)(n−1)/2, (2.27)

where C is a positive constant.

Proof. We note that for ∀t � 0, ψ1(x, t) = e−tφ1(x), and since for ∀x ∈ Ωc, 0 < φ1(x) � C1(1 + |x|)−(n−1)/2e|x| , we can get
that there exists a positive constant C6 such that 0 < φ1(x) � C6|x|−(n−1)/2e|x| for any x ∈ Ωc .

So we have∫
Ωc∩{|x|�t+R}

ψ1 dx =
∫

Ωc∩{|x|�t+R}
e−tφ1(x)dx

�
∫

Ωc∩{|x|�t+R}
e−t · C6|x|−(n−1)/2e|x| dx

�
∫

{|x|�t+R}
e−t · C6|x|−(n−1)/2e|x| dx

= C6e−t

t+R∫
0

r−(n−1)/2er · rn−1 dr

∫
Sn−1

dω = C7e−t

t+R∫
0

er · r(n−1)/2 dr

= C7e−t

[
err(n−1)/2

∣∣t+R
0 −

t+R∫
0

er
(

n − 1

2

)
r(n−3)/2 dr

]

� C7e−tet+R(t + R)(n−1)/2 = C7eR(t + R)(n−1)/2 = C8(t + R)(n−1)/2. (2.28)

This completes the proof. �
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3. The proof of Theorem 1.1

Theorem 1.1 is a consequence of the lower bound and the blow-up result about nonlinear differential inequalities in
Lemma 2.1.

To outline the method, we will introduce the following functions:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F0(t) =
∫
Ωc

u(x, t)φ0(x)dx,

F1(t) =
∫
Ωc

u(x, t)ψ1(x, t)dx, ψ1(x, t) = φ1(x)e−t,

(3.1)

here φ0(x) and φ1(x) are as in Lemma 2.2 and Lemma 2.3. The assumptions on u imply that F0(t) and F1(t) are well-defined
C2-functions for all t . By a standard procedure, we derive a nonlinear differential inequality for F0(t). We also derive a linear
differential inequality for F1(t) and combine these to obtain a polynomial lower bound on F0(t) as t → ∞.

To this end, we first establish the following lemma:

Lemma 3.1. Let ( f , g) satisfy (1.5). Suppose that problem (1.1) has a solution (u, ut) ∈ C([0, T ), H1(Ωc) × L2(Ωc)), such that

supp(u, ut) ⊂ {
(x, t): |x| � t + R

} ∩ (
Ωc × R+)

.

Then for all t � 0,

F1(t) � 1

2

(
1 − e−2t)ε ∫

Ωc

[
f (x) + g(x)

]
φ1(x)dx + e−2tε

∫
Ωc

f (x)φ1(x)dx � εc0 > 0.

Proof. We multiply (1.1) by the test function ψ1 ∈ C2(Ωc × R) and integrate over Ωc × [0, t], then we use integration by
parts and Lemma 2.3.

First,

t∫
0

∫
Ωc

ψ1
(
∂i

(
aij(x)∂ ju

) − utt + |u|p)
dx dτ = 0.

By the expression ψ1(x, t) = φ1(x)e−t and Lemma 2.3, we have

t∫
0

∫
Ωc

ψ1∂i
(
aij(x)∂ ju

)
dx dτ =

t∫
0

[ ∫
∂Ω

ψ1aij(x)∂ ju · ni dS −
∫
Ωc

(
aij(x)∂iψ1

)
∂ ju dx

]
dτ

= −
t∫

0

[ ∫
∂Ω

aij(x)∂iψ1 · u · n j dS −
∫
Ωc

∂ j
(
aij(x)∂iψ1

)
u dx

]
dτ

=
t∫

0

∫
Ωc

ψ1u dx dτ ,

by the expression of ψ1(x, t), we get (ψ1)t = −ψ1, (ψ1)tt = ψ1. So we have

t∫
0

∫
Ωc

ψ1utt dx dτ =
t∫

0

∫
Ωc

[
∂τ (ψ1uτ ) − (ψ1)τ uτ

]
dx dτ

=
∫
Ωc

ψ1uτ dx

∣∣∣∣
τ=t

−
∫
Ωc

ψ1uτ dx

∣∣∣∣
τ=0

+
t∫

0

∫
Ωc

ψ1uτ dx dτ

=
∫

c

ψ1uτ dx

∣∣∣∣
τ=t

−
∫

c

ψ1uτ dx

∣∣∣∣
τ=0

+
t∫ ∫

c

[
∂τ (ψ1u) − (ψ1)τ u

]
dx dτ
Ω Ω 0 Ω
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=
∫
Ωc

ψ1uτ dx

∣∣∣∣
τ=t

−
∫
Ωc

ψ1uτ dx

∣∣∣∣
τ=0

+
∫
Ωc

ψ1u dx

∣∣∣∣
τ=t

−
∫
Ωc

ψ1u dx

∣∣∣∣
τ=0

+
t∫

0

∫
Ωc

ψ1u dx dτ

=
∫
Ωc

(ψ1ut + uψ1)dx − ε

∫
Ωc

φ1(x)g(x)dx − ε

∫
Ωc

φ1(x) f (x)dx +
t∫

0

∫
Ωc

ψ1u dx dτ .

Combining the above equalities, we have

t∫
0

∫
Ωc

ψ1|u|p dx dτ =
∫
Ωc

(ψ1ut + ψ1u)dx − ε

∫
Ωc

φ1(x)
[

f (x) + g(x)
]

dx.

We notice that∫
Ωc

(ψ1ut + ψ1u)dx = d

dt

∫
Ωc

(ψ1u)dx −
∫
Ωc

(ψ1)t u dx +
∫
Ωc

ψ1u dx

= d

dt

∫
Ωc

(ψ1u)dx + 2
∫
Ωc

ψ1u dx

= dF1(t)

dt
+ 2F1(t).

So by ψ1 > 0, we have

dF1(t)

dt
+ 2F1(t) =

t∫
0

∫
Ωc

|u|pψ1(x, τ )dx dτ + ε

∫
Ωc

φ1(x)
[

f (x) + g(x)
]

dx

� ε

∫
Ωc

[
f (x) + g(x)

]
φ1(x)dx.

Multiplying the above expression by e2t , we obtain

d(e2t F1(t))

dt
� e2tε

∫
Ωc

[
f (x) + g(x)

]
φ1(x)dx,

and integrating the above differential inequality over [0, t], we get

e2t F1(t) − F1(0) � 1

2

(
e2t − 1

)
ε

∫
Ωc

[
f (x) + g(x)

]
φ1(x)dx.

Observing F1(0) = ∫
Ωc u(x,0)ψ1(x,0)dx = ε

∫
Ωc f (x)φ1(x)dx. So, by the property of the function f (x) and φ1(x), we arrive

at

F1(t) � 1

2

(
1 − e−2t)ε ∫

Ωc

[
f (x) + g(x)

]
φ1(x)dx + e−2tε

∫
Ωc

f (x)φ1(x)dx � εc0 > 0.

Thus we obtain the lower bound in Lemma 3.1. �
Next we shall show that F0(t) satisfies the differential inequalities in Lemma 2.1 for suitable a, q. For this purpose, we

multiply (1.1) by φ0 and integrate over Ωc . We note that for a fixed t , u(·, t) ∈ H1
0(Dt) where Dt is the support of u(·, t).

Hence we can use integration by parts and Lemma 2.2.
First,∫ [

φ0∂i
(
aij(x)∂ ju

) − φ0utt + |u|pφ0
]

dx = 0.
Ωc
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Since∫
Ωc

φ0∂i
(
aij(x)∂ ju

)
dx =

∫
∂Ω

φ0aij(x)∂ ju · ni dS −
∫
Ωc

∂iφ0aij(x)∂ ju dx

= −
( ∫

∂Ω

aij(x)∂iφ0u · n j dS −
∫
Ωc

∂ j
(
aij(x)∂iφ0

)
u dx

)

=
∫
Ωc

∂ j
(
aij(x)∂iφ0

)
u dx = 0. (3.2)

So we get

d2 F0(t)

dt2
=

∫
Ωc

∣∣u(x, t)
∣∣p

φ0(x)dx.

Estimating the right side of the above equality by the Hölder inequality, we have∣∣∣∣
∫
Ωc

u(x, t)φ0(x)dx

∣∣∣∣ =
∣∣∣∣

∫
Ωc∩{|x|�t+R}

u(x, t)
[
φ0(x)

]1/p[
φ0(x)

](p−1)/p
dx

∣∣∣∣

�
( ∫

Ωc∩{|x|�t+R}

∣∣u(x, t)
[
φ0(x)

]1/p∣∣p
dx

)1/p

·
( ∫

Ωc∩{|x|�t+R}

∣∣[φ0(x)
](p−1)/p∣∣p′

dx

)1/p′

where p′ = p/(p − 1), this implies that

∣∣∣∣
∫
Ωc

u(x, t)φ0(x)dx

∣∣∣∣
p

�
( ∫

{|x|�t+R}∩Ωc

∣∣u(x, t)
∣∣p

φ0(x)dx

)( ∫
{|x|�t+R}∩Ωc

φ0(x)dx

)p−1

�
( ∫

Ωc

∣∣u(x, t)
∣∣p

φ0(x)dx

)( ∫
{|x|�t+R}∩Ωc

φ0(x)dx

)p−1

.

So we have∫
Ωc

∣∣u(x, t)
∣∣p

φ0(x)dx �
| ∫

Ωc u(x, t)φ0(x)dx|p

(
∫
{|x|�t+R}∩Ωc φ0(x)dx)p−1

.

By Lemma 2.2, we have∫
{|x|�t+R}∩Ωc

φ0(x)dx �
∫

{|x|�t+R}
1 dx � Vol

{
x: |x| � t + R

} = Vol
(
Bn)(t + R)n.

Therefore∫
Ωc

∣∣u(x, t)
∣∣p

φ0(x)dx �
| ∫

Ωc u(x, t)φ0(x)dx|p

[Vol(Bn)(t + R)n]p−1
= |F0(t)|p

[Vol(Bn)]p−1 · (t + R)n(p−1)
.

Thus

d2 F0(t)

dt2
� k(t + R)−n(p−1) · ∣∣F0(t)

∣∣p
, (3.3)

where k = [Vol(Bn)]−(p−1) > 0. So F0 satisfies the differential inequality (2) in Lemma 2.1. To show that F0 admits the lower
bound (1) in Lemma 2.1, we relate d2 F0(t)/dt2 to F1 using again (1.1) and the Hölder inequality.
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Since∣∣∣∣
∫
Ωc

u(x, t)ψ1(x, t)dx

∣∣∣∣ =
∣∣∣∣

∫
Ωc∩{|x|�t+R}

u(x, t)
[
φ0(x)

]1/p · [φ0(x)
]−1/p · ψ1(x, t)dx

∣∣∣∣
�

( ∫
Ωc∩{|x|�t+R}

∣∣u(x, t)
∣∣p · φ0(x)dx

)1/p

·
( ∫

Ωc∩{|x|�t+R}

∣∣[φ0(x)
]−1/p · ψ1(x, t)

∣∣p′
dx

)1/p′

�
( ∫

Ωc

∣∣u(x, t)
∣∣p · φ0(x)dx

)1/p

·
( ∫

Ωc∩{|x|�t+R}

[
φ0(x)

]−1/(p−1) · [ψ1(x, t)
]p/(p−1)

dx

)(p−1)/p

,

where p′ = p/(p − 1), this implies that∣∣∣∣
∫
Ωc

u(x, t)ψ1(x, t)dx

∣∣∣∣
p

�
( ∫

Ωc

∣∣u(x, t)
∣∣p · φ0(x)dx

)
·
( ∫

Ωc∩{|x|�t+R}

[
φ0(x)

]−1/(p−1) · [ψ1(x, t)
]p/(p−1)

dx

)p−1

.

By (3.1), the above becomes

d2 F0(t)

dt2
=

∫
Ωc

∣∣u(x, t)
∣∣p

φ0(x)dx

�
| ∫

Ωc u(x, t)ψ1(x, t)dx|p

(
∫
Ωc∩{|x|�t+R}[φ0(x)]−1/(p−1) · [ψ1(x, t)]p/(p−1) dx)p−1

= |F1(t)|p

(
∫
Ωc∩{|x|�t+R}[φ0(x)]−1/(p−1) · [ψ1(x, t)]p/(p−1) dx)p−1

.

In the following, we will estimate the numerator and denominator, respectively, and provide a lower bound on d2 F0/dt2.
By Lemma 3.1, we have∣∣F1(t)

∣∣p � εp(c0)
p > 0. (3.4)

Also, by Lemma 2.5 we know that∫
Ωc∩{|x|�t+R}

[
φ0(x)

]−1/(p−1) · [ψ1(x, t)
]p/(p−1)

dx � C5(t + R)n−1−(n−1)p′/2, (3.5)

where p′ = p/(p − 1) and C5 is a positive constant.
So by combining (3.4) and (3.5), we obtain

d2 F0(t)

dt2
� |F1(t)|p

(
∫
Ωc∩{|x|�t+R}[φ0(x)]−1/(p−1) · [ψ1(x, t)]p/(p−1) dx)p−1

�
εpcp

0

[C5(t + R)n−1−(n−1)p′/2]p−1

� L(t + R)−(n−1)(p/2−1),

where L = εpcp
0 C−(p−1)

5 > 0. Integrating twice, we have the final estimate

F0(t) � δ(t + R)n+1−(n−1)p/2 + dF0(0)

dt
t + F0(0),

with constant

δ = L

[n − 1
2 (n − 1)p + 1][n − 1

2 (n − 1)p] = εpcp
0 C−(p−1)

5

[n − 1
2 (n − 1)p + 1][n − 1

2 (n − 1)p] > 0.

When 1 < p < p1(n), it is easy to check that n + 1 − (n − 1)p/2 > 1. Hence the following estimate is valid when t is
sufficiently large:

F0(t) � 1
δ(t + R)n+1−(n−1)p/2. (3.6)
2
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Estimates (3.3) together with (3.6) and Lemma 2.1 with parameters

a ≡ n + 1 − (n − 1)p/2, and q ≡ n(p − 1)

imply Theorem 1.1 for all exponents p such that

(p − 1)
(
n + 1 − (n − 1)p/2

)
> n(p − 1) − 2 and p > 1.

It is easy to see that the solution set is p ∈ (1, p1(n)), so by Lemma 2.1, all solutions of problem (1.1) with nontrivial
nonnegative initial values must blow up in finite time.

Also, recall from Lemma 2.1, we have the following estimate for the life span T (ε) of solutions of (1.1) as follows

T (ε) � c

(
1

2
δ

)− (p−1)
(p−1)a−q+2

= A1(ε
p)

− (p−1)
(p−1)(n+1−(n−1)p/2)−n(p−1)+2

= A1ε
− p(p−1)

(p−1)(1−(n−1)p/2)+2

= A1ε
− 2p(p−1)

2+(n+1)p−(n−1)p2 , (3.7)

where A1 is a positive constant which is independent of ε. The proof of Theorem 1.1 is complete.

4. The proof of Theorem 1.2

By the expression ψ1(x, t) = e−tφ1(x) � 0, we have (ψ1)t = −ψ1, and ∂i(aij∂ jψ1(x, t)) = ψ1(x, t), in Ωc × (0,+∞). So ψ1
satisfies⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂i
(
aij∂ jψ1(x, t)

) = ψ1(x, t), in Ωc × (0,+∞),

ψ1|∂Ω×(0,+∞) = 0,

|x| → ∞, ψ1(x, t) → e−t
∫

Sn−1

ex·ω dω, for t � 0.
(4.1)

We multiply (1.2) by function ψ1, and integrate over Ωc , then we use integration by parts and Lemma 2.3.
First,∫

Ωc

ψ1
(
utt − ∂i

(
aij(x)∂ ju

))
dx =

∫
Ωc

ψ1|ut |p dx.

Note that for a fixed t , u(·, t) ∈ H1
0(Dt), where Dt is the support of u(·, t). Hence by integration by parts and Lemma 2.3,

we have∫
Ωc

ψ1∂i
(
aij(x)∂ ju

)
dx =

∫
Ωc

(
∂i

[
ψ1aij(x)∂ ju

] − ∂iψ1aij(x)∂ ju
)

dx

=
∫

∂Ω

ψ1aij(x)∂ ju · ni dS −
∫
Ωc

(
aij(x)∂iψ1

) · ∂ ju dx

= −
∫

∂Ω

aij(x)∂iψ1 · u · n j dS +
∫
Ωc

∂ j
(
aij(x)∂iψ1

)
u dx

=
∫
Ωc

∂ j
(
aij(x)∂iψ1

) · u dx =
∫
Ωc

ψ1 · u dx.

Combining the above two identities, we conclude∫
ψ1utt −

∫
ψ1 · u dx =

∫
ψ1 · |ut |p dx. (4.2)
Ωc Ωc Ωc
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Notice that

d

dt

∫
Ωc

ψ1ut dx =
∫
Ωc

(ψ1 · utt − utψ1)dx, (4.3)

d

dt

∫
Ωc

(ψ1u)dx =
∫
Ωc

[
(ψ1)t · u + ut · ψ1

]
dx =

∫
Ωc

[ψ1 · ut − uψ1]dx. (4.4)

Adding up the above two expressions, we obtain the following

d

dt

∫
Ωc

(ψ1ut + ψ1u)dx =
∫
Ωc

(ψ1 · utt − u · ψ1)dx =
∫
Ωc

ψ1 · |ut |p dx. (4.5)

So we have

∫
Ωc

(ψ1ut + ψ1u)dx =
∫
Ωc

(ψ1ut + ψ1u)dx

∣∣∣∣
t=0

+
t∫

0

∫
Ωc

ψ1 · |uτ |p dx dτ

=
∫
Ωc

εφ1(x)
[

f (x) + g(x)
]

dx +
t∫

0

∫
Ωc

ψ1 · |uτ |p dx dτ

�
∫
Ωc

εφ1(x)g(x)dx +
t∫

0

∫
Ωc

ψ1 · |uτ |p dx dτ . (4.6)

Adding two expressions (4.2) and (4.6), we have

∫
Ωc

(ψ1utt + ψ1ut)dx �
∫
Ωc

ψ1 · |ut |p dx +
t∫

0

∫
Ωc

ψ1 · |uτ |p dx dτ + ε

∫
Ωc

φ1(x)g(x)dx. (4.7)

Also, we know that

d

dt

∫
Ωc

ψ1ut dx + 2
∫
Ωc

ψ1 · ut dx =
∫
Ωc

[
ψ1utt + ut(ψ1)t + 2ψ1ut

]
dx

=
∫
Ωc

(ψ1utt + ψ1ut)dx. (4.8)

So we have

d

dt

∫
Ωc

ψ1ut dx + 2
∫
Ωc

ψ1 · ut dx �
∫
Ωc

ψ1 · |ut |p dx +
t∫

0

∫
Ωc

ψ1 · |uτ |p dx dτ + ε

∫
Ωc

φ1(x)g(x)dx. (4.9)

To show the blow-up property, we define the following auxiliary function

G0(t) =
∫
Ωc

ψ1ut dx − 1

2

t∫
0

∫
Ωc

ψ1 · |uτ |p dx dτ − ε

2

∫
Ωc

φ1(x)g(x)dx. (4.10)

We note that, when t = 0,

G0(0) = ε

∫
Ωc

φ1(x)g(x)dx − ε

2

∫
Ωc

φ1(x)g(x)dx = ε

2

∫
Ωc

φ1(x)g(x)dx � 0,

and we have

d

dt
G0(t) =

∫
Ωc

(ψ1utt − utψ1)dx − 1

2

∫
Ωc

ψ1 · |ut |p dx. (4.11)

Hence, we conclude that
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d

dt
G0(t) + 2G0(t) =

∫
Ωc

(ψ1utt + utψ1)dx − 1

2

∫
Ωc

ψ1 · |ut |p dx −
t∫

0

∫
Ωc

ψ1 · |uτ |p dx dτ − ε

∫
Ωc

φ1(x)g(x)dx

�
∫
Ωc

ψ1 · |ut |p dx +
t∫

0

∫
Ωc

ψ1 · |uτ |p dx dτ + ε

∫
Ωc

φ1(x)g(x)dx

− 1

2

∫
Ωc

ψ1|ut |p dx −
t∫

0

∫
Ωc

ψ1 · |uτ |p dx dτ − ε

∫
Ωc

φ1(x)g(x)dx

= 1

2

∫
Ωc

ψ1 · |ut |p dx � 0. (4.12)

Multiplying the above differential inequality by e2t , we get the following expression

d

dt

(
e2t G0(t)

)
� 0.

So for ∀t � 0, we have e2t G0(t) � G0(0), that is G0(t) � e−2t G0(0) � 0.
By (4.10), we have for ∀t � 0,

∫
Ωc

ψ1ut dx � 1

2

t∫
0

∫
Ωc

ψ1 · |ut |p dx dτ + ε

2

∫
Ωc

φ1(x)g(x)dx. (4.13)

Let

F (t) = 1

2

t∫
0

∫
Ωc

ψ1 · |ut |p dx dτ + ε

2

∫
Ωc

φ1(x)g(x)dx, t � 0. (4.14)

Then we have∫
Ωc

ψ1ut dx � F (t), for ∀t � 0. (4.15)

Next we only need to prove that F (t) blow up.
From the expression of F (t), we get for ∀t � 0, F (t) � 0, and F ′(t) = 1

2

∫
Ωc ψ1 · |ut |p dx. Estimating the right side of F ′(t)

by the Hölder inequality, we have∫
Ωc

∣∣ut(x, t)
∣∣p

ψ1 dx �
| ∫

Ωc ut(x, t)ψ1 dx|p

(
∫
Ωc∩{|x|�t+R} ψ1 dx)p−1

.

By Lemma 2.6, we know that for ∀t � 0,∫
Ωc∩{|x|�t+R}

ψ1 dx � C8(t + R)(n−1)/2, (4.16)

where C8 is a positive constant.
Therefore we conclude that

F ′(t) = 1

2

∫
Ωc

ψ1 · |ut |p dx � 1

2

| ∫
Ωc ut(x, t)ψ1 dx|p

(
∫
Ωc∩{|x|�t+R} ψ1 dx)p−1

� C9
| ∫

Ωc ut(x, t)ψ1 dx|p

(t + R)(n−1)(p−1)/2
� C9

|F (t)|p

(t + R)(n−1)(p−1)/2
. (4.17)

By the property of Riccati equation, we know that when (n − 1)(p − 1)/2 � 1, the solution of the initial–boundary value
problem (1.2) blow up.
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In detail, let

M = 1

2

∫
Ωc

φ1(x)g(x)dx.

Then F (t) satisfies the following problem⎧⎨
⎩ F ′(t) � C9

|F (t)|p

(t + R)(n−1)(p−1)/2
,

F (0) = Mε.

(4.18)

Now we introduce a function v(t) satisfying the following Riccati equation⎧⎨
⎩ v ′(t) = C9

|v(t)|p

(t + R)(n−1)(p−1)/2
,

v(0) = Mε.

(4.19)

So the life span of F is less than that of v which will be the upper bound of T (ε).
Thus, in the case (n − 1)(p − 1) < 2, integrating (4.19), we get

v(t) = [
(Mε)−(p−1) + C ′R1−(n−1)(p−1)/2 − C ′(t + R)1−(n−1)(p−1)/2]− 1

p−1 , (4.20)

where

C ′ = C9(p − 1)

1 − (n − 1)(p − 1)/2
.

Thus

T (ε) � A2ε
− p−1

1−(n−1)(p−1)/2 ,

where A2 is a positive constant which is independent of ε.
When (n − 1)(p − 1) = 2, integrating (4.19), we get

v(t) =
[
(Mε)−(p−1) − C ′′ ln

(
t + R

R

)]− 1
p−1

, (4.21)

where

C ′′ = C9(p − 1),

T (ε) � exp
(

B2ε
−(p−1)

)
,

where B2 is a positive constant which is independent of ε. This ends the proof of Theorem 1.2.

5. Conclusion

We have obtained the blow-up results for the initial–boundary value problem for the semilinear wave equation (1.1) on
exterior domain with subcritical exponent p, that is 1 < p < p1(n), and the space dimensions n � 3, and also we give the
estimate of upper bound of life span solutions for the problem. For the space dimension n = 2 and n = 1, the blow-up
results are open. For the case of the critical exponents, there is no results for (1.1). Moreover, the estimate of lower bound
of life span for the subcritical or critical case, and global existence for the supercritical case are largely open despite the
results in dimension 3 � n � 4 by [7,22].
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