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1. Introduction

The foundations of the theory of composition operators in abstract L2-spaces are well developed. Many properties of
such operators are described with the help of appropriate Radon–Nikodym derivatives (cf. [8,20,29,12,14,7,15,16,24,3,1,2]).
However, when dealing with specific measure spaces, one has to make a further effort to adapt a general approach to a
particular context. Specificity of measure spaces under consideration may lead to interesting questions in other branches of
mathematics like matrix theory and the theory of moments (see e.g. [19,25,6]).

Our aim in this paper is to examine a class of composition operators C A : L2(μ) → L2(μ) given by C A( f ) = f ◦ A, where
A is a nonsingular d × d matrix and μ is a positive Borel measure on the real d-dimensional Euclidean space R

d defined by

μ(σ) =
∫
σ

e−‖x‖ dx, σ -Borel subset of R
d. (1.1)

Here ‖ · ‖ is a norm on R
d that is given by an inner product. In other words, the measure μ is given by a density func-

tion of the Laplace type. The case of other classical densities including the Gaussian one has been investigated in [19,25,6].
In particular, the cosubnormality of composition operators on such L2 spaces has been completely characterized by nor-
mality of their symbols A on the Hilbert space (Rd, ‖ · ‖) (cf. [25, Theorem 2.5]). Comparing the Laplace density case (cf.
Theorem 4.4) with the Gaussian one, we see that it may happen that the composition operator C A is cosubnormal in the
Gaussian density case but not in the Laplace one. It follows from what is proved in Section 4 that in the Laplace density case
there exist cohyponormal composition operators C A which are not cosubnormal; however, the same operators, considered
in the Gaussian setting, are still cosubnormal. Fortunately, in the Laplace density case there exist cosubnormal composition
operators C A on L2(μ) which are not normal.
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It is worth mentioning that hyponormal composition operators on L2(ν) are automatically unitary whenever the mea-
sure ν is finite (cf. [12, Lemma 7]). This is the main reason why only cohyponormal and cosubnormal composition operators
are studied in this article. However, under some circumstances (which appear in our paper) the adjoints of composition op-
erators are unitarily equivalent to scalar multiples of some other composition operators (see e.g. [25, (UE), p. 309]). This
means that our results concerning cohyponormal and cosubnormal composition operators on L2(μ) with μ as in (1.1) can
be easily formulated for hyponormal and subnormal composition operators with matrix symbols on L2(e‖x‖ dx).

In Section 3 we discuss some questions concerning positive definiteness and conditional positive definiteness; both
notions play a pivotal role in our paper.

2. Preliminaries

Given a complex Hilbert space H, we denote by B(H) the C∗-algebra of all bounded linear operators on H. An operator
T ∈ B(H) is said to be

– subnormal if there exist a complex Hilbert space K ⊇ H (isometric embedding) and a normal operator N ∈ B(K) such
that T f = N f for all f ∈ H (cf. [10]);

– quasinormal if the factors U and |T | in the polar decomposition T = U |T | of T commute;
– hyponormal if T ∗T − T T ∗ � 0.

It is well known that isometric operators are quasinormal, quasinormal operators are subnormal and subnormal operators
are hyponormal. However, neither of the reverse implications is true (cf. [4,5]). The adjoint of a hyponormal operator is
called a cohyponormal operator. The same terminological rule with the prefix “co” is applied to subnormal, quasinormal and
isometric operators.

Suppose that (X,Σ,μ) is σ -finite measure space and φ : X → X is a Σ-measurable transformation such that the mea-
sure μ ◦ φ−1 defined by (μ ◦ φ−1)(σ ) = μ(φ−1(σ )) for σ ∈ Σ is absolutely continuous with respect to μ. Then the linear
operator Cφ : L2(μ) ⊇ D(Cφ) → L2(μ) given by

D(Cφ) = {
f ∈ L2(μ): f ◦ φ ∈ L2(μ)

}
and Cφ f = f ◦ φ for f ∈ D(Cφ)

is well defined. We call it a composition operator induced by φ and φ is called a symbol of Cφ . Since μ ◦ (φn)−1 is absolutely
continuous with respect to μ for each integer n � 0, we may consider the Radon–Nikodym derivatives

hn = hφ
n := dμ ◦ (φn)−1

dμ
, n = 0,1,2, . . . ,

where φn denotes the n-fold composition of φ with itself for n � 1, and φ0 is the identity transformation of X . Since D(Cφ)

equipped with the graph norm of Cφ is the Hilbert space L2((1 + hφ
1 )dμ), we see that the operator Cφ is closed. Recall

that Cφ is a bounded operator on L2(μ) if and only if hφ
1 ∈ L∞(μ). If ψ is a Σ-measurable transformation of X such that

the mapping L2(μ) 	 f 
→ f ◦ ψ ∈ L2(μ) is well defined, then μ ◦ ψ−1 is absolutely continuous with respect to μ, Cψ is
bounded and

‖Cψ‖ = ∥∥hψ

1

∥∥1/2
∞ . (2.1)

The interested reader is referred to [8,20,24] for further information.
The following characterization of subnormality of composition operators is due to Lambert (cf. [15]; the assumptions

that the symbol of the composition operator is onto and h1 > 0 a.e. are unnecessary).

Theorem 2.1. A composition operator Cφ ∈ B(L2(μ)) is subnormal if and only if {hφ
n (x)}∞n=0 is a Stieltjes moment sequence1 for

μ-almost every x ∈ X.

Let us now concentrate on a particular class of bounded composition operators C A on L2(μ�) induced by invertible
linear transformations A of R

d , where � : R
d → [0,∞) is a Borel function such that �(x) > 0 for almost every x ∈ R

d with
respect to the d-dimensional Lebesgue measure on R

d , and μ� is a positive Borel measure on R
d given by

μ�(σ ) =
∫
σ

�(x)dx, σ -Borel subset of R
d.

It is easily seen that μ� ◦ A−1 is absolutely continuous with respect to μ� and

1 For the definition of a Stieltjes moment sequence we refer the reader to Section 3.
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hn = hA
n = 1

|det A|n
� ◦ A−n

�
, n = 0,1,2, . . . . (2.2)

This means that the composition operator C A is well defined in L2(μ�).
In the case of continuous density functions �, Theorem 2.1 takes more familiar form (cf. [25, Proposition 2.4]).

Proposition 2.2. Assume that � : R
d → (0,∞) is a continuous function and A is an invertible linear transformations of R

d such that
C A ∈ B(L2(μ�)). Then C A is subnormal if and only if {�(A−nx)}∞n=0 is a Stieltjes moment sequence for every x ∈ R

d.

3. Positive definiteness

In what follows, the fields of real and complex numbers are denoted by R and C, respectively; R+ stands for the set of
all non-negative real numbers, while Z+ for the set of all non-negative integers.

Let X be a nonempty set. We say that a function b : X × X → C is positive definite if∑
x,y∈X

b(x, y)λ(x)λ(y) � 0 (3.1)

for every function λ : X → C of finite support {x ∈ X: λ(x) �= 0}. Each positive definite function b : X × X → C satisfies the
Cauchy–Schwarz inequality (cf. [17, p. 19]):

∣∣b(x, y)
∣∣2 � b(x, x)b(y, y), x, y ∈ X . (3.2)

A function b : X × X → C is said to be conditionally positive definite if it satisfies the inequality (3.1) for every function
λ : X → C of finite support such that

∑
x∈X λ(x) = 0. Conditional positive definiteness can be characterized by means of

positive definiteness as follows (cf. [21, Lemma 1.7]; see also [26, Lemma 5.2] for the assertion (i) below).

Lemma 3.1. For an arbitrary b : X × X → C, the following assertions hold:

(i) if etb is positive definite for every positive real number t, then b is conditionally positive definite;
(ii) if b is conditionally positive definite and b(x, y) = b(y, x) for all x, y ∈ X, then etb is positive definite for every positive real

number t.

Clearly, positive definiteness implies conditional positive definiteness (see [21,18] for wide-ranging surveys on the sub-
ject). The converse implication does not hold in general because the function b is conditionally positive definite if and only
if b + α is conditionally positive definite for all α ∈ C. However, as shown below, under some circumstances conditional
positive definiteness may imply positive definiteness (see [28, Proposition 7] for a related result for functions defined on
∗-semigroups).

Lemma 3.2. If b : Z+ × Z+ → C is a conditionally positive definite function such that b(k, l) = b(l,k) for all k, l ∈ Z+ , α :=
limn→∞ b(n,n) ∈ R+ and limn→∞ b(k,n) = α for all k ∈ Z+ , then b is positive definite.

Proof. Considering b − α instead of b, we can assume without loss of generality that α = 0. Take a function λ : Z+ → C of
finite support. Fix n ∈ Z+ such that the support of λ is contained in {0, . . . ,n}. For an integer m > n, we define the function
λm : Z+ → C of finite support via

λm(k) =
⎧⎨
⎩

λ(k), k = 0, . . . ,n,

−∑n
j=0 λ( j), k = m,

0, otherwise.

Then, by the Hermitian symmetry and the conditional positive definiteness of b, we have

0 �
∑

j,k�0

b( j,k)λm( j)λm(k) =
n∑

j,k=0

b( j,k)λ( j)λ(k) − 2Re
n∑

j,k=0

b( j,m)λ( j)λ(k)

+
n∑

j,k=0

b(m,m)λ( j)λ(k).

Passing with m to ∞, we get the conclusion. �
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A sequence {an}∞n=0 ⊆ R+ is said to be a Stieltjes moment sequence if there exists a positive Borel measure2 μ on R+
such that an = ∫ ∞

0 xn dμ(x) for all n = 0,1,2, . . . ; such μ is called a representing measure of {an}∞n=0. If a Stieltjes moment
sequence has a unique representing measure, we call it determinate. Recall that (cf. [9] for instance)

each Stieltjes moment sequence which has a compactly supported representing
measure is determinate. (3.3)

By the Stieltjes theorem (cf. [23, Theorem 1.3]),

{an}∞n=0 ⊆ R+ is a Stieltjes moment sequence if and only if the functions
Z+ × Z+ 	 (m,n) 
→ am+n and Z+ × Z+ 	 (m,n) 
→ am+n+1 are positive definite.

(3.4)

We now state a result that will be of use in Section 4. It is a particular case of more general investigations contained
in [27]. For the sake of completeness, we include its proof. It states that the square root of a Stieltjes moment sequence
whose representing measure is concentrated on a two-point subset of (0,∞) is never a Stieltjes moment sequence.

Lemma 3.3. If α1 , α2 , θ1 and θ2 are positive real numbers, then the sequence {√α1θ
n
1 + α2θ

n
2 }∞n=0 is a Stieltjes moment sequence if

and only if θ1 = θ2 .

Proof. Suppose that, contrary to our claim, {√α1θ
n
1 + α2θ

n
2 }∞n=0 is a Stieltjes moment sequence for some θ1 < θ2, and μ is

its representing measure. Then, by the measure transport theorem (cf. [11, Theorem C, p. 163]), we see that

α1θ
n
1 + α2θ

n
2 =

∞∫
0

∞∫
0

(xy)n d(μ ⊗ μ)(x, y) =
∞∫

0

zn d
(
(μ ⊗ μ) ◦ ϕ−1)(z) (3.5)

for all n ∈ Z+ , where μ ⊗ μ is the product of the measure μ by itself and ϕ : R+ × R+ → R+ is the function given by
ϕ(x, y) = xy for all x, y ∈ R+ . Denote by δθ the Borel probability measure on R concentrated on {θ}, θ ∈ R. Since

α1θ
n
1 + α2θ

n
2 =

∞∫
0

xn d(α1δθ1 + α2δθ2)(x), n ∈ Z+,

we infer from (3.3) and (3.5) that

(μ ⊗ μ) ◦ ϕ−1 = α1δθ1 + α2δθ2 . (3.6)

Set Ωζ := ϕ−1({ζ }) for ζ > 0. By (3.6), μ ⊗ μ(ϕ−1(R+ \ {θ1, θ2})) = 0, and so3

suppμ ⊗ μ ⊆ Ωθ1 � Ωθ2 . (3.7)

Note now that

Ωθi ∩ suppμ ⊗ μ �= ∅, i = 1,2. (3.8)

Indeed, otherwise Ωθi ∩ suppμ ⊗ μ = ∅ for some i ∈ {1,2}, and consequently

0 = (μ ⊗ μ)
(
R

2+ \ suppμ ⊗ μ
)
� (μ ⊗ μ)(Ωθi )

(3.6)
> 0,

which is a contradiction. Let us recall the following well-known identity

suppμ ⊗ μ = suppμ × suppμ. (3.9)

It follows from (3.8) that suppμ ⊗ μ contains two distinct points (x1, y1) ∈ Ωθ1 and (x2, y2) ∈ Ωθ2 . By (3.9), Ξ :=
{x1, x2, y1, y2} ⊆ suppμ, and so by (3.7) and (3.9),

u · v ∈ {θ1, θ2}, u, v ∈ Ξ. (3.10)

Set a = minΞ and b = maxΞ . Since θ1 < θ2 and a2 � xi yi = θi � b2 for i = 1,2, we deduce from (3.10) that a = √
θ1 and

b = √
θ2. Hence, θ1 <

√
θ1

√
θ2 = ab < θ2, and so ab /∈ {θ1, θ2}, which contradicts (3.10). This completes the proof. �

Regarding Lemma 3.3, it is natural to ask the question whether for a given integer k � 2, the square root of the Stieltjes
moment sequence {α1θ

n
1 + · · · + αkθ

n
k }∞n=0 is not a Stieltjes moment sequence for all real numbers α1, . . . ,αk > 0 and

0 < θ1 < · · · < θk . The answer to this question is in the affirmative for k = 2 and k = 4, and in the negative for k = 3 and for
all integers k � 5 (cf. [27]).

2 Such μ being finite is automatically regular (see e.g., [22, Theorem 2.18]).
3 As usual suppν stands for the closed support of a regular positive Borel measure ν .
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4. The Laplace density case

In this section we deal with the measure μ given by (1.1). Clearly, μ = μ� with the Laplace density function � defined
by

�(x) = e−‖x‖, x ∈ R
d, (4.1)

where ‖ · ‖ is a norm on R
d that is given by an inner product. We begin by characterizing the boundedness of the com-

position operator C A on L2(μ). If A is a linear transformation of R
d , then we write ‖A‖ for the norm of A counted with

respect to (Rd,‖ · ‖).

Proposition 4.1. Let μ be as in (1.1) and let A be an invertible linear transformation of R
d. Then C A is a bounded operator on L2(μ)

if and only if ‖A‖ � 1. Moreover, if C A is bounded, then ‖C A‖ = 1
| det A|1/2 .

Proof. By (2.2) and (4.1), we have

hA
1 (x) = |det A|−1 exp

(‖x‖ − ∥∥A−1x
∥∥)

, x ∈ R
d. (4.2)

Since the measure μ is mutually absolutely continuous with respect to the d-dimensional Lebesgue measure on R
d and

the function hA
1 is continuous, we see that hA

1 ∈ L∞(μ) if and only if supx∈Rd hA
1 (x) < ∞. If supx∈Rd hA

1 (x) < ∞, then by
considering the functions

(0,∞) 	 t → hA
1 (tx) = |det A|−1 exp

(
t
(‖x‖ − ∥∥A−1x

∥∥))
, x ∈ R

d,

we deduce that ‖x‖ − ‖A−1x‖ � 0 for all x ∈ R
d , which is equivalent to ‖A‖ � 1. The reverse implication is certainly true.

The “moreover” part of the conclusion is a direct consequence of (2.1) and (4.2). �
As shown below, only unitary symbols A can induce hyponormal composition operators C A on L2(μ).

Proposition 4.2. Let μ be as in (1.1) and let A be an invertible linear transformation of R
d such that C A ∈ B(L2(μ)). Then the

following conditions are equivalent:

(i) C A is hyponormal,
(ii) C A is coquasinormal,

(iii) C A is normal,
(iv) C A is unitary,
(v) the transformation A is unitary on (Rd,‖ · ‖).

Proof. (i) ⇒ (iv) Since the measure μ is finite, we infer from [12, Lemma 7] that C A is unitary.
(iv) ⇔ (v) By [25, (UN), p. 311], C A is unitary if and only if

exp
(‖x‖ − ∥∥A−1x

∥∥) = |det A|, x ∈ R
d. (4.3)

Considering the functions (0,1) 	 t 
→ hA
1 (tx), we conclude that (4.3) holds if and only if ‖x‖ − ‖A−1x‖ = 0 for all x ∈ R

d , or
equivalently if A is unitary on (Rd,‖ · ‖).

(ii) ⇒ (iii) Since by the measure transport theorem ‖C A f ‖2 = ∫
Rd hA

1 | f |2 dμ for all f ∈ L2(μ) and hA
1 > 0, we deduce

that C A is injective. In turn, by [25, (UE), p. 309], the operator |det A|C∗
A is unitarily equivalent to the composition operator

C A−1 acting on L2(μθ ), where θ(x) = exp(‖x‖) for x ∈ R
d . Hence, arguing as above, we see that C∗

A is injective. This means
that C∗

A is a quasinormal operator whose kernel and cokernel are trivial. Thus, as easily seen, C A is normal.
Since the implications (iii) ⇒ (i) and (iv) ⇒ (ii) are obvious, the proof is complete. �
Proposition 4.2 may suggest that there is no cohyponormal non-unitary composition operator C A on L2(μ). However,

this is not the case. It turns out that there are cohyponormal composition operators C A on L2(μ) which are not cosub-
normal (cf. Example 4.5) and cosubnormal composition operators C A on L2(μ) which are not normal (cf. Theorem 4.4 and
Proposition 4.2).

Our next aim is to characterize the cohyponormality of composition operators on L2(μ) which are induced by invertible
linear transformations of R

d .

Proposition 4.3. Let μ be as in (1.1) and let A be an invertible linear transformation of R
d such that C A ∈ B(L2(μ)). Then C A is

cohyponormal if and only if 2‖x‖ � ‖Ax‖ + ‖A−1x‖ for all x ∈ R
d. Moreover, if A is a normal operator on (Rd,‖ · ‖), then C A is

cohyponormal.
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Proof. The characterization of cohyponormality follows from [25, (HY), p. 311]. If A is a normal operator on (Rd,‖ · ‖), then
A−1 is a normal operator on (Rd,‖ · ‖), and consequently by the Schwarz inequality we have

2‖x‖ = 2
√〈

Ax,
(

A−1
)∗

x
〉
� 2

√‖Ax‖
√∥∥(

A−1
)∗

x
∥∥

= 2
√‖Ax‖

√∥∥A−1x
∥∥ � ‖Ax‖ + ∥∥A−1x

∥∥, x ∈ R
d,

which implies that C A is cohyponormal. �
We are now in a position to prove our main result which characterizes cosubnormal composition operators on L2(μ)

induced by invertible linear transformations of R
d .

Theorem 4.4. Let μ be as in (1.1) and let A be an invertible linear transformation of R
d such that C A ∈ B(L2(μ)). Then C A is

cosubnormal if and only if there exist a unitary operator U on (Rd,‖ · ‖) and λ ∈ (0,1] such that A = λU .

Proof. We split the proof into four steps. First, note that by Proposition 4.1 A is a contraction.
Step 1. C A is cosubnormal if and only if {‖Anx‖}∞n=0 is a Stieltjes moment sequence for every x ∈ R

d .
Indeed, by [25, (UE), p. 309], the operator |det A|C∗

A is unitarily equivalent to the composition operator C A−1 acting on
L2(μθ ), where θ(x) = exp(‖x‖) for x ∈ R

d . Hence, the proof of Step 1 reduces to considering the subnormality of C A−1 on
L2(μθ ). Applying Proposition 2.2 to (θ, A−1) in place of (�, A), we see that C A is cosubnormal if and only if {exp(‖Anx‖)}∞n=0
is a Stieltjes moment sequence for every x ∈ R

d . This is equivalent to requiring that {exp(t‖Anx‖)}∞n=0 is a Stieltjes moment
sequence for every real t > 0 and for all x ∈ R

d . By (3.4) and Lemma 3.1, the latter is equivalent to requiring that the
functions Z+ × Z+ 	 (m,n) 
→ ‖Am+nx‖ and Z+ × Z+ 	 (m,n) 
→ ‖Am+n+1x‖ are conditionally positive definite for every
x ∈ R

d . Since the sequence {‖Anx‖}∞n=0 is monotonically decreasing for every x ∈ R
d (because ‖A‖ � 1), we can apply

Lemma 3.2 and (3.4). This completes the proof of Step 1.
Step 2. If {‖Anx‖}∞n=0 is a Stieltjes moment sequence for every x ∈ R

d , then A is a normal operator on (Rd,‖ · ‖).
Indeed, applying (3.2) to the positive definite function Z+ × Z+ 	 (m,n) 
→ ‖Am+nx‖ we get ‖Ax‖2 � ‖A2x‖‖x‖ for all

x ∈ R
d , which means that A is a paranormal operator on a finite dimensional Hilbert space (Rd,‖ · ‖). Hence, A is a normal

operator on (Rd,‖ · ‖) (see e.g., [13, Theorem 2.2]).
Step 3. If C A is cosubnormal, then there exist λ ∈ (0,1] and a unitary operator U on (Rd,‖ · ‖) such that A = λU .
Indeed, by Steps 1 and 2, A is a normal operator on (Rd,‖ · ‖). Without loss of generality we can assume that d > 1.

Let A = U |A| be the polar decomposition of A. Since A is normal and invertible, we deduce that U is a unitary operator on
(Rd,‖ · ‖) and U |A| = |A|U . This implies that∥∥Anx

∥∥ = ∥∥Un|A|nx
∥∥ = ∥∥|A|nx

∥∥, n ∈ Z+, x ∈ R
d. (4.4)

Since |A| is positive, selfadjoint and invertible, there exist an orthonormal basis {en}d
n=1 of (Rd,‖ · ‖) and a sequence

{λn}d
n=1 ⊆ (0,∞) such that |A|e j = λ je j for j = 1, . . . ,d. Hence, by (4.4), we have

∥∥∥∥∥An

(
d∑

j=1

x je j

)∥∥∥∥∥ =
∥∥∥∥∥

d∑
j=1

x jλ
n
j e j

∥∥∥∥∥ =

√√√√√ d∑
j=1

x2
j λ

2n
j , n ∈ Z+,

for all x1, . . . , xd ∈ R
d . Substituting xi = 1 for i ∈ {1, j} and xi = 0 otherwise, we deduce from Step 1 and Lemma 3.3 that

λ := λ1 = λ j for all j = 2, . . . ,d. This implies that |A| = λI and consequently that A = λU , where I is the identity mapping
on R

d . Since A is a contraction, we get λ ∈ (0,1].
Step 4. If A = λU , where U is a unitary operator on (Rd,‖ · ‖) and λ ∈ (0,1], then C A is cosubnormal.
Indeed, since {‖Anx‖}∞n=0 is a Stieltjes moment sequence for every x ∈ R

d , we can apply Step 1. This completes the
proof. �

It follows from Proposition 4.3 and Theorem 4.4 that for d � 2 the class of cohyponormal composition operators on L2(μ)

induced by invertible linear transformations of R
d is essentially larger than that of cosubnormal ones (because there exists

a normal transformation A on (Rd,‖ · ‖) whose spectrum is a two-point set). We now show that there are cohyponormal
composition operators on L2(μ) induced by invertible linear transformations of R

d which are not normal on (Rd,‖ · ‖). The
following example is an adaption of [25, Example 2.6].

Example 4.5. Suppose that d � 2. Let a1, . . . ,ad be a sequence of nonzero real numbers, and let A be the invertible linear
transformation of R

d determined by the requirement that Ae j = a je j+1 for j = 1, . . . ,d, where e1 = (1,0, . . . ,0), . . . , ed =
(0, . . . ,0,1) and ed+1 := e1. Set ‖x‖2 = ∑d

j=1 x2
j for x = (x1, . . . , xd) ∈ R

d . As usual, μ is defined by (1.1). Owing to Proposi-

tion 4.1, C A is a bounded operator on L2(μ) if and only if |a j | � 1 for all j = 1, . . . ,d.
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Assume that C A is bounded. In view of Proposition 4.3, C A is cohyponormal if and only if

2

√√√√√ d∑
j=1

x2
j �

√√√√√ d∑
j=1

(a jx j)
2 +

√√√√√ d∑
j=1

(
x j

a j−1

)2

, x = (x1, . . . , xd) ∈ R
d, (4.5)

where a0 := ad . We now show that

C A is cohyponormal if and only if 2 � |a j| + 1
|a j−1| for all j ∈ {1, . . . ,d}. (4.6)

Indeed, the “only if ” part can be deduced from (4.5) by substituting x = e j . To prove the “if ” part, note that by the
Minkowski inequality

2

√√√√√ d∑
j=1

x2
j �

√√√√√ d∑
j=1

(
|a jx j| +

∣∣∣∣ x j

a j−1

∣∣∣∣
)2

�

√√√√√ d∑
j=1

(a jx j)
2 +

√√√√√ d∑
j=1

(
x j

a j−1

)2

,

for all x ∈ R
d , which means that (4.5) is valid. Hence, C A is cohyponormal.

It is easily seen that A is normal on (Rd,‖ · ‖) if and only if |a1| = · · · = |ad|. If a1, . . . ,ad are such that 0 < |a j| � 1
2 for all

j = 1, . . . ,d, and |ak| �= |al| for some distinct k, l ∈ {1, . . . ,d}, then A is not normal in (Rd,‖ ·‖). Hence, by Theorem 4.4, C A is
not cosubnormal. However, 2 � |a j | + 1

|a j−1| for all j ∈ {1, . . . ,d}, which in view of (4.6) implies that C A is cohyponormal.

We now restrict the discussion to the case of d = 2. We assume that C A is bounded on L2(μ) (equivalently: 0 <

|a1|, |a2| � 1). By (4.6), C A is cohyponormal if and only if 2 � |a1| + 1
|a2| and 2 � |a2| + 1

|a1| . This is equivalent to

L(a1) := 2|a1| − 1

|a1| � |a2| � 1

2 − |a1| =: R(a1).

It is clear that L(a1) � R(a1). Summarizing, we see that C A is cohyponormal if and only if |a1| ∈ (0,1] and |a2| ∈
[L(a1), R(a1)] ∩ (0,1], or equivalently if

|a2| ∈
{

(0, R(a1)] if 0 < |a1| � 1
2 ,

[L(a1), R(a1)] if 1
2 < |a1| � 1.

In particular, if 1 � |a1| > 2
3 and |a2| ∈ [L(a1), R(a1)], then |a2| � L(a1) > 1

2 , which means that it may happen that C A is

cohyponormal though |a1|, |a2| > 1
2 .
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