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1. Introduction

Starting from the Wigner-Yanase information I,(A) := %Tr((i[p, AD?) and the variance Vp(A) = Tr(pA?) — (Tr(pA))?,
Luo introduced in [7] the quantity

Up(A) i=\ V(A2 — (Vo (A) — T, (A))’,

and presented there some arguments in favour of considering U,(A) as a measure of quantum uncertainty. In this respect,
Luo was able to prove an uncertainty principle for U in the form

1 2
Uy(A)-Up(B) > Z|Tr(p[A,JEz])\ . (1.1)
The above inequality is a refinement of the Heisenberg uncertainty principle
1 2
Vo(A)-Vy(B) > 4 [Tr(plA. BI)|

(see [8] at p. 13). There have been some attempts to generalize Luo’s result [1,6] but without success, as explained in
[8, Remarks 3.2 and 3.3].

Recently, a successful approach has been proposed by Yanagi. Consider the Wigner-Yanase-Dyson (WYD) information
defined by I%‘(A) = %Tr(i[p"‘, Al-i[p'~%, A]) where « € [0, 1]. Introducing

UL(A) =V (A2 — (V) — 1A,
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Yanagi was able to prove a generalization of inequality (1.1) in the following form

US(A)-US(B) = a(l —a)[Tr(plA, B[, «elo,1]. (1.2)

The constant «(1 — «) immediately suggests a further significant generalization. Indeed the WYD information is con-
nected to special choices of quantum Fisher information [5], as the family of all quantum Fisher informations is parametrized
by a certain class of operator monotone functions o, (see below), and to the WYD informations correspond the functions

x=1?
(x* — (1= —1)

fa®) :=a(l-a) , ae(0,1/2].

To each function f of the class F,, one may associate the metric adjusted skew information I £(A), a generalization of WYD
information, and therefore one can define also a generalized quantum uncertainty U/ by the formula

2
ul(a) = \/vp(A)Z — (Vo (A) =1 (A)*.
Since f,(0) =a(1 — ), it is natural to conjecture that inequality (1.2) is a particular case of a general inequality

Ul -ul® = fO|Tr(ola, B

Actually, this is not the case, and we show that inequality (1.3) does not hold in general. To have a general uncertainty
relation for US one has to use the smaller constant f(0)2. Indeed the main result of this paper is the following inequality

. feTy, (13)

Ul -ul®) = f?|Tr(plA, B[

N e (1.4)

In Sections 2 and 3 we recall some notions on operator monotone functions, matrix means and quantum Fisher infor-
mation. In Section 4 we describe a counterexample to inequality (1.3). In Section 5 we prove inequality (1.4).

2. Operator monotone functions

Let My := My (C) (resp. My sq := My, sa(C)) be the set of all n x n complex matrices (resp. all n x n self-adjoint matrices),
endowed with the Hilbert-Schmidt scalar product (A, B) = Tr(A*B). Let D, be the set of strictly positive elements of M,
and D} ¢ D, be the set of strictly positive density matrices, namely D} = (p € M, | Trp =1, p > 0}. If it is not otherwise
specified, from now on we shall treat the case of faithful states, namely p > 0.

A function f : (0, +00) — R is called operator monotone (increasing) if, for any n € N, and A, B € M, such that 0 < A <B,
the inequalities 0 < f(A) < f(B) hold. An operator monotone function is called symmetric if f(x) =xf(x~!) and normalized

if f()=1.

Definition 2.1. J,, is the class of functions f : (0, +00) — (0, +00) such that
(i) F=1,

(i) tf ¢~ = fO),

(iii) f is operator monotone.

Example 2.2. Examples of elements of F,, are given by the following list

2 1 2
frip(X) ;:i, Fwy®) 1=< +2ﬁ> ,

1+x (x—1)2 1
fsip®)i= ==, fat=a( @) o, oze(o,ﬂ.

Remark 2.3. Any f € T, satisfies
2x

1
<fw< % Vx> 0.

For f € Fyp define f(0) :=limy_,o f(x). We introduce the sets of regular and non-regular functions

Fop={FeFop| fFO)#£0},  Fj,:={feFo|f(0)=0}

and notice that trivially F,p = F5, U Fp,.
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Definition 2.4. For f € J7, we set

Foo) = 1 _x_12f O
f(x)_i[(’“r]) x—-1 f(x)], x> 0.

Theorem 2.5. (See [2,5].) The correspondence f — ]‘ is a bijection between :;gp and fﬂ?p.
Remark 2.6. Note that for any f one has f(0) < % and therefore
R (T
The following new inequality is fundamental for our purposes.
Proposition 2.7. For any f € S"gp and x > 0 one has
f@f<2u+1f—fmfa—n? 1)
Proof. We have

%<x+ 1?2 = F(0)2(x — 1)* — F(x)?

:%("‘”2 :_}1%("_1)2+%(X+1>—f(0)f(><)]
- %(x—l)z:%(x—l—l) - %%(x—l)%r %(XﬁLl)—f(O)f(x)]
= %(x— 1)2:%f(x)+ <%(x+l) - f(o)f(x)ﬂ >0

because of Remark 2.6 and the fact that f, ]‘ > 0. The thesis follows from the last inequality. O
Let us recall that for a function f € Fyp the associated (numerical) mean is defined as
mg(x,y) ::xf(%), x,y>0.
From Proposition 2.7 one may deduce the following corollary:
Corollary 2.8.

1
FO20 = < S0+ w? =mpG, ).
Proof. Set t = % in the inequality of the above proposition and multiply it by A2. We get
2 2 2 2
(K A W 2,2 w
MIE) <=(1+5) —fo22(1-=
f ( ,\) 2 ( +5 ) f(0) -
and this proves the thesis. 0O

3. Means, Fisher information and metric adjusted skew information

In Kubo-Ando theory of matrix means one associates a mean to each operator monotone function f € F,p by the formula

N=

mp(A, B):= A2 f(A"2BA"2)A3,
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where A, B € D;. Using the notion of matrix means one may define the class of monotone metrics (also called quantum
Fisher informations) by the following formula
(A,B), :=Tr(A-ms(Ly,Rp)"'(B)),

where L(A) := pA, R,(A) := Ap. In this case one has to think of A, B as tangent vectors to the manifold D; at the point p
(see [5] for a more complete set of references).

Definition 3.1. For A € M;, 5, define

0
1A = %(i[p, Al ilp, Al), .

CH(A) :=Tr(mf(Lpy, Rp)(A) - A),

2
ul(a) = \/vp(A)Z — (Vo (A) =15 (A)*.
The quantity I}; (A) is known as metric adjusted skew information. Set Ag := A — Tr(pA)l.

Proposition 3.2.

1) 15(A) = Tr(pA) — Tr(m; (Lp. Rp)(Ao) - Ao) = Vp(A) — C} (Ao).
2) JJ(A) :=Tr(pA3) +Tr(m; (L. R,)(Ao) - Ao) = V5 (A) + C}(Ao).
3) 0< IH(A) SUS(A) <V, (A).

4) Ufay=\/15A) - 1) (A).

Proof. (1) See Proposition 6.1, Corollary 7.1 and Proposition 7.2 in [2].
(2) Since J}(A) =2V, (A) — I}, (A), it is clear.
(3), (4) follow from direct calculations. O

(
(
(
(

4. A conjecture and a counterexample

Using the notation of the preceding section we have that the metric adjusted skew information associated to the func-
tions
(x—1)?

Do 1)’ o e€(0,1/2],

fo@) =a(l—-a)
is exactly the WYD information I‘; (A) = %Tr(i[p"‘, A]-i[p'~%, A]). Therefore inequality (1.2) can be written as

?, ae,1/2].

UJ*(A)- U (B) > fo(0)|Tr(plA, B])
It is therefore natural to investigate the status of the following general inequality.
Conjecture 4.1. For f € F] , A, B € M gq, it holds
ul(a)-ulB) > fO|r(plA, B[
4 P = pLA, .

Actually the above conjecture is false. To find a counterexample it is enough to consider the 2 x 2 case. Recall that the
Pauli matrices are the following

o (01 or— (0 i b (10
=\1 0) 2=\i o) 37\o -1 )

Any 2 x 2 density matrix in the Stokes parameterization is written as

1 1+z x—iy) 1
'O_f(x—i—iy 1_Z>_5(1+x01+y02+zc73),

where (x,y,z) € R3, and x* + y?2 + 22 < 1. Let r:= /x2 + y2 + 22 € [0, 1]. The eigenvalues of p are A1 = % and Ay = %
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Proposition 5.1 in [4] says that
A =1 —mi(1=r,1+0]- a2
A similar straightforward calculation gives
JhA) =2[mlan P+ aalan ]+ [1+mp =1, 140 ]lan.

Consider the case
1-r .
- 0 0 i 01 14+x
_( 2 _ _ _
p=(5 %) a=(%o) e=(Ta) w5

Then
1 S ) 2y
f(O)_§7 f(x)_1+x7 mf(x7y)
hay=r, 1h®=r,
hwy=2-2  jhBy=2-1%
Tr(p[A, B]) = —2ir.

Therefore one has for any r € (0, 1),

FO2 - [Te(p1A, BY)|* =4r* > (2 — )’ = 15(A) - 15 A) - 1hB) - [5(B) = (UfA) - UL (B))?,

and this disproves the conjecture.
5. The main result

Now we show that a weakened form of inequality 1.3 holds in general (namely we prove inequality (1.4)).
Theorem 5.1. For f € ?ofp, A, B € My g, it holds

ul(A)- Ul B) > £02|Tr(plA, BI)| .

Proof. Let {e1,...,ep} be a basis of eigenvectors of p, corresponding to the eigenvalues {A1,...,An}. Introduce aj :=

(ej, Aoex), bji := (ej, Boex), so that

1
1A = 3 D 0+ Moajay; — Zm}(?»j, M) i

Jik ik
1
]};(A) =3 Z()\j + M)ajragj + Z my (A, Ak)ajkkjs
jk jk

1 2 2
U£(A)2=Z(Z@jﬂknamz) —(Zm;(xj,xknaj,uz) :

Jjk ik
Moreover one can prove (see, for example, Theorem 9.2 in [3])

Tr(p[Ao, Bol) = Z(?»j — A)ajkbyj,
j.k

from which it follows

1

ij

1 2 2 2 2
E [Z(M-H»j) —m;(ki,kj)] ’|aij|'|bij|>
ij

1 1
< (Z[E(Ai +4j) —m;(xi,xj)] : |afj|2) : (Z[Eai + 1) +mf(xi,xj)] : |bi,-|2>

ij ij
=15 Jhm),

2
F(0)?|Tr(plA, B])\2 < (Zf(o)p\i — Ajl - laij] - |bij|)
<(
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where the second inequality is a consequence of Corollary 2.8 while the third one derives from Cauchy-Schwarz inequality.
Therefore, successively we get

4

15(A) - (A - 1)(B) - I} (B) = F(0)*|Tr(plA. BI)[*,

4

UL (A2 - U (B)? = F(0)*[Tr(olA, B)|,

UbA)-UjB) > FO?[Tr(plA. BI). O
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