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We study the asymptotic zero distribution of the rescaled Laguerre polynomials, L(αn)
n (nz),

with the parameter αn varying in such a way that limn→∞ αn/n = −1. The connection with
the so-called Szegő curve is shown.
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1. Introduction

The definition and many properties of the Laguerre polynomials L(α)
n can be found in Chapter V of Szegő’s classic mem-

oir [20]. Given explicitly by

L(α)
n (z) =

n∑
k=0

(
n + α

n − k

)
(−z)k

k! , (1)

or, equivalently, by the well-known Rodrigues formula

L(α)
n (z) = (−1)n

n! z−αez
(

d

dz

)n[
zn+αe−z], (2)

they are defined for arbitrary values of the parameter α ∈ C. In particular, (1) shows that each L(α)
n depends analytically

on α and no degree reduction occurs: deg L(α)
n = n for all α ∈ C.

For α > −1 it is well known that L(α)
n (x) are orthogonal on [0,+∞) with respect to the weight function xαe−x; in

particular, all their zeros are simple and belong to [0,+∞). In the general case, α ∈ C, L(α)
n (z) may have complex zeros; the

only multiple zero can appear at z = 0, which occurs if and only if α ∈ {−1,−2, . . . ,−n}. In this case we have

L(−k)
n (z) = (−z)k (n − k)!

n! L(k)

n−k(z), (3)

which shows that z = 0 is a zero of multiplicity k for L(−k)
n (z).
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Fig. 1. The Szegő curve.

In a series of papers [7,8,12], asymptotics for rescaled Laguerre polynomials L(αn)
n (nz) were analyzed, under the assump-

tion that limn→∞ αn/n = A ∈ R. In [12] the authors obtained the weak zero asymptotics for the case where A < −1, by
means of classical (logarithmic) potential theory. To this end, a key role was played by a full set of non-hermitian orthog-
onality relations satisfied by Laguerre polynomials in a class of open contours in C. Unfortunately, this analysis could not
be extended to the other cases, since essential for this approach is the connectedness of the complement to the support
of the asymptotic distribution of zeros (see e.g. [5] and [18]). However, the authors formulated in [12] a conjecture for the
case −1 < A < 0, which was confirmed in some cases and refused in others in [8], by means of the Riemann–Hilbert ap-
proach. This approach has been previously used by the same authors in [7] to obtain strong asymptotics in the case A < −1.
A similar study for Jacobi polynomials with varying nonstandard parameters has been carried out in [9,11,13].

Jacobi or Laguerre polynomials with real parameters (and in general, depending on the degree n) appear naturally as
polynomial solutions of hypergeometric differential equations, or in the expressions of the wave functions of many classical
systems in quantum mechanics (see e.g. [2]).

In [12], the authors also formulated a conjecture for the case A = −1, but up to now this problem has remained open.
Observe that, by (3), when k = n we have

L(−n)
n (z) = (−1)n 1

n! zn.

There is another particular situation corresponding to the case A = −1 which is very well known in the literature: when
αn = −n − 1, we have

L(−n−1)
n (z) = (−1)n

n∑
k=0

zk

k! ,

and thus, in this case the Laguerre polynomials agree (up to a possible sign) with the partial sums of the exponential
series. In a seminal paper, G. Szegő [19] showed that the zeros of the rescaled partial sums of the exponential series,∑n

k=0
(nz)k

k! = (−1)n L(−n−1)
n (nz), approach the so-called Szegő curve:

Γ = {
z ∈ C,

∣∣ze1−z
∣∣ = 1, |z| � 1

}
, (4)

which is a closed curve around the origin passing through z = 1 and crossing once the negative real semiaxis (−∞,0) (see
Fig. 1). See also [15] for a detailed study of the Szegő curve and some related problems in approximation of functions.
Recently, T. Kriecherbauer et al. [6] obtained uniform asymptotic expansions for the partial sums of the exponential series
by means of the Riemann–Hilbert analysis. Also, in [3] the authors studied the asymptotics of orthogonal polynomials with
respect to modified Laguerre weights of the type

z−n+νe−Nz(z − 1)2b,

where n, N → ∞ with N/n → 1 and ν is a fixed number in R \ N.
In this paper, the weak zero asymptotics of rescaled Laguerre polynomials L(αn)

n (nz), with limn→∞ αn/n = −1, will be
analyzed. We will prove that such rescaled Laguerre polynomials are asymptotically extremal on certain well-defined curves
in the complex plane.

The outline of the paper is as follows. In Section 2, the main result about the weak zero asymptotics of the rescaled
Laguerre polynomials is announced, and in Section 3, some basic facts on the theory of logarithmic potentials and asymp-
totically extremal polynomials are recalled. Finally, the proofs are given in Section 4.

2. Main result

Along with the Szegő curve (4), we introduce the family of level curves:

Γr = {
z ∈ C,

∣∣ze1−z
∣∣ = e−r, |z| � 1

}
, 0 � r < +∞, (5)
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Fig. 2. The Szegő curve and the zeros of L(−60.1)
60 (60z).

while for r = ∞ we take Γ∞ = {0}. Observe that Γ0 = Γ , the Szegő curve. We consider the usual counterclockwise orien-
tation. All the level curves Γr (0 � r < +∞) are closed contours such that {0} ⊂ Int(Γr) and Γr′ ⊂ Int(Γr), for r′ > r. On the
sequel, the interior of Γr will be denoted by Gr . Associated with this family of curves, consider for 0 � r < +∞ the family
of measures:

dμr(z) = 1

2π i

1 − z

z
dz, z ∈ Γr, (6)

and set dμ∞(z) = δ0, the Dirac delta at z = 0.
Let us recall the definition of balayage (or sweeping out) of a measure (see e.g. [16]). Given an open set Ω with compact

boundary ∂Ω and a positive measure σ with compact support in Ω , there exists a positive measure σ̂ , supported in ∂Ω ,
such that ‖σ‖ = ‖σ̂‖ and

V σ̂ (z) − V σ (z) = const, qu.e. z /∈ Ω, (7)

where

V σ (z) = −
∫

log |z − x|dσ(x), (8)

const = 0 when Ω is a bounded set, and a property is said to be satisfied for “quasi-every” (qu.e.) z in a certain set, if it
holds except for a possible subset of zero (logarithmic) capacity. Then, σ̂ is said to be the balayage of σ from Ω onto ∂Ω .

Now, we have the following:

Lemma 2.1. The a priori complex measure (6) is a unit positive measure in Γr , for 0 � r < +∞. Moreover, μr is the balayage of δ0
from Gr onto Γr .

Now, for each n ∈ N, consider the “pathological” subset of negative integers Sn = {−n,−(n − 1), . . . ,−2,−1}. Hereafter,
suppose that αn /∈ Sn .

Finally, denote by dist(αn,Sn) > 0 the minimal distance between αn and the set Sn .

Theorem 2.1. Let {L(αn)
n (nz)}n∈N be a sequence of rescaled Laguerre polynomials, such that limn→∞ αn

n = −1 and

lim
n→∞

[
dist(αn,Sn)

]1/n = e−r, (9)

for some r � 0. Then, the contracted zeros of Laguerre polynomials asymptotically follow the measure dμr on the curve Γr . For r = +∞,
the limit measure is dμ∞ = δ0 .

Remark 2.1. The results above also hold for infinite subsequences {L(αn)
n (nz)}n∈Λ , Λ ⊂ N.

Remark 2.2. Observe that the case r = 0 in Theorem 2.1 is generic, because it takes place when the parameters αn do
not approach, or, at least, do not approach exponentially fast, the set of integers Sn (see Fig. 2). On the other hand, when
r > 0, the parameters approach the set of integers Sn exponentially fast, and the Szegő curve Γ is replaced by a level
curve Γr which surrounds z = 0 and is strictly contained in the interior of Γ (see Fig. 3). Finally, when r = ∞, i.e., when
the parameters approach the set Sn faster than exponentially, the limit measure reduces to a Dirac mass at z = 0.

Remark 2.3. The weak asymptotics in the case A = −1, characterized by the set of measures (6) and the corresponding set
of closed curves (5), is the natural matching between the solutions in the cases A < −1 (see [7] and [12]) and −1 < A < 0
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Fig. 3. Zeros of L(−60+10−5)
60 (60z) and the curve Γr , for r = 1

12 ln 10.

(see [8]). For these cases the following full set of non-hermitian orthogonality relations for the Laguerre polynomials with
parameters α ∈ C was used:∫

Σ

L(α)
n (z)zk zαe−z dz = 0, k = 0, . . . ,n − 1,

where Σ is any unbounded contour in C \ [0,∞), connecting +∞ + iy and +∞ − iy, for some y > 0, and the branch of zα

is taken with the cut along the positive real axis (see [7, Lemma 2.1]). In [12] this full set of orthogonality relations allowed
the application of the seminal results by H. Stahl [18] and A.A. Gonchar and E.A. Rakhmanov [5] on the asymptotic behavior
of complex orthogonal polynomials. Indeed, it was proved that zeros of the rescaled Laguerre polynomials accumulate on a
closed contour C in C \ [0,∞) which is “symmetric” (in the “Stahl’s sense”, see [17,18]) with respect to the external field
ϕ(z) = 1

2 (−A log |z|+Re z), and that they asymptotically follow the equilibrium distribution on C in presence of the external
field ϕ . In the proof of the main result in this paper, it will be shown that the zeros of the rescaled Laguerre polynomials
in the present case also asymptotically follow the equilibrium distribution of Γr in presence of the external field ϕ above
(for A = −1), Γr being a symmetric contour with respect to this external field. That is, although the theorems by H. Stahl
and A.A. Gonchar–E.A. Rakhmanov cannot be applied in this case since the complement to the support is disconnected, the
conclusions still hold.

3. On asymptotically extremal polynomials

Throughout this section, some topics in potential theory which are needed for the proof of our main result will be
recalled. For more details the reader can consult the monograph [16].

First, we introduce the notion of admissible weights.

Definition 3.1. Given a closed set Σ ⊂ C, we say that a function ω :Σ → [0,∞) is an admissible weight on Σ if the
following conditions are satisfied (see [16, Definition I.1.1]):

(a) ω is upper semi-continuous;
(b) the set {z ∈ Σ: ω(z) > 0} has positive (logarithmic) capacity;
(c) if Σ is unbounded, then lim|z|→∞, z∈Σ |z|ω(z) = 0.

Given such an admissible weight ω in the closed set Σ , and setting ϕ(z) = − logω(z), we know (see e.g. [16, Ch. I]) that
there exists a unique measure μω , with compact support in Σ , for which the infimum of the weighted logarithmic energy

Iω(μ) = −
∫ ∫

log |z − x|dμ(z)dμ(x) + 2
∫

ϕ(x)dμ(x)

is attained. Moreover, setting Fω = Iω(μω) − ∫
ϕ dμω , which is called the modified Robin constant, we have the following

property, which uniquely characterizes the extremal measure μω:

V μω(z) + ϕ(z)

{= Fω, qu.e. z ∈ suppμω,

� Fω, qu.e. z ∈ Σ,

where for a measure σ , V σ denotes its logarithmic potential defined by (8).
Now, let Σ be a closed set and ω be an admissible weight on Σ . Then, a sequence of monic polynomials {pn}n∈N is said

to be asymptotically extremal with respect to the weight ω if (see [16]):

lim
n→∞

∥∥ωn pn
∥∥1/n

Σ
= exp(−Fω), (10)

where, as usual, ‖ · ‖K denotes the sup-norm in the set K . The study of weighted polynomials of the form ω(z)n Pn(z) has
applications to many problems in approximation theory (see e.g. the monographs [16] and [21]). It is well known that if



C. Díaz Mendoza, R. Orive / J. Math. Anal. Appl. 379 (2011) 305–315 309
for each n ∈ N, T ω
n is the n-th (weighted) Chebyshev polynomial with respect to the weight ωn , that is, if it is the (unique)

monic polynomial of degree n for which the infimum

tωn = inf
{∥∥ωn P

∥∥
Σ

, P (z) = zn + · · ·}
is attained, then the sequence {T ω

n } satisfies the asymptotic behavior given in (10) (see [16, Ch. III]).
Under mild conditions on the weight ω, in [16, Ch. III] it is shown that the zeros of such sequences of polynomials

asymptotically follow the equilibrium measure μω , in the sense of the weak-* convergence. Indeed, we have the following
result (see [16, Theorem III.4.1] or [14]):

Theorem 3.1. Let ω be an admissible weight such that the support Sω of the corresponding equilibrium measure μω has zero Lebesgue
planar measure. Let {pn}n∈N be a sequence of monic polynomials of respective degrees n = 1,2, . . . satisfying

lim
n→∞

∥∥ωn pn
∥∥1/n

Sω
= exp(−Fω), (11)

where Fω denotes the modified (by the external field ϕ = − lnω) Robin constant. Then, the following statements are equivalent:

(a) ν(pn) → μω in the weak-* sense, where ν(pn) denotes the unit zero counting measure associated with pn, that is, dν(pn) =
1
n

∑
pn(ζ )=0 δζ .

(b) For each bounded component R of C \ Sω and each infinite sequence N ⊂ N, there exist z0 ∈ R and N1 ⊂ N such that

lim
n→∞,n∈N1

∣∣pn(z0)
∣∣1/n = exp

(−V μω(z0)
)
. (12)

Remark 3.1. In [4, Theorem 5], condition (11) is replaced by the weaker condition:

lim sup
n→∞

ω(z)
∣∣pn(z)

∣∣1/n � exp(−Fω), qu.e. z ∈ Sω. (13)

Remark 3.2. It is clear that the balayage of a measure (see (7)) is a very particular case of equilibrium measure in an
external field. Since Lemma 2.1 says that measure μr is the balayage of δ0 from Gr onto its boundary Γr , it means that

V μr (z) = − log |z|, z ∈ Γr . (14)

Taking into account the definition of Γr , (14) implies both

V μr (z) + Re z = r + 1, z ∈ Γr, (15)

and

V μr (z) + ϕ(z) = r + 1

2
, z ∈ Γr, (16)

where

ϕ(z) = 1

2

(
log |z| + Re z

)
(17)

(see Remark 2.3 above).

For the proof of Theorem 2.1, taking into account Theorem 3.1, it will be proved that the rescaled Laguerre polynomi-
als are asymptotically extremal with respect to the weight ω = e−ϕ in the compact set given by the closed contour Γr
(using (13)), along with the fact that they satisfy the local behavior (12).

4. Proofs

4.1. Proof of Lemma 2.1

By (5), the level curves Γr , for 0 � r < ∞, have the representation

Γr =
{

z ∈ C

∣∣∣ Re

z∫
1

(
1 − 1

t

)
dt = r

}
. (18)

Expression (18) shows that (6) is real-valued in Γr and does not change its sign. Moreover, by a straightforward application
of the Cauchy theorem, we get

μr(Γr) =
∫
Γr

dμr(t) = 1.

Now, we will prove that μr is the balayage of δ0 from Gr = Int(Γr) onto Γr .



310 C. Díaz Mendoza, R. Orive / J. Math. Anal. Appl. 379 (2011) 305–315
To this end, consider the function φ(z) = ze1−z . It is easy to see that φ conformally maps Gr onto the disk Dr = {w ∈
C/|w| < r}, 0 � r < ∞, in the w-plane (see [19] and [15]). Thus, from (6), we have

dμr(z) = 1

2π i

(
1

z
− 1

)
dz = 1

2π i

φ′(z)

φ(z)
dz = 1

2π i

dw

w
= dθ

2π
,

where w = reiθ = φ(z), and z ∈ Γr . Therefore, (6) is the preimage of the normalized arc-length measure on the circle
Tr = ∂Dr under the mapping w = φ(z), that is, the harmonic measure at z = 0 with respect to the domain Gr . But this fact
implies that (6) is the balayage of δ0 from Gr onto Γr (see [10, p. 222]).

4.2. Proof of Theorem 2.1

In Remark 3.2, it was shown that μr is also the equilibrium measure on Γr for the external field ϕ in (17).
Moreover, (16) shows that the corresponding modified Robin constant is given by

Fω = r + 1

2
. (19)

On the other hand, the function g(z) = V μr (z)+ Re z is harmonic in Gr and, by (15), g(z) ≡ r + 1, z ∈ Γr . Then, g(z) ≡ r + 1,
z ∈ Gr . In particular,

V μr (0) = r + 1. (20)

From (19), in order to prove (13) we need to show that

lim sup
n→∞

ω(z)
∣∣pn(z)

∣∣1/n � e− r+1
2 , qu.e. z ∈ Γr,

for the monic polynomial pn(z) = L̂ (αn)
n (nz) and the weight ω(z) = e−ϕ(z) , which by (5) is equivalent to proving that

lim sup
n→∞

e−Re z
∣∣pn(z)

∣∣1/n � e−(r+1), qu.e. z ∈ Γr . (21)

Now, since by (1) L(αn)
n (nz) = lαn

n zn + · · · , with

lαn
n = (−1)n nn

n! , (22)

we get that (21) is equivalent to

lim sup
n→∞

e−Re z
∣∣L(αn)

n (nz)
∣∣1/n � e−r, qu.e. z ∈ Γr . (23)

In addition, we must show that there exists a point z0 ∈ Gr for which (12) is attained. Thus, choosing z0 = 0, and taking
into account (20), it is enough to show that

lim
n→∞

∣∣pn(0)
∣∣1/n = e−(r+1),

which in view of (22) is equivalent to

lim
n→∞

∣∣L(αn)
n (0)

∣∣1/n = e−r . (24)

Now, we are going to prove (24) and (23) under the conditions in Theorem 2.1.

4.2.1. Proof of (24)
By (1), it follows that

L(αn)
n (0) =

(
n + αn

n

)
.

Let hn ∈ {1,2, . . . ,n} be such that

dist(αn,Sn) = |αn + hn|.
Thus, by (9) we have

lim
n→∞|αn + hn|1/n = e−r,

and, therefore, to prove (24) it should be satisfied

lim
n→∞

( |(n + αn)(n + αn − 1) · · · (1 + αn)|) 1
n

= 1. (25)

n!|αn + hn|
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We have that

∣∣(n + αn)(n + αn − 1) · · · (1 + αn)
∣∣ = |αn + hn|

n−hn∏
k=1

|αn + hn + k|
hn−1∏
k=1

|αn + hn − k|.

First assume that αn � −n − 1
2 . Since 2k−1

2 � |αn + hn ± k| � 2k+1
2 , for any integer k � 1, it follows that

hn−1∏
k=1

2k − 1

2

n−hn∏
k=1

2k − 1

2
� |(n + αn)(n + αn − 1) · · · (1 + αn)|

|αn + hn|

�
hn−1∏
k=1

2k + 1

2

n−hn∏
k=1

2k + 1

2
.

Set al = ∏l
k=1

2k+1
2 = (2l+2)!

22l+1(l+1)! , l � 1. Then, for 1 � hn � n − 1, a−1 = 2, a0 = 1,

1

22
ahn−2an−hn−1 � |(n + αn)(n + αn − 1) · · · (1 + αn)|

|αn + hn|
� ahn−1an−hn . (26)

On the other hand, if αn < −n − 1
2 (and thus, hn = n),

∣∣(n + αn − 1)(n + αn − 2) · · · (1 + αn)
∣∣ �

n−1∏
k=1

(−αn − k)

= Γ (−αn)

Γ (−(αn + n − 1))
= Γ (−αn)

Γ (δn + 1)
,

which yields

an−1 �
∣∣(n + αn − 1) · · · (1 + αn)

∣∣ � Γ (−αn)

Γ (δn + 1)
. (27)

Take into account that if {bn} is a sequence such that limn→∞ bn
n = 1, then by Stirling formula we get limn→∞

n√Γ (bn)
n = 1.

Therefore, we have

lim
n→∞

(
ahn−1−san−hn−s

n!
) 1

n

= 1, s = 0,1,

and

lim
n→∞

(
Γ (−αn)

n!Γ (δn + 1)

) 1
n

= 1.

Finally, by (26)–(27), (25) follows.

4.2.2. Proof of (23)
Let us denote

kn = min
([−αn],n

)
, αn = −kn − δn, δn > 0, (28)

where [·] denotes the integer part of a real number. It is clear that −kn ∈ Sn and if kn < n, then 0 < δn < 1.
Moreover,

dist(αn,Sn) =
{

δn, if αn < −n,

min(δn,1 − δn), if αn > −n.

In order to prove (23), the following integral representation will be used (see [1, formula (6.2.22)]):

e−xL(α)
n (x) = 1

Γ (β − α)

∞∫
(t − x)β−α−1e−t L(β)

n (t)dt, (29)
x
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where β > α and the path of integration is any simple smooth path connecting x ∈ C with +∞. Thus, setting β = −kn and
α = αn in (29) and taking into account (28), we have

e−xL(αn)
n (x) = 1

Γ (δn)

∞∫
x

(t − x)δn−1e−t L(−kn)
n (t)dt,

which after some calculations becomes

e−nxL(αn)
n (nx) = nδn

Γ (δn)

∞∫
x

(t − x)δn−1e−nt L(−kn)
n (nt)dt. (30)

Now, since kn ∈ {1, . . . ,n}, making use of (3), (30) may be written in the form:

e−nxL(αn)
n (nx) = (−1)kn

nδn+kn(n − kn)!
n!Γ (δn)

∞∫
x

(t − x)δn−1tkn e−nt L(kn)

n−kn
(nt)dt. (31)

On the other hand, by the Rodrigues formula (2), (31) yields

e−nxL(αn)
n (nx) = (−1)ne−n nδn+kn

n!Γ (δn)

∞∫
x

(t − x)δn−1[φ(t)n](n−kn)
dt

= Kn Fn(x),

where, as above, φ(t) = te1−t and

Fn(x) =
∞∫

x

(t − x)δn−1[φ(t)n](n−kn)
dt.

Let x0 = x0(r) denote the unique point where the curve Γr meets the positive real semiaxis. By the freedom of the choice
of the path of integration, we select a path that consists of two arcs: the first goes from x to x0 along the curve Γr (by the
shortest way), and the corresponding integral will be denoted by Gn(x); the second goes from x0 to ∞ along the positive
real semiaxis, and we will denote this integral by Hn(x). Thus, Fn(x) = Gn(x) + Hn(x).

We will estimate Gn(x) for x ∈ Γr \ {x0}.
Suppose first that kn = n, and hence,

Gn(x) =
x0∫

x

(t − x)δn−1φ(t)n dt.

For this integral, consider the natural arc-length parametrization: t = t(s), so that t(0) = x and t(s0) = x0, for some positive
real number s0. Recall that |φ(t)| = e−r on Γr . Since the path of integration is a smooth rectifiable Jordan arc (even when
r = 0, in which case the path is entirely contained in the upper or lower half of Γ0 = Γ ), we have

∣∣Gn(x)
∣∣ =

∣∣∣∣∣
s0∫

0

(
t(s) − t(0)

)δn−1(
φ
(
t(s)

))n
t′(s)ds

∣∣∣∣∣
� ‖φ‖n

Γr

s0∫
0

∣∣t(s) − t(0)
∣∣δn−1∣∣t′(s)

∣∣ds

� e−rn

s0∫
0

∣∣t(s) − t(0)
∣∣δn−1∣∣t′(s)

∣∣ds. (32)

Now, let c and C be two positive constants such that c � |t′(s)| � C , s ∈ [0, s0], and set

An =
{

C δn , if δn � 1,

Ccδn−1, if 0 < δn < 1.

Then, by the classical mean value theorem, (32) implies∣∣Gn(x)
∣∣ � Ane−rn sδn

0 , (33)

δn
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where limn→∞ A1/n
n = 1. On the other hand, when kn < n, it follows

Gn(x) =
x0∫

x

(t − x)δn−1[(φ(t)
)n](n−kn)

dt.

Proceeding analogously as above, we can show that∣∣Gn(x)
∣∣ � An

∥∥[
φn](n−kn)∥∥

Γr

sδn
0

δn
.

Applying the Cauchy integral formula in an arbitrarily small circle around t , for t in the segment of curve Γr connecting x
to x0, we obtain the estimate∣∣[φ(t)n](n−kn)∣∣ � (n − kn)!ε−n+kn eεn(∣∣φ(t)

∣∣ + εe2)n

= (n − kn)!ε−n+kn eεn(e−r + εe2)n
,

for ε > 0 arbitrarily small. Hence,∣∣Gn(x)
∣∣ � An(n − kn)!ε−n+kn enε

(
e−r + εe2)n sδn

0

δn
, (34)

for ε > 0. Since limn→∞ kn
n = 1, we have

lim
n→∞

(
(n − kn)!ε−n+kn enε

(
e−r + εe2)n)1/n = eε

(
e−r + εe2), (35)

for ε > 0. Taking the limit ε → 0+ in (35) shows that (34) implies (33). Since limn→∞ αn
n = −1, we have

lim
n→∞

(
|Kn| sδn

0

δn

)1/n

= lim
n→∞

nδn/n

Γ (1 + δn)1/n
= 1, (36)

where Stirling formula has been used when δn is unbounded (recall that δn = o(n)). Therefore, by (33)–(36), it follows that

lim sup
n→∞

(∣∣KnGn(x)
∣∣)1/n � e−r, x ∈ Γr \ {x0}, (37)

after taking limits when ε → 0+ , if necessary. Note that in this part of the proof (9) has not been used.
Now, we proceed with Hn(x). As above, suppose first that kn = n, and thus,

Hn(x) =
∞∫

x0

(t − x)δn−1φ(t)n dt,

where now the path of integration is taken along the positive real semiaxis. Then, we have

Hn(x) = en

∞∫
x0

(
1 − x

t

)δn−1

tn+δn−1e−(n−1)te−t dt. (38)

Let M and N be two positive constants such that M � |1 − x
t | � N , t ∈ [x0,∞), and set

Bn =
{

Nδn−1, if δn � 1,

Mδn−1, if 0 < δn < 1.

Then,

∣∣Hn(x)
∣∣ � en Bn‖h‖[0,+∞)

∞∫
x0

e−t dt � en Bn‖h‖[0,+∞),

where limn→∞ B1/n
n = 1 and h(t) = tn+δn−1e−(n−1)t . It is easy to see that

‖h‖[0,+∞) = h

(
n + δn − 1

n − 1

)
=

(
n + δn − 1

n − 1

)n−δn−1

e−(n+δn−1).

Hence,∣∣Hn(x)
∣∣ � Bn

(
n + δn − 1

)n−δn−1

e−(δn−1).

n − 1
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Therefore,

∣∣Kn Hn(x)
∣∣ � e−nnn+δn

n!Γ (1 + δn)
Bn

(
n + δn − 1

n − 1

)n−δn−1

e−(δn−1)δn

� Cnδn = Cn dist(αn,Sn), (39)

where limn→∞ C1/n
n = 1.

On the other hand, when kn < n, we have

Hn(x) =
∞∫

x0

(t − x)δn−1[φ(t)n](n−kn)
dt,

and integrating by parts, it yields

Hn(x) = (x0 − x)δn−1[φ(t)n](n−kn−1)

t=x0
+ (1 − δn)

∞∫
x0

(t − x)δn−2[φ(t)n](n−kn−1)
dt. (40)

Now, applying again the Cauchy integral formula for t ∈ [x0,∞) ⊂ R
+ , we obtain∣∣[(φ(t)

)n](l)∣∣ � l!ε−le2εnφ(t + ε)n, (41)

for arbitrarily small ε > 0.
Then, taking into account (40)–(41) and setting

Dn = (n − kn − 1)!ε−n+kn+1e2εn|x0 − x|δn−1,

we have

∣∣Hn(x)
∣∣ � Dn

(
φ(x0 + ε)n + (1 − δn)

∞∫
x0

|t − x|−1φ(t + ε)n dt

)

� Dn

(
φ(x0 + ε)n + (1 − δn)

∞∫
x0

∣∣∣∣1 − x − ε

t

∣∣∣∣−1

t−1φ(t)n dt

)
.

Finally, we can bound the integral above as in (38), which yields∣∣Hn(x)
∣∣ � Dn

(
φ(x0 + ε)n + (1 − δn)M̃−1e−1),

where we denote by M̃ the lower bound of the function |1 − x−ε
t |, t ∈ [x0,∞).

Therefore,∣∣Kn Hn(x)
∣∣ � e−nnkn+δn

n!Γ (1 + δn)
Dn

(
φ(x0 + ε)nδn + δn(1 − δn)M̃−1e−1)

� Rnδnφ(x0 + ε)n + Snδn(1 − δn), (42)

where limn→∞ R1/n
n = limn→∞ S1/n

n = 1. Taking into account (9), we have

lim
n→∞

[
dist(αn,Sn)

]1/n = lim
n→∞

[
δn(1 − δn)

]1/n = e−r . (43)

Now, from (39), (42) and (43), it follows that

lim sup
n→∞

(∣∣Kn Hn(x)
∣∣)1/n � e−r, x ∈ Γr \ {x0}, (44)

after taking limits when ε → 0+ , if necessary. Thus, from (37) and (44), it follows that

lim sup
n→∞

(∣∣Kn Fn(x)
∣∣)1/n � e−r, x ∈ Γr \ {x0}.

It only remains to consider the limit case r = ∞, which occurs when

lim
[
dist(αn,Sn)

]1/n = 0.

n→∞
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Having in mind the method above, it is not hard to see that in this case, we have

lim sup
n→∞

e−Re x
∣∣L(αn)

n (nx)
∣∣1/n � e−s, x ∈ Γs \ {

x0(s)
}
, (45)

for any s > 0. Applying [4, Theorem 5] to (45) we can show that suppμ∞ ⊂ Gs , for any s > 0. Since
⋂

s>0 Gs = {0}, the
conclusion easily follows.
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