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Under the Generalized Riemann Hypothesis for the Dedekind zeta-function ζκ , we obtain
a formula for the discriminant Dκ/Q of the algebraic number field κ in terms of an integral
of ζκ on the critical line.
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1. Introduction and main result

Let κ be a number field of degree n = r1 + 2r2, where r1, r2 are the number of real, complex places respectively. The
Dedekind zeta-function of the number field κ is defined by the series

ζκ (s) =
∑
a

1

N (a)s
,

where a varies over the non-zero integral ideals of κ , and N (a) denotes the absolute norm of a. Denote by Dκ/Q the
discriminant of κ .

The Dedekind function ζκ (s) admits a holomorphic continuation with the exclusion of a simple pole at s = 1, and satisfies
the following functional equation

ζκ (1 − s) = A(s)ζκ (s), (1)

where

A(s) = |Dκ/Q|s− 1
2

(
cos

π s

2

)r1+r2(
sin

π s

2

)r2

2(1−s)nπ−snΓ n(s).

A straightforward computation gives A(1/2) = 1. The Generalized Riemann Hypothesis (GRH) for κ is the conjecture that all
the zeros of the zeta-function ζκ (s) that lie within the critical strip 0 < Re(s) < 1 actually lie on the critical line Re(s) = 1/2.
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Further, let

ζκ (s) = ακ

(
s − 1

2

)μ

+ βκ

(
s − 1

2

)μ+1

+ · · · ,

which is the Taylor expansion of ζκ (s) at s = 1/2. It is clear from (1) that μ is a non-negative even integer, and ακ �= 0 and
βκ are real numbers. Recently, we [3] proved the following identity

|Dκ/Q|1/n = (
8πeγ +π/2)r1/n(

8πeγ
)2r2/n

e−2βκ/(nακ ), (2)

where γ is the Euler constant. Thus, the computation of |Dκ/Q| is equivalent to the computation of βκ/ακ .
It is well known [4] that

|Dκ/Q|1/n �
(
4πeγ +1)r1/n(

4πeγ
)2r2/n − O

(
n−2/3), (3)

and further, if the Generalized Riemann Hypothesis is assumed, a much stronger inequality states

|Dκ/Q|1/n �
(
8πeγ +π/2)r1/n(

8πeγ
)2r2/n − O

(
log−2 n

)
. (4)

We refer the reader to the survey paper [4] for the history of these bounds. Many mathematicians such as A. Odlyzko,
G. Poitou, J.-P. Serre and H. Stark, have all contributed to this theory. Moreover, explicit forms of these inequalities have
proven quite useful in several types of application in algebraic number theory, as described in [4] for example.

After a little computation with inequalities (2), (3) and (4), we obtain

βκ

ακ
� O (n)

and, if the Generalized Riemann Hypothesis is assumed,

βκ

ακ
� O

(
n

log2 n

)
,

as n → ∞.
In general, to obtain the estimates (3) and (4), it is common (e.g. see [4]) to use the well-known formula

log |Dκ/Q| = πr1

2
+ {

γ + log(8π)
}
n − n

∞∫
0

1 − F (x)

2 sinh(x/2)
dx − r1

∞∫
0

1 − F (x)

2 cosh(x/2)
dx

− 4

∞∫
0

F (x) cosh
x

2
dx +

′∑
ρ

Φ(ρ) + 2
∑
p

∞∑
m=1

logN (p)

N (p)m/2
F
(
m logN (p)

)
, (5)

where p runs over prime ideals of κ , ρ runs over the zeros of ζκ (s) in the critical strip,
∑′

ρ means that the ρ and ρ̄ terms
are to be taken together, and

Φ(s) =
∞∫

−∞
F (x)e(s−1/2)x dx

in which F : R→ R is a differentiable function with F (−x) = F (x), F (0) = 1, and such that for some constants c, ε > 0,∣∣F (x)
∣∣, ∣∣F ′(x)

∣∣ � ce−(1/2+ε)|x|

as x → ∞.
Note that the identity (2) is equivalent to the identity

log |Dκ/Q| = {
γ + log(8π)

}
n + π

2
r1 − 2

βκ

ακ
. (6)

In this short paper, we obtain a new identity and change the term βκ
ακ

in (2) to a simple integral form as follows:

Theorem 1.1. The Generalized Riemann Hypothesis for ζκ (s) is true if and only if

log |Dκ/Q| = {
γ + log(8π)

}
n + π

2
r1 − 8 − 2

π

∞∫
0

t−2 log
|ζκ ( 1

2 + it)|2
|ακ |2t2μ

dt. (7)
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2. Preliminaries

Similar to the case of Riemann ζ -function, we use the following fact [6] to give an estimate of ζκ (s) in the critical strip.

Lemma 2.1. If f (s) is holomorphic, and for M > 1,∣∣∣∣ f (s)

f (s0)

∣∣∣∣ < eM

in the disk |s − s0| � r, then for |s − s0| � r/4,∣∣∣∣ f ′(s)

f (s)
−

∑ 1

s − ρ

∣∣∣∣ <
AM

r

where ρ runs through the zeros of f (s) in |s − s0| � r/2.

Using the Phragmén–Lindelöf principle, one can obtain upper bounds for the order of growth of ζκ (s) inside the critical
strip [5], Theorem 6.8.

Lemma 2.2. Uniformly in σ , as |t| → ∞,

|t|(1/2−σ )n
∣∣ζκ (1 − σ + it)

∣∣ � ∣∣ζκ (σ + it)
∣∣ � |t|(1/2−σ )n

∣∣ζκ (1 − σ + it)
∣∣.

In particular,

lim sup
t→±∞

log |ζκ(σ + it)|
log |t| �

⎧⎨
⎩

0, if σ > 1;
n(1 − σ)/2, if 0 � σ � 1;
( 1

2 − σ)n, if σ < 0.

(8)

By using Lemma 2.1 and Lemma 2.2, we can prove the following lemma, which modifies a lemma in [6], p. 27.

Lemma 2.3. Let T be any positive real number. If ρ = ξ + iη runs through zeros of ζκ (s), then

ζ ′
κ (s)

ζκ (s)
−

∑
|T −η|<1

1

s − ρ
= O (log T ) (9)

uniformly for −1 � σ � 2, where s = σ + it. Moreover, for

−1 � σ = Re(s) � 2, T − 1

2
� t = Im(s) � T + 1

2
,

we have

log
∣∣ζκ (s)

∣∣ =
∑

|T −η|<1

log |s − ρ| + O (log T )

�
∑

|T −η|<1

log |t − η| + O (log T ). (10)

Proof. Take s0 = 3
2 + iT , r = 10 in Lemma 2.1. Note that when σ > 1,

1

|ζκ (s)| =
∣∣∣∣∏
p

(
1 − 1

N (p)s

)∣∣∣∣ �
∏
p

(
1 + 1

N (p)σ

)
< ζκ(σ ),

which implies from (8) that∣∣∣∣ ζκ (s)

ζκ (s0)

∣∣∣∣ � eC log T ,

where C is a positive real number. It follows from Lemma 2.1 that

ζ ′
κ (s)

ζκ (s)
−

∑
|ρ−s0|<5

1

s − ρ
= O (log T )

for |s − s0| � 5 , and in particular for −1 � σ � 2.
2
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Let N(T ) count the number of zeros ρ of ζκ (s) satisfying Re(ρ) > 0, |Im(ρ)| � T . It is known (e.g. Theorem 7.7 in [5])
that

N(T ) = n

π
T log

T

e
+ T

π
log

|Dκ/Q|
(2π)n

+ O (log T ), (11)

which easily yields

N(T + 1) − N(T ) = O (log T ).

Therefore, the number of terms in one of the above sums but not in the other is O (log T ), and each such term is O (1). So,

ζ ′
κ (s)

ζκ (s)
=

∑
|T −η|<1

1

s − ρ
+ O (log T ), (12)

since the number of terms included in this sum, but not in the above sums or vice versa, is O (log T ), and each term is
O (1). Thus (10) is proved.

Further, for

−1 � σ = Re(s) � 2, T − 1

2
� t = Im(s) � T + 1

2
,

integrating (9) from s to 2 + iT (here we suppose that T is not equal to the ordinate of any zero of ζκ ), we obtain

log ζκ (2 + iT ) − log ζκ (s) =
∑

|T −η|<1

{
log(2 + iT − ρ) − log(s − ρ)

} + O (log T )|s − 2 − iT |. (13)

Since log ζκ (2 + iT ) and log(2 + iT − ρ) are bounded, |s − (2 + iT )| � 5, |s − ρ| � |t − η|, and there are O (log T ) terms in
the sum, we conclude from (13) that (10) holds. �
3. Proof of Theorem 1.1

We will use the method in [2] to prove Theorem 1.1, which is a straightforward consequence of (6) and the following
two theorems. Let R > 0 and set

C(0; R) = {
z ∈C

∣∣ |z| < R
}
, C[0; R] = {

z ∈C
∣∣ |z| � R

}
.

Lemma 3.1 (Carleman’s formula). (See [2].) Let f (z) be meromorphic in C[0; R] ∩ {Re(z) � 0} with f (0) = 1, and suppose that it has
the zeros r1eiθ1 , r2eiθ2 , . . . , rmeiθm and the poles s1eiϕ1 , s2eiϕ2 , . . . , sneiϕn inside C(0; R) ∩ {Re(z) > 0}. Then

m∑
μ=1

(
1

rμ
− rμ

R2

)
cos θμ −

n∑
ν=1

(
1

sν
− sν

R2

)
cosϕν = C f (R) − 1

2
Re

(
f ′(0)

)
,

where

C f (R) = 1

π R

π
2∫

− π
2

log
∣∣ f

(
Reiθ )∣∣ cos θ dθ + 1

2π

R∫
0

(
1

y2
− 1

R2

)
log

∣∣ f (iy) f (−iy)
∣∣dy. (14)

Theorem 3.2. The Generalized Riemann Hypothesis is true for ζκ (s) if and only if

lim
R→∞C f (R) = βκ

2ακ
− 2,

where

f (s) = ζκ (s + 1
2 )

ακ sμ
. (15)
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Proof. Let

zμ − 1

2
= rμeiθμ

(
rμ > 0, 0 < θμ <

π

2

)
, zμ − 1

2

be the zeros of f in the half-plane Re(s) > 0, but on the critical line. It is clear that s = 1
2 is the unique pole of f in

Re(s) > 0. Hence Lemma 3.1 yields

2
∑

rμ<R

(
1

rμ
− rμ

R2

)
cos θμ −

(
2 − 1

2R2

)
= C f (R) − 1

2
Re

(
f ′(0)

)
. (16)

Since f is of order 1, then the convergence exponent of zeros for f is at most 1. Hence the series∑
μ

1

r1+ε
μ

is convergent for any ε > 0, and so

0 �
∑
μ

cos θμ

rμ
=

∑
μ

rμ cos θμ

r2
μ

� 1

2

∑
μ

1

r2
μ

< ∞.

Further, the formula (11) implies

0 �
∑

rμ<R

rμ cos θμ

R2
� N(R)

2R2
→ 0 (R → ∞).

Thus we obtain from (16) and Re( f ′(0)) = βκ/ακ that

lim
R→∞C f (R) = 2

∑
μ

cos θμ

rμ
+ βκ

2ακ
− 2.

It is clear that the Generalized Riemann Hypothesis is true if and only if the zeros zμ do not exist, that is,

∑
μ

cos θμ

rμ
= 0,

which implies

lim
R→∞C f (R) = βκ

2ακ
− 2. �

Theorem 3.3. If f is defined by (15), we have

lim
R→∞C f (R) = 1

2π

∞∫
0

log
∣∣ f (it)

∣∣2 dt

t2
.

Proof. It is known [1] that

R∫
0

∣∣∣∣ζκ
(

1

2
+ it

)∣∣∣∣
2

dt = O
(

Rn/2(log R)n),
where n the degree of the number field κ . By the concavity of the logarithmic function, we obtain

1

R2

R∫
0

log
∣∣ f (it)

∣∣2
dt � 1

R
log

{
1

R

R∫
0

∣∣ f (it)
∣∣2

dt

}
= O

(
n log R

R

)
. (17)

On the other hand, it is easily seen from a graph that the integral

T + 1
2∫

T − 1

log |t − η|dt,
2
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considered as a function of η, takes the minimum value − log 2 − 1 when η = T . Since there are O (log T ) terms in the
following sum, it follows that

T + 1
2∫

T − 1
2

∑
|T −η|<1

log |t − η|dt > −A log T ,

where A is a positive constant. In the sequel, A denotes an absolute positive constant and its value may be different in each
appearance. Thus we have from (10) that

T + 1
2∫

T − 1
2

log
∣∣ζκ (σ + it)

∣∣dt > −A log T .

Hence

[R]− 1
2∫

1
2

log
∣∣ζκ (σ + it)

∣∣dt =
[R]−1∑
k=1

k+ 1
2∫

k− 1
2

log
∣∣ζκ (σ + it)

∣∣dt > −A log
(([R] − 1

)!).
Similarly, we can show

R∫
[R]− 1

2

∑
|[R]−η|<1

log |t − η|dt > −A log[R],

when R � [R] + 1
2 , and

R∫
[R]+ 1

2

∑
|[R]+1−η|<1

log |t − η|dt > −A log
([R] + 1

)
,

when R > [R] + 1
2 . Thun we have, for any large R ,

R∫
[R]− 1

2

log
∣∣ζκ (σ + it)

∣∣dt > −A log[R].

Therefore

R∫
1
2

log
∣∣ζκ (σ + it)

∣∣dt > −A log
([R]!) = −AR log R,

since Stirling’s formula yields

log
([R]!) =

(
[R] + 1

2

)
log[R] − [R] + O (1).

It follows that

1

R2

R∫
0

log
∣∣ f (it)

∣∣2
dt > −A

log R

R
. (18)

Finally, combining (17) and (18) gives

1

R2

R∫
log

∣∣ f (it)
∣∣2

dt = O

(
log R

R

)
,

0
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which implies

lim
R→∞

1

R2

R∫
0

log
∣∣ f (it)

∣∣2
dt = 0. (19)

In order to estimate the first integral in (14), we set

δ = arcsin
1

R
.

Then we can take R sufficient large such that

R − R cos δ � 1

2
.

For −δ + π/2 � θ � π/2, we have

−1 � σ = Re

(
1

2
+ Reiθ

)
� 2, R − 1

2
� Im

(
1

2
+ Reiθ

)
� R + 1

2
.

Thus, the inequality (10) implies

log

∣∣∣∣ζκ
(

1

2
+ Reiθ

)∣∣∣∣ >
∑

|R−η|<1

log |R sin θ − η| + O (log R),

where ρ = α + iη runs though the zeros of ζκ (s). Note that

π
2∫

π
2 −δ

∑
|R−η|<1

log |R sin θ − η| cos θ dθ = 1

R

R∫
R cos δ

∑
|R−η|<1

log |t − η|dt > − A log R

R
.

Then

π
2∫

π
2 −δ

log

∣∣∣∣ζκ
(

1

2
+ Reiθ

)∣∣∣∣ cos θ dθ > −A log R.

The estimates (8) yield immediately

π
2∫

π
2 −δ

log

∣∣∣∣ζκ
(

1

2
+ Reiθ

)∣∣∣∣ cos θ dθ < O (log R).

Thus we obtain

π
2∫

π
2 −δ

log

∣∣∣∣ζκ
(

1

2
+ Reiθ

)∣∣∣∣ cos θ dθ = O (log R).

If σ > 1, then

∣∣ζκ (s)
∣∣ � ζκ (σ ) and

1

|ζκ (s)| � ζκ(σ )

for all values of t . Therefore

π
2 −δ∫
0

log

∣∣∣∣ζκ
(

1

2
+ Reiθ

)∣∣∣∣ cos θ dθ = O (1).

Since log |ζκ ( 1 + Reiθ )| is an even function of θ , these estimates give
2
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π
2∫

− π
2

log

∣∣∣∣ζκ
(

1

2
+ Reiθ

)∣∣∣∣ cos θ dθ = O (log R). (20)

Therefore Theorem 3.3 follows from (14), (19) and (20). �
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