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We study a semilinear Neumann problem which is resonant at ±∞ with respect to
any eigenvalue different from the first and the second eigenvalue of −∆N (the negative
Neumann Laplacian). Using a combination of variational methods with Morse theoretic
techniques, we show that the problem has at least two nontrivial smooth solutions.
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1. Introduction

LetΩ ⊆ RN be a bounded domain with a C2-boundary ∂Ω . In this paper, we study the following semilinear Neumann
problem:−1u(z) = f


z, u(z)


inΩ,

∂u
∂n

= 0 on ∂Ω.
(1.1)

Here n(·) denotes the outward unit normal on ∂Ω and f (z, ζ ) is a measurable function which is C1 in the ζ -variable. It is
well-known that the existence and multiplicity of solutions for problem (1.1) relies heavily on the interaction of the limit

lim
|ζ |→+∞

f (z, ζ )
ζ

with the spectrum of the negative Neumann Laplacian, hereafter denoted by−∆N . The difficult and interesting case is when
the above limit belongs in the spectrum of −∆N . This is called a ‘‘resonant problem’’. Such problems were investigated
primarily in the context of Dirichlet equations. We mention the works of Hirano and Nishimura [1], Landesman et al. [2],
Liang–Su [3], Li–Willem [4], de Paiva [5], Su–Tang [6], and Zou [7]. The Neumann case has not been studied so extensively.
In this direction, we mention the works of Gasiński–Papageorgiou [8], Li [9], Li–Li [10], Qian [11] and Tang–Wu [12]. The
hypotheses in these works are in general different from ours and in many respects more restrictive, since they impose
symmetry conditions on f (z, ·) and have a left hand side differential operator of the form

−1u + au,
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with a > 0 (see [9–11]) or use an anticoercivity condition on the primitive

F(z, ζ ) =

 ζ

0
f (z, s) ds

(hence the energy functional of the problem is coercive) and assume resonance only at zero (see [12]) or finally they require
that f (z, ·) exhibits an oscillatory behaviour near zero (see [8]). Consequently their conclusions are different. Some other
types of Neumann boundary value problems can be found in recent papers [13–16].

Here, we combine variational methods based on the critical point theory with Morse theory (critical groups) and prove
the existence of two nontrivial smooth solutions, when resonance occurs. More precisely, we assume that f (z, ·) is resonant
at ±∞ with respect to any eigenvalue of −∆N different from the first and the second eigenvalue of −∆N (see (2.2)), while
at zero we have nonuniform nonresonance with respect to a lower spectral interval.

In the next section, for easy reference, we review the main mathematical tools that we will use in this paper.

2. Mathematical background

Let X be a Banach space and let X∗ be its topological dual. By ⟨·, ·⟩ we denote the duality brackets for the pair (X∗, X). Let
ϕ ∈ C1(X). We say that ϕ satisfies the Cerami condition, if every sequence {xn}n>1 ⊆ X , such that


ϕ(xn)


n>1 ⊆ R is bounded

and 
1 + ∥xn∥


ϕ′(xn) −→ 0 in X∗,

admits a strongly convergent subsequence. This compactness-type condition is in general weaker than the usual Palais–
Smale condition. Nevertheless, this weaker condition suffices to have a deformation theorem and from it derives the
minimax theory of the critical values of ϕ ∈ C1(X). In this minimax theory, the topological notion of linking sets plays
a crucial role.

Definition 2.1. Let Y be a Hausdorff topological space, C0, C and D three nonempty subsets of Y , such that C0 ⊆ C . We say
that the pair {C, C0} is linking with D in Y , if
(a) C0 ∩ D = ∅;
(b) for every γ ∈ C(C, Y ), such that γ |C0 = id|C0 , we have that γ (C) ∩ D ≠ ∅.

Using this notion, we can prove the following general minimax principle concerning the critical values of a C1-functional
(see e.g., [17]).

Theorem 2.2. If X is a Banach space, C0, C and D are three nonempty, closed subsets of X, the pair {C, C0} is lining with D in X,
ϕ ∈ C1(X), ϕ satisfies the Cerami condition,

sup
C0
ϕ < inf

D
ϕ

and

c = inf
γ∈Γ

sup
u∈C

ϕ

γ (u)


,

where

Γ =

γ ∈ C(C, X) : γ |C0 = id|C0


,

then c > infD ϕ and c is a critical value of ϕ.

Remark 2.3. With suitable choices of the linking sets, we obtain as corollaries of Theorem 2.2, well known results, such as
the mountain pass theorem, the saddle point theorem and the generalized mountain pass theorem (see e.g., [17]).

Next, we recall a few basic facts about the spectrum of −∆N . So, let m ∈ L∞(Ω),m > 0,m ≠ 0. We consider the
following weighted linear eigenvalue problem:−1u(z) = λm(z)u(z) inΩ,

∂u
∂n

= 0 on ∂Ω.
(2.1)

We say thatλ ∈ R is an eigenvalue of −∆N with weight m (denoted by (−∆N ,m)), if problem (2.1) admits a nontrivial
solutionu ∈ H1(Ω). Evidently, a necessary condition forλ to be an eigenvalue, is thatλ > 0. In factλ0 = λ0(m) = 0 is
an eigenvalue of (2.1) with corresponding eigenspace R (the space of constant functions). Using the spectral theorem for
compact self-adjoint operators, we can show that (−∆N ,m) has a sequence of distinct eigenvalues

λk(m)k>0, such thatλ0(m) = 0 and λk(m) −→ +∞ as k → +∞. (2.2)
If m ≡ 1, then we writeλk(1) = λk for all k > 0.
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Inwhat follows, for every k > 0, by E(λk(m)), we denote the eigenspace corresponding to the eigenvalueλk(m). Standard
regularity theory (see e.g., [17]), implies that

E
λk(m) ⊆ C1(Ω) ∀k > 0.

In addition, these eigenspaces have the so-called unique continuation property, namely, if u ∈ E
λk(m) vanishes on a set of

positive Lebesgue measures, then u ≡ 0 (see [18,19]). We set

H l =

l
k=0

E
λk(m) and Hl = H

⊥

l =


k>l+1

E
λk(m).

Evidently,H l is finite dimensional. Using these spaces we have the following variational characterizations of the eigenvaluesλk(m)k>0:

0 = λ0(m) = inf


∥∇u∥2
2

Ω
mu2dz

: u ∈ H1
0 (Ω), u ≠ 0


(2.3)

and for every l > 1, we have

λl(m) = inf


∥∇u∥2
2

Ω
mu2dz

: u ∈ Hl−1, u ≠ 0


= sup


∥∇u∥2
2

Ω
mu2dz

: u ∈ H l, u ≠ 0

. (2.4)

In (2.3), the infimum is actually attained on E
λ0(m) = R. Similarly in (2.4), both the infimum and the supremum are

realized on E
λl(m).

As an easy consequence of the unique continuation property and (2.3) and (2.4), we have the following two results
concerning the eigenvalues

λk(m)k>0 and the component spaces H l andHl (see [8]).

Proposition 2.4. If m,m′
∈ L∞(Ω)+ \ {0}, m(z) 6 m′(z) for almost all z ∈ Ω and m ≠ m′, thenλl(m′) <λl(m) ∀l > 1.

Proposition 2.5. (a) If l > −1 is an integer and η ∈ L∞(Ω), η(z) 6 λl+1 for almost all z ∈ Ω, η ≠ λl+1, then there exists
ξ0 > 0, such that

∥∇u∥2
2 −


Ω

ηu2 dz > ξ0∥u∥2
∀u ∈ Hl.

(b) If l > 0 is an integer and η ∈ L∞(Ω), η(z) > λl for almost all z ∈ Ω, η ≠ λl, then there exists ξ1 > 0, such that

∥∇u∥2
2 −


Ω

ηu2 dz 6 −ξ1∥u∥2
∀u ∈ H l.

Wemention that only the principal eigenvalueλ0(m) = 0 has eigenfunctions of constant sign. All the other eigenvaluesλk(m)k>1 have nodal (i.e., sign changing) eigenfunctions.
Next, let us recall a few basic facts from Morse theory. So, as before X is a Banach space and we consider ϕ ∈ C1(X) and

c ∈ R. We introduce the following sets:

ϕc
=


x ∈ X : ϕ(x) 6 c


,

Kϕ =

x ∈ X : ϕ′(x) = 0


,

K c
ϕ =


x ∈ Kϕ : ϕ(x) = c


.

Let (Y1, Y2) be a topological pair, such that Y2 ⊆ Y1 ⊆ X . For every integer k > 0, by Hk(Y1, Y2) we denote the k-th relative
singular homology group with integer coefficients for the pair (Y1, Y2). The critical groups of ϕ at an isolated u ∈ K c

ϕ are
defined by

Ck(ϕ, u) = Hk

ϕc

∩ U, ϕc
∩ U \ {u}


∀k > 0,

where U is a neighbourhood of u, such that Kϕ ∩ϕc
∩U = {u}. The excision property of singular homology, implies that this

definition is independent of the particular choice of the neighbourhood U .
Suppose that ϕ ∈ C1(X) satisfies the Cerami condition. Assume that −∞ < infϕ(Kϕ) and let

c < infϕ(Kϕ).
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Then, the critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X, ϕc) ∀k > 0.

The second deformation theorem (see e.g., [17, p. 628]), implies that this definition is independent of the particular choice
of the level c < infϕ(Kϕ). Note that, if Ck(ϕ,∞) ≠ 0, then we can find u ∈ Kϕ , such that Ck(ϕ, u) ≠ 0.

Now, let X = H be a Hilbert space, ϕ ∈ C2(H) and u ∈ Kϕ . The Morse index µ(u) of u is defined to be the supremum of
the dimensions of the vector subspaces of H on which ϕ′′(u) is negative definite. The nullity ν(u) of u is defined to be the
dimension of kerϕ′′(u). We say that u ∈ Kϕ is nondegenerate, if ϕ′′(u) is invertible. Suppose that u ∈ Kϕ is nondegenerate
with Morse index µ(u) = m. Then

Ck(ϕ, u) = δk,mZ ∀k > 0, (2.5)

where δk,m is the Kronecker symbol, defined by

δk,m =


1 if k = m,
0 if k ≠ m.

As a consequence of the so-called ‘‘shifting theorem’’, we have the following proposition (see e.g., [20]).

Proposition 2.6. If H is a Hilbert space, ϕ ∈ C2(H) and u ∈ Kϕ has finite Morse index m and nullity n, then one of the following
holds:

(a) Ck(ϕ, u) = 0 for all k 6 m and k > m + n; or
(b) Ck(ϕ, u) = δk,mZ for all k > 0; or
(c) Ck(ϕ, u) = δk,m+nZ for all k > 0.

The next proposition due to Liang–Su [3] is useful in computing the critical groups at infinity.

Proposition 2.7. If H is a Hilbert space, {ht}t∈[0,1] ⊆ C1(H), the maps u −→ (ht)
′(u) and u −→ ∂tht(u) are both locally

Lipschitz, h0 and h1 satisfy the Cerami condition and there exist a ∈ R and δ > 0, such that

ht(u) 6 a,H⇒

1 + ∥u∥

(ht)
′(u)


∗

> δ ∀t ∈ [0, 1],

then

Ck(h0,∞) = Ck(h1,∞) ∀k > 0.

Now suppose that X is a Banach space.

Definition 2.8. Suppose that X = Y ⊕ V . We say that ϕ ∈ C1(X) has a local linking at 0, if there exists ϱ > 0, such that
ϕ(y) 6 0 for all y ∈ Y , ∥y∥ 6 ϱ,
ϕ(v) > 0 for all v ∈ V , ∥v∥ 6 ϱ.

From Su [21], we have the following result.

Proposition 2.9. If H is a Hilbert space, ϕ ∈ C2(H) and ϕ has a local linking at 0 with respect to H = Y ⊕ V and
k = dim Y < +∞, then if k = m0 = µ(0), we have

Ck(ϕ, 0) = δk,m0Z ∀k > 0

and if k = d0 = µ(0)+ ν(0), we have

Ck(ϕ, 0) = δk,d0Z ∀k > 0.

3. The two solutions theorem

In this section we show that under resonance conditions at ±∞, problem (1.1) has at least two nontrivial smooth
solutions. The hypotheses on the reaction f (z, ζ ) are the following:
H: f :Ω × R −→ R is a measurable function, such that for almost all z ∈ Ω , we have f (z, 0) = 0, f (z, ·) ∈ C1(R) and
(i) there exist a ∈ L∞(Ω)+, c > 0 and r ∈ [2, q), where q is the Sobolev critical exponent, defined by

q =


2N

N − 2
if N > 2,

+∞ if N = 1, 2,
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such thatf ′

ζ (z, ζ )
 6 a(z)+ c|ζ |r−2 for almost all z ∈ Ω, all ζ ∈ R;

(ii) there exists an integerm > 3, such that

lim
ζ→±∞

f (z, ζ )
ζ

= λm uniformly for almost all z ∈ Ω;

(iii) if

F(z, ζ ) =

 ζ

0
f (z, s) ds,

then there exist µ ∈ (1, 2] and β0 > 0, such that

lim inf
ζ→±∞

f (z, ζ )ζ − 2F(z, ζ )
|ζ |µ

> β0 > 0 uniformly for almost all z ∈ Ω;

(iv) there exists integer k > 0, such that k < m − 2 and

f (z, ζ )
ζ

6 f ′

ζ (z, ζ ) and
f (z, ζ )
ζ

<λm for almost all z ∈ Ω, all ζ ≠ 0

and

f ′

ζ (z, 0) ∈
λk, λk+1


for almost all z ∈ Ω,

with f ′

ζ (·, 0) ≠ λk and f ′

ζ (·, 0) ≠ λk+1.

Remark 3.1. The condition
f (z, ζ )
ζ

6 f ′

ζ (z, ζ ) for almost all z ∈ Ω, all ζ ≠ 0,

implies that for almost all z ∈ Ω , we have that the map

ζ −→
f (z, ζ )
ζ


is nondecreasing on (0,+∞),
is nonincreasing on (−∞, 0).

Indeed, note that
f (z, ζ )
ζ

′

=
f ′

ζ (z, ζ )ζ − f (z, ζ )

ζ 2


> 0 if ζ > 0,
6 0 if ζ < 0.

Therefore, from hypothesis H(iv), we have

λk 6
f (z, ζ )
ζ

6 f ′

ζ (z, ζ ) for almost all z ∈ Ω, all ζ ≠ 0.

Evidently, if for almost all z ∈ Ω , the map ζ −→ f (z, ζ ) is convex in (0,+∞) and concave in (−∞, 0), then we have

f (z, ζ )
ζ

6 f ′

ζ (z, ζ ) for almost all z ∈ Ω, all ζ ≠ 0.

This convexity–concavity hypothesis was used by de Paiva [5]. In Bartsch et al. [22], the authors have

f (z, ζ ) = f (ζ ),

with f ∈ C1(R) and assume that

f (ζ )
ζ

< f ′

ζ (ζ ) ∀ζ ≠ 0.

Let ϕ:H1(Ω) −→ R be the energy functional for problem (1.1), defined by

ϕ(u) =
1
2
∥∇u∥2

2 −


Ω

F

z, u(z)


dz ∀u ∈ H1(Ω).

Evidently ϕ ∈ C2

H1(Ω)


and we have

ϕ′(u) = A(u)− Nf (u), (3.1)
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where A ∈ L

H1(Ω), H1(Ω)∗


is defined by

A(u), y

=


Ω

(∇u, ∇y)RN dz ∀u, y ∈ H1(Ω)

and

Nf (u)(·) = f

·, u(·)


∀u ∈ H1(Ω).

Proposition 3.2. If hypotheses H hold, then ϕ satisfies the Cerami condition.

Proof. Let {un}n>1 ⊆ H1(Ω) be a sequence, such thatϕ(un)
 6 M1 ∀n > 1, (3.2)

for someM1 > 0 and
1 + ∥un∥


ϕ′(un) −→ 0 in H1(Ω)∗. (3.3)

From (3.3), we haveϕ′(un), h
 6

εn∥h∥
1 + ∥un∥

∀h ∈ H1(Ω),

with εn → 0+, soA(un), h

−


Ω

f (z, un)h dz
 6

εn∥h∥
1 + ∥un∥

∀n > 1 (3.4)

(see (3.1)). In (3.4) we choose h = un ∈ H1(Ω). Then

− ∥∇un∥
2
2 +


Ω

f (z, un)un dz 6 εn ∀n > 1. (3.5)

On the other hand, from (3.2), we have

∥∇un∥
2
2 −


Ω

2F(z, un) dz 6 2M1 ∀n > 1. (3.6)

Adding (3.5) and (3.6), we obtain
Ω


f (z, un)un − 2F(z, un)


dz 6 M2 ∀n > 1,

for some M2 > 0. Suppose that {un}n>1 ⊆ H1(Ω) is unbounded. By passing to a subsequence if necessary, we may assume
that ∥un∥ −→ +∞. Then

lim sup
n→+∞

1
∥un∥

p


Ω


f (z, un)un − 2F(z, un)


dz 6 0. (3.7)

Let

yn =
un

∥un∥
∀n > 1.

Then ∥yn∥ = 1 for all n > 1 and so, passing to a subsequence if necessary, we may assume that

yn −→ y weakly in H1(Ω), (3.8)

yn −→ y in L2(Ω). (3.9)

From (3.4), we haveA(yn), h − 
Ω

f (z, un)

∥un∥
h dz

 6
εn∥h∥

1 + ∥un∥
∀h ∈ H1(Ω), n > 1. (3.10)

Let h = yn − y ∈ H1(Ω). Note that the sequence
 f (·,un(·))

∥un∥


n>1 ⊆ L2(Ω) is bounded (see hypotheses H(i) and (ii)). So, if we

pass to the limit as n → +∞ in (3.10), then

lim
n→+∞


A(y), yn − y


= 0,
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so

∥∇yn∥2 −→ ∥∇y∥2

(since A(yn) −→ A(y)weakly in H1(Ω)∗). From (3.8), we also have that

∇yn −→ ∇y weakly in L2(Ω; RN).

So, by virtue of the Kadec–Klee property of Hilbert spaces, we have

∇yn −→ ∇y in L2(Ω; RN),

so

yn −→ y in H1(Ω) (3.11)

(see (3.8)), hence ∥y∥ = 1.
Since the sequence

Nf (un)
∥un∥


n>1 ⊆ L2(Ω) is bounded and using hypothesis H(ii), we have (at least for a subsequence), that

Nf (un)

∥un∥
−→ λmy weakly in L2(Ω).

Therefore, passing to the limit as n → +∞ in (3.10), we obtain
A(y), h


=


Ω

λmyh dz ∀h ∈ H1(Ω),

so

A(y) = λmy,
thus −1y(z) = λmy(z) a.e. inΩ,

∂y
∂n

= 0 on ∂Ω

and so

y ∈ E(λm) \ {0}

(see (3.11)).
By virtue of the unique continuation property, we have that y(z) ≠ 0 for almost all z ∈ Ω . Thenun(z)

 −→ +∞ for almost all z ∈ Ω

and so by virtue of hypothesis H(iii) and Fatou’s lemma, we have

lim inf
n→+∞

1
∥un∥

µ


Ω


f (z, un)un − 2F(z, un)


dz > β1 > 0. (3.12)

Comparing (3.7) and (3.12), we reach a contradiction. This proves that the sequence {un}n>1 ⊆ H1(Ω) is bounded. So, we
may assume that

un −→ u weakly in H1(Ω),

un −→ u in L2(Ω).

Hence, if in (3.4) we choose h = un − u ∈ H1(Ω) and pass to the limit as n → +∞, then

lim
n→+∞


A(yn), yn − y


= 0,

so

un −→ u in H1(Ω)

(as before, using the Kadec–Klee property of Hilbert spaces).
This proves that ϕ satisfies the Cerami condition. �

In the next proposition, we determine the behaviour of ϕ near zero. So, let

Hk =

k
i=0

E(λi) and Hk = H
⊥

k =


i≥k+1

E(λ)i.
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Proposition 3.3. If hypotheses H hold, then ϕ has a local linking at the origin with respect to the orthogonal direct sum
decomposition

H1(Ω) = Hk ⊕ Hk.

Proof. By virtue of hypothesis H(iv), for a given ε > 0, we can find δ = δ(ε) > 0, such that

f (z, ζ )
ζ

> f ′

ζ (z, 0)− ε for almost all z ∈ Ω, all 0 < |ζ | 6 δ,

so

F(z, ζ ) >
1
2


f ′

ζ (z, 0)− ε

ζ 2 for almost all z ∈ Ω, all |ζ | 6 δ. (3.13)

Let u ∈ Hk. Since Hk is finite dimensional all norms are equivalent. So, we can find ϱ0 > 0, such that

∥u∥ 6 ϱ0 H⇒
u(z) 6 δ for almost all z ∈ Ω. (3.14)

Therefore, if u ∈ Hk with ∥u∥ 6 ϱ0, then

ϕ(u) =
1
2
∥∇u∥2

2 −


Ω

F(z, u) dz

6
1
2
∥∇u∥2

2 −
1
2


Ω

f ′

ζ (z, 0)u
2 dz +

ε

2
∥u∥2

6
ε − ξ1

2
∥u∥2

(see (3.13) and (3.14) and Proposition 2.5(b)).
Choosing ε ∈ (0, ξ1), we infer that

ϕ(u) 6 0 ∀u ∈ Hk, ∥u∥ 6 ϱ0.

On the other hand, hypotheses H(i) and (iv) imply that for a given ε > 0, we can find cε > 0, such that

F(z, ζ ) 6
1
2


f ′

ζ (z, 0)+ ε

ζ 2

+ cε|ζ |r0 for almost all z ∈ Ω, all ζ ∈ R, (3.15)

with 2 < r0. Therefore, if u ∈ Hk, then

ϕ(u) =
1
2
∥∇u∥2

2 −


Ω

F(z, u) dz

>
1
2
∥∇u∥2

2 −
1
2


Ω

f ′

ζ (z, 0)u
2 dz −

ε

2
∥u∥2

− c1∥u∥r0

>
ξ0 − ε

2
∥u∥2

− c1∥u∥r0 ,

for some c1 > 0 (see (3.15) and Proposition 2.5(a)).
Choosing ε ∈ (0, ξ0), we have

ϕ(u) > c2∥u∥2
− c1∥u∥r0 ∀u ∈ Hk (3.16)

for some c2 > 0.
Since r0 > 2, from (3.16), we see that, if we choose ϱ1 > 0 small, then

ϕ(u) > 0 ∀u ∈ Hk, ∥u∥ 6 ϱ1.

Therefore, for ϱ = min{ϱ0, ϱ1}, we have

ϕ(u)


6 0 if u ∈ Hk, ∥u∥ 6 ϱ,

> 0 if u ∈ Hk, ∥u∥ 6 ϱ.

This proves thatϕ has a local linking at the originwith respect to the orthogonal direct sumdecompositionH1(Ω) = Hk⊕Hk
(see Definition 2.8). �
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Invoking Proposition 2.9, we have the following.

Proposition 3.4. If hypotheses H hold, then

Cl(ϕ, 0) = δl,dkZ ∀l > 0,

where

dk = dim
k

i=0

E(λi).
Next, we compute the critical groups of ϕ at infinity.

Proposition 3.5. If hypotheses H hold, then

Cl(ϕ,∞) = δl,dm−1Z ∀l > 0,

where

dm−1 = dim
m−1
i=0

E(λi).
Proof. Let η ∈ (λm−1, λm) and consider the C2-functional ψ:H1(Ω) −→ R, defined by

ψ(u) =
1
2
∥∇u∥2

2 −
η

2
∥u∥2

2 ∀u ∈ H1
0 (Ω).

We consider the homotopy h: [0, 1] × H1(Ω) −→ R, defined by

ht(u) = (1 − t)ϕ(u)+ tψ(u) ∀(t, u) ∈ [0, 1] × H1(Ω).

Claim 1. There exist a ∈ R and δ > 0, such that

ht(u) 6 a H⇒

1 + ∥u∥

(ht)
′(u)


∗

> δ ∀t ∈ [0, 1].

We argue by contradiction. So, suppose that the Claim is not true. Since (t, u) −→ ht(u) is bounded (i.e., maps bounded sets
to bounded sets), we can find two sequences {tn}n>1 ⊆ [0, 1] and {un}n>1 ⊆ H1(Ω), such that

tn −→ t, ∥un∥ −→ +∞, htn(un) −→ −∞ (3.17)

and

(htn)
′(un) −→ 0 in H1(Ω)∗. (3.18)

From the convergence (3.18), we haveA(un), h

− (1 − tn)


Ω

f (z, un)h dz − tnη

Ω

unh dz
 6

εn∥h∥
1 + ∥un∥

∀h ∈ H1(Ω), (3.19)

with εn → 0+.
Let

yn =
un

∥un∥
∀n > 1.

Then ∥yn∥ = 1 for all n > 1. So, by passing to a suitable subsequence if necessary, we may assume that

yn −→ y weakly in H1(Ω), (3.20)

yn −→ y in L2(Ω). (3.21)

From (3.19), we haveA(yn), h − (1 − tn)

Ω

f (z, un)

∥un∥
h dz − tnη


Ω

ynh dz
 6

εn∥h∥
(1 + ∥un∥)∥un∥

∀n > 1. (3.22)

Clearly the sequence
Nf (un)

∥un∥


n>1 ⊆ L2(Ω) is bounded (see hypotheses H(i) and (ii)). So, if in (3.22) we choose h = yn − y,

pass to the limit as n → +∞ and use (3.20), then

lim
n→+∞


A(yn), yn − y


= 0,
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so

yn −→ y in H1(Ω) (3.23)

(as before, via the Kadec–Klee property), hence ∥y∥ = 1. Hypothesis H(ii) implies that at least for a subsequence, we have

Nf (un)

∥un∥
−→ λmu weakly in L2(Ω). (3.24)

Therefore, if in (3.22) we pass to the limit as n → +∞ and use (3.23) and (3.24), then
A(y), h


= ηt


Ω

yh dz ∀h ∈ H1(Ω),

with ηt = (1 − t)λm + tη, so

A(y) = ηty

and thus
−1y(z) = ηty(z) inΩ,
∂u
∂n

= 0 on ∂Ω.
(3.25)

If t ≠ 0, then ηt ∈ (λm−1,λm) and so from (3.25) we infer that y = 0, which contradicts (3.23).
If t = 0, then ηt = λm and so from (3.23) and (3.25), we have y ∈ E(λm)\{0}. Hence by the unique continuation property,

we have

y(z) ≠ 0 for almost all z ∈ Ω

and soun(z)
 −→ +∞ for almost all z ∈ Ω.

Hypothesis H(iii) and Fatou’s lemma, imply that

lim inf
n→+∞

1
∥un∥

µ


Ω


f (z, un)un − 2F(z, un)


dz > β2 > 0. (3.26)

On the other hand, from the third convergence in (3.17), we can find an integer n0 > 1, such that

htn(un) 6 0 ∀n > n0,

so

∥∇un∥
2
2 − (1 − tn)


Ω

2F(z, un) dz − tnη∥un∥
2
2 6 0 ∀n > n0. (3.27)

In (3.19) we choose h = un and obtain

− ∥∇un∥
2
2 + (1 − tn)


Ω

f (z, un)un dz + tnη∥un∥
2
2 6 εn ∀n > n0. (3.28)

Adding (3.27) and (3.28), we have

(1 − tn)

Ω


f (z, un)un − 2F(z, un)


dz 6 M2 ∀n > n0,

for some M2 > 0.
Since t = 0 and tn −→ t = 0, we may assume that 1 − tn > 0 for all n > n0. Then

1
∥un∥

µ


Ω


f (z, un)un − 2F(z, un)


dz 6

M2

(1 − tn)∥un∥
µ

∀n > n0,

so

lim sup
n→+∞

1
∥un∥


Ω


f (z, un)un − 2F(z, un)


dz 6 0. (3.29)

Comparing (3.26) and (3.29), we reach a contradiction. This proves the Claim.
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From Proposition 3.2, we know that h0 = ϕ satisfies the Cerami condition. Also, since η ∈ (λm−1,λm), h1 = ψ satisfies
the Cerami condition. Moreover, it is clear that the maps u −→ (ht)

′(u) and u −→ ∂tht(u) are both locally Lipschitz. These
facts and the Claim, permit the use of Proposition 2.7 and we have

Cl(ϕ,∞) = Cl(ψ,∞) ∀l > 0. (3.30)

Since η ∈ (λm−1,λm), we have that Kψ = {0}, hence

Cl(ψ,∞) = Cl(ψ, 0) ∀l > 0. (3.31)

Clearly u = 0 is a nondegenerate critical point of ψ with Morse index

dm−1 = dim
m−1
i=0

E(λi).
Therefore

Cl(ψ, 0) = δl,dm−1Z ∀l > 0

(see (2.5)), so

Cl(ϕ,∞) = δl,dm−1Z ∀l > 0

(see (3.30) and (3.31)). �

This proposition leads to the first nontrivial smooth solution of (1.1).

Proposition 3.6. If hypotheses H hold, then problem (1.1) has a solution u0 ∈ C1(Ω), u0 ≠ 0, such that

Cl(ϕ, u0) = δl,dm−1Z ∀l > 0.

Proof. From Proposition 3.5, we have

Cl(ϕ,∞) = δl,dm−1Z ∀l > 0.

Hence, there is u0 ∈ Kϕ , such that

Cdm−1(ϕ, u0) ≠ 0.

Since dk < dm−1 (recall that k < m − 2), from Proposition 3.4 it follows that u0 ≠ 0. Since u0 ∈ Kϕ , we have that u0 is a
nontrivial solution of (1.1) and by standard regularity theory, we have u0 ∈ C1(Ω). �

With the next two propositions, we produce a second nontrivial smooth solution of (1.1).

Proposition 3.7. If hypotheses H hold, then problem (1.1) has a solutionu ∈ C1(Ω),u ≠ 0, such that

Cdk+1(ϕ,u) ≠ 0.

Proof. Recall that

Hk =

k
i=0

E
λi and Hk = H

⊥

k =


i>k+1

E
λi.

We have

H1(Ω) = Hk ⊕ Hk.

From (3.16), we see that we can find ϱ ∈ (0, 1) small and ξ2 > 0, such that

ϕ(u) > ξ2 > 0 ∀u ∈ Hk ∩ ∂Bϱ, (3.32)

where ∂Bϱ =

u ∈ H1(Ω) : ∥u∥ = ϱ


.

By virtue of hypotheses H(i) and (ii), for a given ε > 0, we can find Mε > 0, such that

F(z, ζ ) >
1
2

λm − ε

ζ 2

− Mε for almost all z ∈ Ω, all ζ ∈ R.
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Let e ∈ E(λk+1) be such that ∥e∥ = 1 and let u = u + ϑe, where u ∈ Hk and ϑ ∈ R. Then exploiting the orthogonality of Hk
and E(λk+1), we have

ϕ(u) =
1
2
∥∇u∥2

2 −


Ω

F(z, u) dz

6
1
2
∥∇u∥2

2 +
ϑ2

2
∥∇e∥2

2 −

λm
2

∥u∥2
2 −

λmϑ2

2
∥e∥2

2 +
ε

2
∥u∥2

+
ϑ2ε

2
∥e∥2

6
ε − ξ1

2
∥u∥2

+
ϑ2

2

λk −λm + ε

∥e∥2

2,

so

ϕ|Hk⊕Re 6 0 (3.33)

(by choosing ε ∈

0,λm −λk, since k < m).

Let

C =

u = u + ϑe : u ∈ Hk, ϑ > 0, ∥u∥ 6 R


,

C0 =

u = u + ϑe : u ∈ Hk,


ϑ > 0, ∥u∥ = R


or


ϑ = 0, ∥u∥ 6 R


,

with R > ϱ. Also, let

D = Hk ∩ ∂Bϱ.

Then from Papageorgiou–Kyritsi [23, p. 278], we know that the pair {C, C0} is linking with D in H1(Ω) (see Definition 2.1).
Because of (3.32) and (3.33) and since ϕ satisfies the Cerami condition (see Proposition 3.2), we can apply Theorem 2.2 and
findu ∈ Kϕ , such that

ϕ(0) = 0 < ξ2 6 ϕ(u),
so u ≠ 0 and u ∈ C1(Ω)solves (1.1).

Moreover, from Chang [24, p. 84], we have

Cdk+1(ϕ,u) ≠ 0, with dk+1 = dim
k+1
i=0

E(λi). � (3.34)

We need to show thatu ≠ u0. This is done with the next proposition.

Proposition 3.8. If hypotheses H hold andu ∈ C1(Ω) is the solution of problem (1.1) obtained in Proposition 3.7, then

Cdm−1(ϕ,u) = 0.

Proof. Let h ∈ L∞(Ω)+ be defined by

h(z) =


f (z,u(z))u(z) ifu(z) ≠ 0,

f ′

ζ (z, 0) ifu(z) = 0.

We consider the following linear weighted eigenvalue problem:
−1u(z) = λh(z)u(z) inΩ,
∂u
∂n

= 0 on ∂Ω.
(3.35)

Sinceu ∈ C1(Ω) is a nontrivial solution of (1.1) (see Proposition 3.7), we see that λ = 1 is an eigenvalue of (3.35).
Note that

h(z) > λk for almost all z ∈ Ω.

If

h(z) = λk for almost all z ∈ Ω,
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thenu = ξuk, where ξ ∈ R \ {0} anduk ∈ E(λk) \ {0}. To fix things, we assume thatξ > 0 (the analysis is similar ifξ < 0).
Let

Ωk
+

= {uk > 0}, Ωk
−

= {uk < 0}.

If by | · |N we denote the Lebesgue measure on RN , then by the unique continuation property, we have

|Ω|N = |Ωk
+
|N + |Ωk

−
|N .

Recall that hypothesis H(iv) implies that for almost all z ∈ Ω , we have

the map ζ −→
f (z, ζ )
ζ

is nondecreasing on (0,+∞)

and

the map ζ −→
f (z, ζ )
ζ

is nonincreasing on (−∞, 0).

Therefore, if ξ ∈ (0,ξ ], then
f (z, ξuk(z))
ξuk(z)

6
f (z,ξuk(z))ξuk(z)

for almost all z ∈ Ωk
+
,

so
f (z, ξuk(z))
ξuk(z)

= λk for almost all z ∈ Ωk
+
.

Similarly, we have

f (z, ξuk(z))
ξuk(z)

6
f (z,ξuk(z))ξuk(z)

for almost all z ∈ Ωk
−
,

so
f (z, ξuk(z))
ξuk(z)

= λk for almost all z ∈ Ωk
−
.

It follows that
f (z, ξuk(z))
ξuk(z)

= λk for almost all z ∈ Ω

and thus

f

z, ξuk(z)


= λξuk(z) for almost all z ∈ Ω.

We have

−∆

ξuk(z)


= λkξuk(z) = f


z, ξuk(z)


for almost all z ∈ Ω,

so {ξuk}ξ∈(0,ξ ] ⊆ C1(Ω) are all distinct smooth solutions of (1.1) and so we are done.
Therefore, we may assume that h ≠ λk. Since h(z) > λk for almost all z ∈ Ω , from Proposition 2.4, we haveλi(h) <λi(λk) 6 1 ∀i 6 k.

Since λ = 1 is an eigenvalue of (3.35), we infer thatλk+1(h) 6 1. (3.36)

By virtue of hypothesis H(iv), we have

f ′

ζ


z,u(z) > h(z) for almost all z ∈ Ω.

If f ′

ζ


·,u(·) ≠ h(·), then from Proposition 2.4 and (3.36), we haveλk+1


f ′

ζ


·,u(·) < 1,

so

µ(u) > dk+1. (3.37)
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On the other hand, from (3.34), we have

Cdk+1(ϕ,u) ≠ 0,

so

µ(u) 6 dk+1 (3.38)

(see Proposition 2.6). From (3.37) and (3.38), it follows that

µ(u) = dk+1,

so

Cl(ϕ,u) = δl,dk+1Z ∀l > 0

(see Proposition 2.6) and thus

Cdm−1(ϕ,u) = 0

(since k + 1 < m − 1).
Next, suppose that f ′

ζ


·,u(·) = h(·). By virtue of hypothesis H(iv) and Proposition 2.4, we haveλm

f ′

ζ


·,u(·) >λm(λm) = 1,

so

µ(u)+ ν(u) 6 m − 1.

If µ(u) = k + 1, then from Proposition 2.6(b), we have

Cl(ϕ,u) = δl,dk+1Z ∀l > 0

(see (3.34)), so

Cdm−1(ϕ,u) = 0.

If µ(u) < k + 1, then from Proposition 2.6(a), we have

Cdm−1(ϕ,u) = 0

(see (3.34)). �

From Propositions 3.6 and 3.8, it follows thatu ≠ u0 and sou ∈ C1(Ω) is the second nontrivial smooth solution of (1.1).
Therefore, we can state the following multiplicity theorem for problem (1.1).

Theorem 3.9. If hypotheses H hold, then problem (1.1) has at least two distinct nontrivial smooth solutions

u0, u ∈ C1(Ω).
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