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a b s t r a c t

Trigonometric Abel differential equations appear in the study of the number of limit
cycles and the center-focus problem for certain families of planar polynomial systems. The
composition centers are a class of centers for trigonometric Abel equations which have
beenwidely studied during last years.We characterize this type of centers as the ones given
by couples of trigonometric polynomials for which all the generalized moments vanish.
They also coincide with the strongly and the highly persistent centers. Our result gives a
simple and self-contained proof of the so called Composition Conjecture for trigonometric
Abel differential equations. We also prove a similar version of this result for Abel equations
with polynomial coefficients.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction and main results

The study of Abel differential equations of the form

ṙ =
dr
dθ

= A(θ) r3 + B(θ) r2 + C(θ)r,

provides a useful tool for knowing either the number of limit cycles of certain planar polynomial differential equations or
for studying the center-focus problem for them; see for instance [1–5]. These equations are also interesting in applications;
see [6,7].

In this paper we consider Abel differential equations of the form

ṙ = A(θ) r3 + B(θ) r2, (1)
defined on the cylinder (r, θ) ∈ R × R/(2πZ), with A and B being trigonometric polynomials. We focus on the center-
focus problem, and in particular, on obtaining conditions for A and B to ensure that all the solutions r = r(θ, r0), with
initial condition r(0, r0) = r0 and |r0| small enough, are 2π-periodic. Shortly, if this property holds, we will say that the
Abel equation has a center. This question is relevant in the context of planar polynomial equations with homogeneous non-
linearities, because the center-focus problem for them can be reduced to it; see [8,4].

In this work we give simple proofs of some composition conjectures. These are conjectures about the relation between
a special type of centers, the ones satisfying the composition condition, the cancellation of some moments computed from
A and B (see [9,10]) and the persistence under certain perturbations of the centers. To be more precise we introduce some
definitions.

When there exist C1-functions A1, B1 and u, with u being 2π-periodic, such that

A(θ) :=

 θ

0
A(ψ) dψ = A1(u(θ)) and B(θ) :=

 θ

0
B(ψ) dψ = B1(u(θ)), (2)
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it is said that the corresponding Abel equation satisfies the composition condition. This condition was introduced in [2] and
ensures that the Abel equation has a center. In this situation we will say that the Abel equation has a CC-center.

This condition plays a similar role for Abel equations that being Hamiltonian, or reversible with respect to one line, for
planar vector fields with homogeneous non-linearities. This is because it can be seen that if one of these systems has one
of these types of center, the corresponding Abel equation, constructed from the Cherkas transformation, has a CC-center.
Centers for (1) which are not CC-centers are given for instance in [11,9,12].

Another interesting family of centers is the class of persistent centers. Recall that it is said that Eq. (1) has a persistent
center if the family of equations

ṙ = ε A(θ) r3 + B(θ) r2, (3)

has a center for all ε small enough; see [9] and the references therein. This definition is equivalent to say that

ṙ = α A(θ) r3 + δ B(θ) r2, (4)

has a center for all α, δ ∈ R; see [12]. It is known that persistent centers satisfy the followingmoment conditions 2π

0

Bp(θ) A(θ) dθ = 0 (5)

and  2π

0

Ap(θ)B(θ) dθ = 0, (6)

for all natural numbers p ∈ N ∪ {0}; see [9,12].
Many authors have considered composition problems when A and B are polynomials instead of being trigonometric

polynomials; see [10,13–19]. In Section 4we give the precise definitions of center, CC-center, persistent center andmoment
conditions in this situation. In contrast to the trigonometric case, in the polynomial case all known centers are CC-centers.
Whether all the centers for polynomial Abel equations are CC-centers is an interesting open question, which we will not
treat here.

The relation between the above three concepts: CC-centers, persistent centers and moment conditions is of current
interest. For instance it is clear that CC-centers are persistent centers and the corresponding A and B satisfy the moment
conditions (5) and (6). In particular, to know whether conditions (5), either when A and B are trigonometric polynomials
or when A and B are polynomials, imply that the corresponding Abel equation (1) has a CC-center has been known as the
Composition Conjecture. In the polynomial case it has been shown to be false in [20]. In the trigonometric case, even assuming
that (5) and (6) hold, it also turns out to be false; see [12]. The trigonometric counterexample given in that paper is

ṙ =

a cos(2θ)+ b sin(2θ)+ c sin(6θ)


r3 +

1
32

cos(3θ) r2. (7)

For a(a2 − 3b2) ≠ 0 it has a center which is not a CC-center but the moment conditions (5) and (6) for the corresponding
functions A and B are satisfied. It was constructed from the class of integrable Lotka–Volterra quadratic systems in the plane.

Therefore, to characterize CC-centers, more restrictive conditions that the moment conditions (5) and (6) have to be
given. Following [12] we will say that (1) has a strongly persistent center if

dr
dθ

=

α A(θ)+ β B(θ)


r3 +


γ A(θ)+ δ B(θ)


r2, (8)

has a center for all α, β, γ , δ ∈ R. We introduce a new concept here. When, either

dr
dθ

= A(θ) r3 +

γ A(θ)+ δ B(θ)


r2 (9)

has a center for all γ , δ ∈ R, or

dr
dθ

=

α A(θ)+ β B(θ)


r3 + B(θ) r2, (10)

has a center for all α, β ∈ R we will say that (1) has a highly persistent center. Although, in principle, strongly persistent
centers are a subclass of the highly persistent ones,wewill prove that both classes coincide. Notice also that as a consequence
of this fact it is equivalent to say that Eq. (9) has a center for all the values of the parameters that to impose the same property
for Eq. (10).

Given A and B, their associated generalized moment conditions (GMC) are 2π

0

Ap(θ)Bq(θ) A(θ) dθ = 0 (11)
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and  2π

0

Ap(θ)Bq(θ) B(θ) dθ = 0, (12)

for all p, q ∈ N ∪ {0}. It is easy to see that for the Abel equation (7), 2π

0

A3(θ)B(θ) B(θ) dθ ≠ 0 and
 2π

0

A2(θ)B2(θ) A(θ) dθ ≠ 0.

Therefore the corresponding A and B do not satisfy neither the GMC (11) nor (12). As far as we know, conditions (11)–(12)
already appear in [21], studying analytic functions in a neighborhood of S1, and in [22,19], in the context of Abel equations
and the center problem.

Our main result is as follows.

Theorem 1. Consider the Abel equation (1). The following statements are equivalent:
(i) The equation has a strongly persistent center.
(ii) The equation has a highly persistent center.
(iii) For the corresponding A and B the GMC (11) are satisfied andB(2π) = 0.
(iv) For the corresponding A and B the GMC (12) are satisfied andA(2π) = 0.
(v) For the corresponding A and B the GMC (11)–(12) are satisfied.
(vi) The equation has a CC-center.

The most difficult part of the proof is to show that (v) implies (vi). Although this implication is already proved in a more
general context in [23], in our paper we present a different, simple and self-contained proof. It relies on the characterization
of all the subfields, containing some trigonometric polynomial, of the field of quotients of real trigonometrical polynomials;
see Theorem 5.We learned of this characterization from [24]. Although the proof of [24] and our proof of this result are both
based on Lüroth’s Theorem, they are slightly different.

Using the results of [25,26] it can also be seen that all the classes appearing in the theorem are also equivalent to the
class of so called universal centers, introduced in these papers.

Notice that Theorem 1 can be interpreted as the solution of the Composition Conjecture in the trigonometric setting,
because it characterizes the CC-centers in terms of the cancellation of certain moments associated to A and B. Moreover, to
the best of our knowledge, Theorem 1 is the first result that shows the equivalence of both concepts with more dynamic
ones, the strongly and the highly persistence of the centers of the Abel equation.

The above questions have also been widely studied when the functions A and B, instead of being trigonometric polyno-
mials are usual polynomials; see [10,13–19]. The equivalent version of Theorem 1 also holds in this context; see Theorem 9.
In Section 4 we prove it using similar tools that for demonstrating Theorem 1. A proof that, in the polynomial case, the GMC
imply that the Abel equation has a CC center, has already appeared in [23,27].

2. Preliminary results

From now on, R[x] will denote the ring of polynomials with real coefficients and R(x) its quotient field. Also we will
denote by R[θ ] the ring of trigonometric polynomials with real coefficients and by R(θ) its quotient field. It is well known
that R(θ) is isomorphic to R(x) by means of the mapΦ : R(θ) −→ R(x) defined by

Φ(sin θ) =
2x

1 + x2
and Φ(cos θ) =

1 − x2

1 + x2
. (13)

In particular, this morphism satisfies that

Φ (tan (θ/2)) = Φ


sin θ

1 + cos θ


= x.

The next lemma characterizes the image byΦ of the set of trigonometric polynomials.

Lemma 2. It holds that

Φ(R[θ ]) =


p(x)

(1 + x2)n
: p(x) ∈ R[x] and deg(p(x)) ≤ 2n


=: T(x).

Proof. From the definition of Φ it follows that Φ(R[θ ]) ⊂ T(x). To prove the converse inclusion it suffices to show that
xi

(1+x2)n
∈ Φ(R[θ ]) for all i ≤ 2n and all n ∈ N. We will prove this fact by induction on n. For n = 0 the statement follows

because 1 = Φ(1) ∈ Φ(R[θ ]). Assume that the statement holds for n and we prove it for n + 1. Set i ≤ 2(n + 1). If in
addition i ≤ 2n then xi

(1+x2)n+1 =
xi

(1+x2)n
·

1
1+x2

which belongs to T(x) by the induction hypothesis. If i ∈ {2n + 1, 2n + 2}

then xi

(1+x2)n+1 =
xi−2

(1+x2)n
·

x2

1+x2
that also belongs to T(x), again by the induction hypothesis. �
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Given r, s ∈ R(x) (respectively r, s ∈ R(θ)) we will say that they are equivalent, and we write r ∼ s, if there exists a
Möbius transformation γ such that γ (r) = s. Recall that a Möbius transformation γ is a rational map given by γ (z) =

az+b
cz+d

for some fixed a, b, c, d ∈ R such that ad − bc ≠ 0.
For ξ ∈ R(x) (respectively ξ ∈ R(θ)) we denote by R(ξ) the minimum field containing R and ξ . It is well known that

R(r) = R(s) if and only if r ∼ s; see [28].
To state next result we need to introduce some definitions. For α ∈ R, let

∆, Rα : R[x] × R[x] −→ R[x] × R[x]

be the maps defined by

∆(P,Q ) = (P + xQ ,Q − xP)

and

Rα(P,Q ) = (P cosα + Q sinα,−P sinα + Q cosα) .

Easy computations show that both maps commute, that is∆ ◦ Rα = Rα ◦∆.

Proposition 3. Consider the equation

P2
+ Q 2

= (1 + x2)n (14)

with P,Q ∈ R[x]. The following assertions holds:

(a) If (P,Q ) satisfies Eq. (14) with n = k then∆(P,Q ) and∆(P,−Q ) satisfy Eq. (14) with n = k + 1.
(b) If (P,Q ) satisfies Eq. (14) and gcd(P,Q ) = 1 then either gcd(∆(P,Q )) = 1 and gcd(∆(P,−Q )) ≠ 1 or vice versa.
(c) For any n ≥ 1 Eq. (14) has a solution with gcd(P,Q ) = 1.
(d) If (P1,Q1) and (P2,Q2) are solutions of (14) with gcd(P1,Q1) = gcd(P2,Q2) = 1 then P1/Q1 ∼ P2/Q2.

Proof. To prove (a) assume that P2
+ Q 2

= (1 + x2)k. Then

(P + xQ )2 + (Q − xP)2 = P2
+ Q 2

+ x2Q 2
+ x2P2

= (1 + x2)k+1.

To see (b) assume that (P,Q ) satisfies Eq. (14), gcd(P,Q ) = 1 and gcd(∆(P,Q )) ≠ 1. From (a), (P + xQ )2 + (Q − xP)2 =

(1+ x2)n+1. Hence it follows that the only common irreducible factor of P + xQ and Q − xP is 1+ x2 and the same situation
holds for P + x(−Q ) and −Q − xP . Then if gcd(∆(P,−Q )) ≠ 1 we will obtain that 1+ x2 is a common factor of P + xQ and
P + x(−Q ). However this implies that 1 + x2 is a common factor of P and Q contradicting that gcd(P,Q ) = 1. On the other
hand, since

(P + xQ )(P − xQ ) = P2
− x2Q 2

= P2
+ Q 2

− (1 + x2)Q 2
= (1 + x2)((1 + x2)n−1

− Q 2),

it follows that either P + xQ or P − xQ is a multiple of 1 + x2. In the first case we will have that gcd(∆(P,Q )) ≠ 1 and, in
the second one, we will get that gcd(∆(P,−Q )) ≠ 1.

Now we prove (c) inductively. For n = 1 we have that P = ax + b, Q = cx + d with a2 + c2 = 1, b2 + d2 = 1 and
ab + cd = 0. Clearly all the solutions (P,Q ) verify that gcd(P,Q ) = 1 and P

Q ∼
x
1 . Now assume the result holds for n = k

and we show it for n = k+ 1. Let (P,Q ) satisfy Eq. (14) with n = k > 1 and gcd(P,Q ) = 1. Then from (a) and (b) the result
follows.

To see (d) we take a pair (P,Q ) satisfying Eq. (14) with n = k > 1 and gcd(P,Q ) = 1 and we look for a pair satisfying
(14) with n = k − 1.

As we have noticed either P + xQ or P − xQ is a multiple of (1+ x2). Assume for example that P − xQ = (1+ x2)Rwith
R ∈ R[x]. Then we get that

Q + xP = Q + x((1 + x2)R + xQ ) = (1 + x2)(xR + Q ).

Thuswewill have that alsoQ+xP is amultiple of (1+x2). In this casewe can considerΥ (P,Q ) = ( P−xQ
1+x2

, Q+xP
1+x2

) ∈ R[x]×R[x].
In the other case we can consider Υ (P,−Q ) = ( P+xQ

1+x2
, −Q+xP

1+x2
). Note that in both situations we have that ∆(Υ (P,Q )) =

(P,Q ). Also an easy computation shows that Υ (P,Q ) satisfies (14) with n = k − 1. Moreover, if gcd(Υ (P,Q )) ≠ 1 since
(P,Q ) = ∆(Υ (P,Q ))we obtain that gcd(P,Q ) ≠ 1 which gives a contradiction.

Easy computations show that if (P,Q ) and (R, S) satisfy Eq. (14) and P/Q ∼ R/S, then necessarily either (R, S) =

Rα(P,Q ) or (R, S) = Rα(P,−Q ) for some α ∈ [0, 2π ].
Assume that for n = k + 1 Eq. (14) has two solutions (P1,Q1) and (P2,Q2)with gcd(P1,Q1) = gcd(P2,Q2) = 1.
Assume also, without loss of generality, that P1 − xQ1 and P2 − xQ2 are multiple of (1 + x2). Then we will have

that (P1,Q1) := Υ (P1,Q1) and (P2,Q2) := Υ (P2,Q2) are solutions of Eq. (14) with n = k and gcd(Υ (P1,Q1)) =

gcd(Υ (P2,Q2)) = 1. Thus from the induction hypothesis we will have thatP2/Q2 ∼ P1/Q1. From the previous observation
we will have that either (P2,Q2) = Rα(P1,Q1) or (P2,Q2) = Rα(P1,−Q1). In the first case we obtain

(P2,Q2) = ∆(P2,Q2) = ∆(Rα(P1,Q1)) = Rα(∆(P1,Q1)) = Rα(P1,Q1)
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and hence P1/Q1 ∼ P2/Q2. In the second case we will have

(P2,Q2) = ∆(P2,Q2) = ∆(Rα(P1,−Q1)) = Rα(∆(P1,−Q1)).

Since ∆(P1,Q1) = (P1,Q1) and gcd(P1,Q1) = 1 it follows from (b) that gcd(∆(P1,−Q1)) ≠ 1 and hence the same occurs
for (P2,Q2) = Rα(∆(P1,−Q1)). This contradicts the fact that gcd(P2,Q2) = 1 and shows that this second possibility does
not occur. This ends the proof of the proposition. �

Lemma 4. Let Pn,Qn be such that gcd(Pn,Qn) = 1, P2
n (0)+ Q 2

n (0) = 1 andΦ(tan( nθ2 )) =
Pn
Qn

. Then P2
n + Q 2

n = (1 + x2)n.

Proof. We prove the lemma by induction. For n = 1 we have Φ(tan( θ2 )) = x. So P1 = x and Q1 = 1. Thus we have
P2
1 + Q 2

1 = 1 + x2.
Now assume that the lemma holds for n = k and we prove it for n = k + 1. First of all note that

tan

(k + 1)θ

2


=

tan( kθ2 )+ tan( θ2 )

1 − tan( kθ2 ) tan(
θ
2 )

and hence

Φ


tan


(k + 1)θ

2


=

Pk
Qk

+ x

1 −
Pk
Qk
x

=
Pk + Qkx
Qk − Pkx

=
Pk+1

Qk+1
.

With the notation introduced in the previous lemma we have that (Pk+1,Qk+1) = ∆(Pk,Qk) and then from
Proposition 3(a) we get that P2

k+1 + Q 2
k+1 = (1 + x2)k+1. Therefore to prove the result it remains to show that

gcd(Pk+1,Qk+1) = 1.
If gcd(Pk+1,Qk+1) ≠ 1 from Proposition 3(b) we will have that gcd(∆(Pk,−Qk)) = 1. If we write ∆(Pk,−Qk) =

(Pk+1,Qk+1)we havePk+1Qk+1
=

Pk − Qkx
−Qk − Pkx

= −

Pk
Qk

− x

1 +
Pk
Qk
x

= −Φ


tan


(k − 1)θ

2


and by the induction hypothesis we obtain thatP2

k+1 +Q 2
k+1 = (1+ x2)k−1 in contradiction with the fact thatP2

k+1 +Q 2
k+1 =

(1 + x2)k+1 because (Pk+1,Qk+1) = ∆(Pk,−Qk). Therefore gcd(Pk+1,Qk+1) ≠ 1 and hence gcd(Pk+1,Qk+1) = 1. This ends
the proof of the lemma. �

Next result is also proved in [24]. We include here a proof slightly different.

Theorem 5. Let K be a subfield of R(θ) containing a non-constant trigonometric polynomial. Then either K = R(tan( nθ2 )) for
some n ∈ N or K = R(p) for some trigonometric polynomial p.

Proof. By Lüroth‘s Theorem it holds that K = R(ξ) for some quotient of trigonometric polynomials ξ ; see [28]. Set
Φ(ξ) =

p
q , with p, q ∈ R[x] and gcd(p, q) = 1, where Φ is defined in (13). By Lemma 2, the hypothesis that K

contains some trigonometric polynomial is translated into the fact that R( pq ) contains some element of the form M
(1+x2)n

,
with M a polynomial of degree at most 2n. Changing p/q, if necessary, by a Möbius transformation we can assume that
deg(p) > deg(q). Let R, S ∈ R[x] be such that gcd(R, S) = 1 and

R( pq )

S( pq )
=

M
(1 + x2)n

.

Note that since deg(p) > deg(q) necessarily deg(S) ≥ 1. Thus we obtain

qsR(p, q)
qrS(p, q) =

M
(1 + x2)n

, (15)

where R,S denotes the homogenization of R and S and r, s are the degrees of R and S respectively. We claim that
gcd(S(p, q), qsR(p, q)) = 1. To see this it suffices to show thatS(p, q) does not share roots (real or complex) with qs orR(p, q).

Let z ∈ C be a root ofS(p, q) and suppose first that z is also a root of q. If S =
s

i=0 aix
i with as ≠ 0 then

S(p, q) =

s
i=0

aipiqs−i and S(p, q)(z) = as ps(z) = 0.

Since as ≠ 0, it holds that p(z) = 0 which contradicts that gcd(p, q) = 1. So q(z) ≠ 0.
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Suppose now that z is also a rootR(p, q). Since q(z) ≠ 0 we will obtain that R( p(z)q(z) ) = S( p(z)q(z) ) = 0 which contradicts that
gcd(R, S) = 1.

Thus from (15) we obtain thatS(p, q) = (1+x2)k for some k ≥ 0. SinceS is a homogeneous polynomial it decomposes in
a product of real irreducible homogeneous polynomials of degrees 1 or 2. So we will have

l
i=1

Si(p, q) = (1+ x2)k. Clearly
this implies that for each i,Si(p, q) = (1+x2)ki for some ki ≥ 0. If there is some linearSi we have that there exists 0 ≠ a ∈ R
and b ∈ R such that ap + bq = (1 + x2)ki . Set c, d ∈ R such that ad − bc ≠ 0. We will have that

p
q

∼
c p
q + d

a p
q + b

=
cp + dq
ap + bq

=
cp + dq
(1 + x2)ki

.

Since deg(cp + dq) ≤ deg(p) = deg(ap + bq) = 2ki we get that R( pq ) admits a generator of the form N
(1+x2)ki

with
deg(N) ≤ 2ki. From Lemma 2 we get that K = R(ξ) admits a polynomial generator. So the result follows in this case.

Now suppose that allSi are quadratic. Then, for each i,Si(p, q) = (1 + x2)ki withSi irreducible. Thus
(ap + bq)2 + c2q2 = (1 + x2)ki

for some non-zero real numbers a and c. Therefore, considering

p
q

=
ap + bq

cq
,

we have that p
q ∼

p
q and p 2

+ q 2
= (1 + x2)ki . Finally, from Proposition 3(c) and Lemma 4 we obtain that

p
q

∼ Φ


tan

kiθ
2


,

and thus that ξ ∼ tan( kiθ2 ), as we wanted to prove. �

Finally we state two results for trigonometric Abel equations.

Proposition 6. ([12]) The following four conditions are equivalent:

(i) The differential equation ṙ = A(θ)r3 + ϵB(θ)r2 has a center for all ϵ small enough.
(ii) The differential equation ṙ = ϵ A(θ)r3 + B(θ)r2 has a center for all ϵ small enough.
(iii) The differential equation ṙ = α A(θ)r3 + δ B(θ)r2 has a center for all α, δ ∈ R.

Moreover, if these conditions are satisfied then the following moment conditions hold: 2π

0

Bp(θ) A(θ) dθ =

 2π

0

Ap(θ)B(θ) dθ = 0,

for all p ∈ N ∪ {0}.

Recall that the centers appearing in the above proposition are the so called persistent centers.
The next lemma relates the GMC (11) and (12).

Lemma 7. Given two continuous functions A and B in [0, 2π ] then:

(i) If A and B satisfy the GMC (12) andA(2π) = 0 then they also satisfy the GMC (11).
(ii) If A and B satisfy the GMC (11) andB(2π) = 0 then they also satisfy the GMC (12).

Proof. It is clear that it suffices to prove item (i). By integration by parts, 2π

0

Ap(θ)Bq(θ) A(θ) dθ =
1

p + 1
Ap+1(θ)Bq(θ)

2π
0

−
q

p + 1

 2π

0

Ap+1(θ)Bq−1(θ)B(θ) dθ

= −
q

p + 1

 2π

0

Ap+1(θ)Bq−1(θ)B(θ) dθ = 0. �
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3. Proof of Theorem 1

(iii) ⇔ (iv) ⇔ (v). These equivalences are a consequence of Lemma 7.
(i) ⇒ (ii). This implication is clear.
(ii) ⇒ (v). Assume for instance that we are in the case when condition (9) holds, i.e.

dr
dθ

= A(θ) r3 +

γ A(θ)+ δ B(θ)


r2, (16)

has a center for all γ , δ ∈ R. Then, for any fixed γ and δ, the above equation has a persistent center. In particular, from
Proposition 6, we have 2π

0


γA(θ)+ δB(θ)k A(θ) dθ = 0, k ≥ 0.

Then

F(γ , δ) :=

 2π

0


γA(θ)+ δB(θ)k A(θ) dθ =

k
i=0

γ i δk−i

k
i

  2π

0

Ai(θ)Bk−i(θ) A(θ) dθ = 0.

Since F(γ , δ) is a polynomial in γ and δ we obtain that all its coefficients are zero. Therefore we have proved that for all
k ∈ N, 0 ≤ i ≤ k, 2π

0

Ai(θ)Bk−i(θ) A(θ) dθ = 0.

MoreoverB(2π) = 0 because the Abel equation (16) has a center. Then we have proved that (ii) ⇒ (iii) and therefore that
(v) holds.

The case where condition (10) holds can be treated similarly.
(v) ⇒ (vi). Assume that all the generalized moments vanish and consider the field K := R(A(θ),B(θ)). Notice that since 2π
0 A(ψ) dψ =

 2π
0 B(ψ) dψ = 0, the functionsA andB are trigonometric polynomials. Therefore we can apply Theorem 5

and K = R(ξ), with ξ either a trigonometric polynomial or ξ = tan( nθ2 ) for some n > 0. Now we will see that the second
possibility does not occur. Assume that

P(A(θ),B(θ))
Q (A(θ),B(θ)) = tan


nθ
2


,

for some P,Q ∈ R[x, y]. Derivating with respect to θ we get

(QPx − PQx)(A(θ),B(θ))A(θ)+ (QPy − PQy)(A(θ),B(θ))B(θ)
Q 2(A(θ),B(θ)) =

n
2


1 + tan2


nθ
2


.

So

(QPx − PQx)(A(θ),B(θ))A(θ)+ (QPy − PQy)(A(θ),B(θ))B(θ) =
n
2
(P2

+ Q 2)(A(θ),B(θ)).
Note that the integral in the interval [0, 2π ] on the left side of this equality is zero because it is the sum of a finite

number of generalized moments, but the right side of the equality is a positive continuous function. This gives the desired
contradiction.

So we conclude that R(A(θ),B(θ)) is generated by a trigonometric polynomial p. ThenA(θ) =
R1
S1
(p(θ)) andB(θ) =

R2
S2
(p(θ)) with Ri

Si
∈ R(x) and gcd(Ri, Si) = 1 for i = 1, 2. We are going to prove that we can choose S1 = S2 = 1. We prove

this fact for S1. From Lemma 2 we have that

R1

S1


M

(1 + x2)i


=

N
(1 + x2)j

,

with M,N ∈ R[x], gcd(M, (1 + x2)) = gcd(N, (1 + x2)) = 1, deg(M) ≤ 2i and deg(N) ≤ 2j. Adding, if necessary, a
constant to p(θ) we can assume that deg(M) < 2i. Now assume, in order to get a contradiction, that deg S1 ≥ 1. Thus we
obtain

(1 + x2)isR(M, (1 + x2)i)

(1 + x2)irS(M, (1 + x2)i)
=

N
(1 + x2)j

,

whereR andS denote the homogenization of R1 and S1 and r and s are the corresponding degrees of R1 and S1. Arguing as in
the proof of Theorem 5 we obtain thatS(M, (1+ x2)i) = (1+ x2)k for some k ≤ j. SinceS(M, (1+ x2)i) = asMs

+ (1+ x2)iL
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with L ∈ K [x] , as ≠ 0 and gcd(M, (1 + x2)) = 1 we obtain that k = 0 andS(M, (1 + x2)i) = 1. If we decompose the
homogeneous polynomialS in its real irreducible components we will obtain that for each one of them, say T ,

T (M, (1 + x2)i) ∈ R.

If deg(T ) = 2 this last property does not hold because it is impossible that

(aM + b(1 + x2)i)2 + c2(1 + x2)2i ∈ R,

with a, b, c real numbers and a ≠ 0 and c ≠ 0. If deg(T ) = 1 we obtain aM + b(1 + x2)i ∈ R for some a, b ∈ R. Since
degM < 2i the only possibility is b = 0 and M ∈ R. Then the only possible irreducible factor of T is x. Hence S1 = xs.
However since gcd(R1, S1) = 1, this implies that R1(0) ≠ 0 and degR(M, (1 + x2)i) = 2ir . Since

(1 + x2)isR(M, (1 + x2)i)
(1 + x2)ir

=
N

(1 + x2)j

and deg(N) ≤ 2jwe get s = 0 and S1 = 1. So,A = R1(p). SimilarlyB = R2(p) and the result follows.
(vi) ⇒ (i). This implication is trivial because if Eq. (1) has a CC-center the same holds for Eq. (8).

Remark 8. Notice that if an Abel equation has a CC-center then there exist infinitely many functions A1, B1 and u satisfying
(2), because if A1, A2, u satisfy the CC-condition, all the triplets A1 ◦ h, A2 ◦ h, h−1

◦ u, with h being a diffeomorphism satisfy
(2) aswell. As a consequence of the proof of Theorem 1wewill see that the trigonometric CC-centers always admit functions
A1, B1 and uwith A1, B1 polynomials and u a trigonometric polynomial.

4. Polynomial Abel equations

Similarly to the trigonometric case, for each two real numbers a < b we can consider the problem of giving necessary
and sufficient conditions for the two real polynomials A(t) and B(t) to ensure that the solutions of the equation

dx
dt

= A(t) x3 + B(t) x2, (17)

satisfy x(a) = x(b), for all initial conditions close enough to the solution x = 0. This question is considered in several
papers; see for instance [10,13–19]. The notions of center, CC-center, persistent center, strongly or highly persistent center,
moment conditions and generalized moment conditions are similar to the ones presented for trigonometric Abel equations.
For instance the GMC read as b

a

Ap(t)Bq(t) A(t) dt = 0 (18)

and  b

a

Ap(t)Bq(t) B(t) dt = 0, (19)

for all p, q ∈ N ∪ {0} and the condition of having a CC-center like

A(t) :=

 t

a
A(s) ds = A1(u(t)) and B(t) :=

 t

a
B(s) ds = B1(u(t)), (20)

for someC1-functions A1, B1 and u, where u is such that u(a) = u(b). The following result solves the Composition Conjecture
in this setting.

Theorem 9. Consider the polynomial Abel equation (17). The following statements are equivalent:

(i) The equation has a strongly persistent center.
(ii) The equation has a highly persistent center.
(iii) For the corresponding A and B the GMC (18) are satisfied andB(b) = 0.
(iv) For the corresponding A and B the GMC (19) are satisfied andA(b) = 0.
(v) For the corresponding A and B the GMC (18)–(19) are satisfied.
(vi) The equation has a CC-center.

Remark 10. When a polynomial Abel equation (17) has a CC-center it follows from the proof of Theorem 9 that it is possible
to choose A1, B1 and u in (20) being polynomials.

Our proof of Theorem 9 is based on the following result, which is quite similar to Theorem 5.
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Theorem 11. Let K be a subfield of R(x) containing a non-constant polynomial. Then K = R(p) for some polynomial p.
Moreover, if a polynomial t ∈ K then t = R(p) for some polynomial R.

Proof. By Lüroth’s Theorem there exists a rational function p/q ∈ R(x), with gcd(p, q) = 1, such that K = R( pq ). By using
a Möbius transformation, if necessary, we can also assume that deg p > deg q. By hypothesis there exists t ∈ R[x] ∩ K. Let
R, S ∈ R[x] be such that R

S (
p
q ) = t and gcd(R, S) = 1. Equivalently,

qsR(p, q)
qrS(p, q) = t,

whereR andS denote the homogenization of R and S and r, s denote the degrees of R and S, respectively. By using similar
arguments as that in the proof of Theorem 5 we obtain that gcd(R(p, q),S(p, q)) = gcd(q,S(p, q)) = 1. HenceS(p, q) = 1.
Since deg p > deg q it follows that degS(p, q) = s deg p and hence s = 0 and S is constant. So we can assume S = 1.
Therefore

R(p,q)
qr = t . Since gcd(R(p, q), q) = 1 we get that q is also a constant polynomial. Thus, t = R(p) and the result

follows. �

Proof of Theorem 9. The proofs of all the implications, except that (v) ⇒ (vi), are similar to the corresponding ones in the
trigonometric case and we omit them.

Next we show that (v) ⇒ (vi). By Theorem 11, sinceA,B are polynomials, we have that R(A,B) = R(p) with p ∈ R[x].
To prove the implication it suffices to show that p(a) = p(b). We know that

p =
P(A,B)
Q (A,B) ,

for some P,Q ∈ R[x, y]. Derivating this expression we obtain

p′
=
(QPx − PQx)(A,B)A + (QPy − PQy)(A,B)B

Q 2(A,B) .

SinceA andB are polynomial functions of p we have that

Q 2(A,B) = Q 2(A1(p), A2(p)) =: M(p) := N ′(p),

for some polynomials A1, A2 and M , and N ∈ R(x) such that N ′
= M . Thus

N ′(p)p′
= Q 2(A,B)p′

= (QPx − PQx)(A,B)A + (QPy − PQy)(A,B)B.
Integrating both sides of this equality in [a, b] and using that the generalized moments vanish we obtain that N(p(b))−

N(p(a)) = 0. Since N ′(p) = Q 2(A,B) ≥ 0 we have that N ′(x) ≥ 0 for all x in the interval with extremes p(a) and p(b).
Therefore N is increasing on this interval and p(b) = p(a), as we wanted to prove. �

Final remarks and open questions

We have given a simple proof of the Composition Conjecture for Abel equations in the polynomial and trigonometric
polynomial settings. Both results can be easily extended for general equations of the form

ṙ =


k≥2

Ak(θ)rk,

having either a finite or an infinite sum, with the natural generalizations of the concepts appearing in this paper. We have
only focused on the case of Abel equations because it already contains the main difficulties.

From our point of view, there are two problems that still deserve to be studied in this context. The first one is to know if
all the persistent centers are also CC-centers.

The second one appears only in the polynomial case. It turns out that there is no known example that satisfies both
moment conditions (5) and (6), and is not a CC-center. Recall that the example given in [20], with A and B constructed by
using some Chebyshev polynomials, is not a CC-center but only the moments (5) vanish. The problem is to know whether
such an example exists. The results of [29] seem to be a good starting point to investigate this question.
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