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a b s t r a c t

TheOlkin–Baker functional equation, except of being studied inside the theory of functional
equations, is closely related to the celebrated Lukacs characterization of the gamma
distribution. Its deeper understanding in the case of measurable unknown functions is
essential to settle a challenging question of multivariate extensions of the Lukacs theorem.
In this paper, first, we provide a new approach to the additive Olkin–Baker equation
which holds almost everywhere on (0, ∞)2 (with respect to the Lebesgue measure on R2)
under measurability assumption. Second, this new approach is adapted to the case when
unknown functions are allowed to be non-measurable and the complete solution is given
in such a general case. Third, the Olkin–Baker equation holding outside of a set from proper
linearly invariant ideal of subsets of R2 is considered.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

One of the most classical results of characterizations of probability distributions is the Lukacs theorem, which states that
if X and Y are positive, non-degenerate and independent random variables such that U = X + Y and V = X/(X + Y ) are also
independent then X and Y have gamma distributions with the same scale and possibly different shape parameters.

The proof given in Lukacs [1] exploits the approach through a differential equation for the Laplace transforms. This
technique was successfully developed for matrix variate versions of the Lukacs theorem in Olkin and Rubin [2] and Casalis
and Letac [3], where the Wishart distribution was characterized through independence of U = X + Y and V = w(X +

Y ) X wT (X +Y ), wherew is so called division algorithm, that isw(a)awT (a) = I for any positive definite matrix a. However
an additional strong assumption of invariance of the distribution of V by a group of automorphisms of the cone of positive
definite matrices was additionally imposed. To avoid this restrictive invariance condition Bobecka and Wesołowski [4]
designed a new approach to Lukacs characterization based on densities. Assuming that the densities are strictly positive
on the cone of positive definite matrices and that they are twice differentiable they proved the characterization of Wishart
distributions through independence of U = X + Y and V = (X + Y )−1/2X(X + Y )−1/2, where a1/2 denotes the
unique symmetric root of a positive definite matrix. The proof was based on solutions of two functional equations for real
functions defined on the cone of positive definite matrices. Exploiting the same technique, Hassairi et al. [5] with the same
technical assumptions on densities proved that independence of U = X + Y and V = [W (X + Y )]−1X[W T (X + Y )]−1,
where W (X + Y ) W T (X + Y ) = X + Y is the Cholesky decomposition of X + Y , that is W (X + Y ) is an upper
triangularmatrix, characterizes a wider family of distributions called Riesz–Wishart (further development in the case of this
division algorithm, still under twice differentiable densities, was obtained for homogeneous cones in Boutouria [6,7] and
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Boutouria et al. [8]). This fact shows that the invariance property assumed in Olkin and Rubin [2] and Casalis and Letac [3]
was rather not of technical character. It appears that the Lukacs independence condition may define different ‘‘gamma’’
distributions depending on the division algorithm used for designing the variable V .

It is somewhat disappointing that these results depend so much on smoothness conditions for densities. Even if the
condition of existence of strictly positive densities can be easily accepted, twice differentiability of the densities seems
to be too much. Therefore it is of great interest to get rid of these technical restrictions if it is possible. Moving in this
direction, the first of the functional equations from Bobecka and Wesołowski [4], the equation of ratios, has been recently
solved in Wesołowski [9] for functions defined on the Lorentz cone. Studying the Lukacs theorem on the Lorentz cone

V = {(x0, x1, . . . , xn) ∈ Rn+1
: x0 >


x21 + · · · + x2n} is the right approach, if one wants to extend the Lukacs result

to the Rn+1 setting. Another trial in this direction given in Bobecka andWesołowski [10] through a coordinate-wise version
of the Lukacs independence condition led to a very special distribution of independent sub-vectors, components of which
are scaled versions of a univariate gamma variable.

Therefore, there is a good reason for looking for new proofs of the classical Lukacs result in the univariate case. Except
of being of interest on its own it may give a new insight into what can be done in the multivariate setting, as explained
above. The basic functional equation related to this issue, when one considers relations which have to hold for densities, is
the celebrated Olkin–Baker equation

f (x)g(y) = p(x + y)q(x/y) (1)

with unknown functions f , g, p, q : (0, ∞) → (0, ∞). The problem of solving this equation was posed by Olkin [11]. Its
general solution under the assumption that it holds for all (x, y) ∈ (0, ∞)2 was given by Baker [12]. The proof was based
on two additional lemmas and was quite complicated. Eq. (1) was also analyzed in Lajko [13], who applied the approach
developed in Daróczy et al. [14] allowing to use knownmethods for the Jensen functional equation. Recently, Mészáros [15]
solved this equation assuming that it is satisfied l2-almost everywhere on (0, ∞)2. (Throughout this paper ln denotes the
Lebesgue measure in Rn.) Her approach was based on Járai’s regularization technique (see [16,17]), which actually allowed
to reduce the problem to the Olkin–Baker equationwith unknown continuous functions for which Eq. (1) holds everywhere.
Consequently, the final result followed directly from the original Baker solution. More recently, Lajkó and Mészáros [18],
using another method developed by Járai (see also [17]), showed that it suffices to assume that unknown nonnegative
functions in (1) are positive on some sets of positive Lebesgue measure.

The motivations for this paper are two-fold: coming from probability – we seek new approach to the Olkin–Baker
equation which may lead to the matrix-variate version of the Lukacs theorem for the Wishart distribution; coming from
the functional equations theory – we seek a general solution of the Olkin–Baker equation holding almost everywhere, or
evenmore generally, holding outside a set from proper linearly invariant ideal of subsets ofR2. We develop a newmethod of
solutions of Eq. (1) holding l2-almost everywhere in (0, ∞)2 first under measurability assumption for unknown functions.
Further this method is extended to cover the case of the general solution of (1) holding l2-almost everywhere in (0, ∞)2 in
terms of additive and logarithmic type functions. In the course of the argument we introduce a notion of ‘‘semi-constant’’
function. Such a function f : (0, ∞) → R satisfies f (xy) = f (y) for l1-almost every x > 0 and any y ∈ (0, ∞) \ Ex,
where l1(Ex) = 0. The rest of the paper is organized as follows. In Section 2 we explain the connection between the Lukacs
characterization and the Olkin–Baker equation. Section 3 is devoted to a new approach to the Olkin–Baker equation under
assumptions that unknown functions are measurable and the equation is satisfied l2-almost everywhere on (0, ∞)2. In
Section 4, using the concept of semi-constant function we derive a general solution of the Olkin–Baker equation when it
holds l2-almost everywhere in (0, ∞)2 and no regularity assumptions on unknown functions are imposed. In Section 5 we
show how to adopt the reasoning of previous cases to an abstract setting when the equation is satisfied outside of a set
belonging to proper linearly invariant ideal of subsets of R2.

2. Lukacs theorem with densities

The result we formulate below is a special case of the Lukacs theorem and as such is well known. The main novelty is its
rather elementary proof based on densities and on a new approach to the Olkin–Baker equation. This approach has recently
proved to be useful in multivariate extensions—it has been used e.g. in the proof of the Lukacs theorem on the Lorentz cone
in Kołodziejek [19].

Theorem 1. Let X and Y be independent random variables having strictly positive densities defined on (0, ∞). If U = X + Y
and V = X/(X + Y ) are also independent, then there exist positive numbers p, q, a such that X ∼ G(p, a) and Y ∼ G(q, a),
where G(r, c) denotes the gamma distribution with the shape parameter r > 0 and the scale parameter c > 0, which is defined
by the density

f (x) =
cr

Γ (r)
xr−1e−cxI(0,∞)(x).
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Proof. It is standard to see that the independence condition can be equivalently rewritten as follows: there exists a set
M ⊂ (0, ∞)2 such that l2(M) = 0 and

fU(x + y)fV


x

x + y


= (x + y)fX (x)fY (y) ∀ (x, y) ∈ (0, ∞)2 \ M.

Taking logarithms of both sides we arrive at

a(x) + b(y) = c(x + y) + d(x/y) ∀ (x, y) ∈ (0, ∞)2 \ M, (2)

where a = log(fX ), b = log(fY ), c(x) = log(fU(x)) − log(x) and d(x) = log[fV (x/(1 + x))], x ∈ (0, ∞).
Now, using the result of Proposition 2 we get

fX ∝ x~1e−λxI(0,∞)(x) and fY (y) ∝ y~2e−λyI(0,∞)(y),

where ∝ means equality up to a multiplicative constant. Since fX and fY , as densities, are integrable on (0, ∞), we have that
pi = ~i + 1 > 0 and λ > 0. �

3. Almost everywhere Olkin–Baker functional equation under measurability

The main result of this section is the solution of Eq. (2) holding l2-almost everywhere in (0, ∞)2 under measurability
assumptions through a newmethodwhich is neither based on Jensen equation (as in Lajkó, [13]) nor on Járai’s regularization
techniques (as in Mészáros, [15]). In Section 4, this method will be extended to the general Olkin–Baker equation holding
l2-almost everywhere in (0, ∞)2 with no regularity assumptions whatsoever on the unknown functions.

Proposition 2. Let a, b, c and d be real Borel measurable functions on (0, ∞). Assume that there exists a measurable set
M ⊂ (0, ∞)2 such that l2(M) = 0 and

a(x) + b(y) = c(x + y) + d

x
y


, (x, y) ∈ (0, ∞)2 \ M. (3)

Then there exist real constants λ, ~1, ~2, α, β, γ and δ satisfying α + β = γ + δ such that for l1-almost all x ∈ (0, ∞)

a(x) = λx + ~1 log(x) + α, b(x) = λ x + ~2 log(x) + β,

c(x) = λ x + (~1 + ~2) log(x) + γ , d(x) = ~1 log


x
x + 1


− ~2 log(1 + x) + δ.

Proof. For any r > 0 from (3) we get

a(rx) + b(ry) = c(r(x + y)) + d

x
y


, (x, y) ∈ (0, ∞)2 \

1
r
M. (4)

Subtracting now (3) from (4) for any r > 0 we arrive at

ar(x) + br(y) = cr(x + y), (x, y) ∈ (0, ∞)2 \


M ∪

1
r
M


, (5)

where ar , br and cr are defined by ar(x) = a(rx) − a(x), br(x) = b(rx) − b(x) and cr(x) = c(rx) − c(x), x ∈ (0, ∞),
respectively.

Due to measurability of a, b and c it follows from (5) that for any r ∈ (0, ∞) there exist Λ(r), α(r) and β(r) such that
for l1-almost all x ∈ (0, ∞)

ar(x) = Λ(r) x + α(r), br(x) = Λ(r) x + β(r), cr(x) = Λ(r) x + α(r) + β(r)

(for more details see Theorem 6 in Section 5).
First, consider the functions ar for any r > 0.
By the definition of ar and the above observation it follows that for any (x, y) ∈ (0, ∞)2 there exists a measurable set

Exy ⊂ (0, ∞) such that l1(Exy) = 0 and

axy(z) = a(xyz) − a(z) = Λ(xy) z + α(xy), ∀ z ∈ (0, ∞) \ Exy.

That is the above identity holds on the set

U1 = {(x, y, z) : (x, y) ∈ (0, ∞)2, z ∈ (0, ∞) \ Exy}.

Similarly

ay(xz) = a(xyz) − a(xz) = Λ(y) xz + α(y)
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holds on U2 = {(x, y, z) : (x, y) ∈ (0, ∞)2, z ∈ (0, ∞) \
1
x Ey}, where for any y > 0 the set Ey ⊂ (0, ∞) is such that

l1(Ey) = 0.
Also

ax(z) = a(xz) − a(z) = Λ(x) z + α(x) (6)

holds on U3 = {(x, y, z) : (x, y) ∈ (0, ∞)2, z ∈ (0, ∞) \ Ex}.
Taking into account the last three identities, since axy(z) = ay(xz) + ax(z), we arrive at

Λ(xy) z + α(xy) = Λ(y)xz + α(y) + Λ(x)z + α(x)

on V1 = U1 ∩ U2 ∩ U3 = {(x, y, z) : (x, y) ∈ (0, ∞)2, z ∈ (0, ∞) \ (Exy ∪
1
x Ey ∪ Ex)}.

Interchanging the roles of x and y in the above reasoning we arrive at

Λ(xy) z + α(xy) = Λ(x) yz + α(x) + Λ(y) z + α(y)

on V2 = {(x, y, z) : (x, y) ∈ (0, ∞)2, z ∈ (0, ∞) \ (Exy ∪
1
y Ex ∪ Ey)}.

Finally we conclude that

Λ(xy) z + α(xy) = Λ(y) xz + α(y) + Λ(x) z + α(x) = Λ(x) yz + α(y) + Λ(y) z + α(x) (7)

on

V = V1 ∩ V2 = {(x, y, z) : (x, y) ∈ (0, ∞)2, z ∈ (0, ∞) \ Ex,y},

where Ex,y = Exy ∪
1
x Ey ∪ Ex ∪ Exy ∪

1
y Ex ∪ Ey and thus l1(Ex,y) = 0.

Consequently, Λ(y) xz + Λ(x) z = Λ(x) yz + Λ(y) z for any x, y > 0 and any z ∈ (0, ∞) \ Ex,y. Thus taking x = 2 and
denoting Λ(2) = λ we obtain

Λ(y) = λ (y − 1) ∀ y ∈ (0, ∞). (8)

Thus Λ(xy) z = Λ(y) xz + Λ(x) z and returning to the first equation of (7) we arrive at α(xy) = α(x) + α(y) on (0, ∞)2.
Note that due to (6) and (8) it follows that α is a measurable function. Consequently, α(x) = ~ log(x) for x ∈ (0, ∞), where
~ = ~a is a real constant.

Now, we plug (8) with y replaced by x into (6) getting

a(xz) − a(z) = λ (x − 1)z + ~ log(x) (9)

for any x ∈ (0, ∞) and for any z ∈ (0, ∞) \ (Ex ∩ E2,x). Define now a new function h : (0, ∞) → R by h(x) = a(x) −

λ x − ~ log(x). Then (9) has the form

h(xz) = h(z) ∀ x > 0 and ∀ z ∈ (0, ∞) \ (Ex ∩ E2,x).

By Lemma 3 it follows that h is constant, say equal to α, outside of a set of l1 measure zero. Thus the final formula for a is
proved.

The formulas for b and c

b(x) = λx + ~b log(x) + β and c(x) = λx + ~c log(x) + γ ,

which hold l1-almost everywhere, follow in much the same way. Note that (5) yields ~a + ~b = ~c .
To retrieve d from (2) it suffices to change the variables as follows (x, y) → (x/y, y) = (z, y) that is to transform the

set (0, ∞)2 \ M by this mapping. Then by the Fubini theorem again we conclude that there exists a set Z ⊂ (0, ∞) with
l1(Z) = 0 such that for any z ∈ (0, ∞) \ Z there exists a set Ez with l1(Ez) = 0 such that for any z ∈ (0, ∞) \ Z and for any
y ∈ (0, ∞) \ Ez we have

d(z) = λ zy + ~a log(zy) + α + λ y + ~b log(y) + β − λ (zy + y) − (~a + ~b) log(zy + y) − γ

= ~a log(z/(z + 1)) + ~b log(1/(z + 1)) + α + β − γ . �

Lemma 3. Let G : (0, ∞) → R be a Borel measurable function such that

G(xy) = G(y), ∀ x > 0 and ∀y ∈ (0, ∞) \ Ex, where l1(Ex) = 0. (10)

Then G(x) is constant for l1-almost all x’s.

Proof. By (10) we get for any t ∈ R and for any x > 0 that 1

0
eitG(xy) dy =

 1

0
eitG(y) dy =: w(t).
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Changing the variable u = xy in the first integral we obtain

xw(t) =

 x

0
eitG(u) du.

That is
 x
0


eitG(u)

− w(t)

du = 0 for any x > 0. Hence for any Borel set B ⊂ (0, ∞) we have

B


eitG(u)

− w(t)

du = 0.

By the basic property of the Lebesgue integral we conclude that eitG(u)
= w(t) for every t ∈ R and any u ∈ (0, ∞) \ Et , with

l1(Et) = 0. Take arbitrary t1, t2 ∈ R, t1 ≠ t2. Then for u ∈ (0, ∞) \ (Et1 ∪ Et2) we have

w(t1) = eit1G(u)
=

eit2G(u)t1/t2

= (w(t2))t1/t2 .

Consequently, there exists a constant ~ ∈ C such that w(t) = ei~t , t ∈ R. Finally, we conclude that G(u) = ~ ∈ R outside a
set of the Lebesgue measure zero. �

4. Almost everywhere Olkin–Baker functional equation without measurability

Recently, Kominek [20] proved that there exist solutions of (10) which are not constant l1-almost everywhere. Actually,
in that paper an additive version of (10) of the form

H(x + y) = H(y) x ∈ R \ X, l1(X) = 0, y ∈ R \ Ex, l1(Ex) = 0,

was considered. In view of Lemma 3 these solutions are not Borel measurable. Any function G satisfying (10) will be called
semi-constant function.

Recall, that a function A : (0, ∞) → R is called additive whenever it satisfies the Cauchy equation, that is A(x + y) =

A(x) + A(y), x, y > 0. Similarly, a function L : (0, ∞) → R is termed a logarithmic type function provided that L(xy) =

L(x) + L(y), x, y > 0. Semi-constant, additive and logarithmic type functions will play the crucial role in our approach to
the Olkin–Baker equation, when no regularity conditions are imposed on the unknown functions.

Theorem 4. Let a, b, c and d be real functions on (0, ∞). Assume that there exists a measurable set M ⊂ (0, ∞)2 such that
l2(M) = 0 and

a(x) + b(y) = c(x + y) + d

x
y


, (x, y) ∈ (0, ∞)2 \ M. (11)

Then there exist an additive function A : (0, ∞) −→ R, logarithmic type functions La, Lb : (0, ∞) −→ R and real constants
α, β, γ such that

a(x) = A(x) + La(x) + α, b(x) = A(x) + Lb(x) + β, c(x) = A(x) + La(x) + Lb(x) + γ

and

d(x) = La


x

x + 1


− Lb(x + 1) + α + β − γ

for l1-almost all x ∈ (0, ∞).

Proof. Repeating the first part of the argument used in the proof of Proposition 2 we arrive at the following representations
of functions a, b and c which are valid l1-almost everywhere on (0, ∞)

a(x) = A(x) + La(x) + ha(x), b(x) = A(x) + Lb(x) + hb(x),
c(x) = A(x) + La(x) + Lb(x) + hc(x),

where ha, hb and hc are semi-constant functions.
Plugging these forms of unknown functions back to the original Eq. (11), and denoting z = x/y similarly as in the previous

proof we get

d(z) = La(z/(z + 1)) + Lb(1/(z + 1)) + ha(zy) + hb(y) − hc(zy + y)

holding for l1-almost all z ∈ (0, ∞) and for any y ∈ (0, ∞) \ Ez , where l1(Ez) = 0. Note that, by the definition of semi-
constant functions, possibly extending Ez to another set Ẽz but still with l1(Ẽz) = 0, we have

ha(y) + hb(y) − hc(y) = d(z) − La(z/(z + 1)) − Lb(1/(z + 1)) (12)
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which holds for l1-almost all z ∈ (0, ∞) and any y ∈ (0, ∞) \ Ẽz . Fix z in (12). Then we conclude from (12) that ha + hb − hc
is l1-almost everywhere constant, say δ. Consequently d(z) = La(z/(z + 1)) − Lb(1/(z + 1)) + δ.

Now, (11) yields the Pexider equation

ha(x) + hb(y) = hc(x + y) + δ

for l2-almost all (x, y) ∈ (0, ∞)2. Consequently, by means of Theorem 6 (see Section 5), there exist an additive mapping
Ã : R −→ R, real constants α, β and a set E of measure zero such that

hc(x) = Ã(x) + α + β − δ, ha(x) = Ã(x) + α and hb(x) = Ã(x) + β

for all x ∈ (0, ∞) \ E. Since ha is semi-constant we derive the existence of a set E2 of measure zero such that

ha(2y) = ha(y) for all y ∈ (0, ∞) \ E2.

Obviously Ẽ := E2 ∪ E ∪
1
2E is of measure zero and, for every y ∈ (0, ∞) \ Ẽ, one has

2Ã(y) + α = Ã(2y) + α = ha(2y) = ha(y) = Ã(y) + α.

This implies that Ã(y) = 0 for l1-almost all positive y’s (actually, on account of Lemma 5, see Section 5, we see that Ã
vanishes everywhere on R). Thus

hc(x) = α + β − δ =: γ , ha(x) = α and hb(x) = β

for l1-almost all x ∈ (0, ∞) and the proof has been completed. �

5. More abstract setting

The nullsets in the preceding section may naturally be replaced by an abstract notion of ‘‘negligible’’ sets, i.e. members
of a proper linearly invariant ideal (briefly: p.l.i. ideal) in R defined as follows.

A nonempty family J ⊂ 2R
\ {R} is termed to be a p.l.i. ideal (resp. p.l.i. σ -ideal) provided that it is closed under finite

(resp. countable) set theoretical unions, i.e.

A, B ∈ J H⇒ A ∪ B ∈ J


resp. An ∈ J, n ∈ N H⇒


n∈N

An ∈ J


,

hereditary with respect to descending inclusions, i.e.

A ∈ J, B ⊂ A H⇒ B ∈ J,

and such that jointly with a given set it contains its image under any affine transformation of the real line onto itself, i.e.

A ∈ J, α ∈ R \ {0}, β ∈ R H⇒ αA + β ∈ J.

Clearly the family of all nullsets (sets of Lebesgue measure zero) in R forms a p.l.i. σ -ideal. However there are numerous
other p.l.i. ideals; let us mention only a few of them:

• the family of all first category (in the sense of Baire) subsets of R;
• the family of all bounded subsets of R;
• the family of all sets of finite outer Lebesgue measure in R;
• the family of all countable subsets of R;
• given a nonempty family R ⊂ 2R such that no finite union of sets of the form αU + β, α, β ∈ R, α ≠ 0, U ∈ R,

coincides with R the collection of all subsets of finite unions of affine images of sets fromR forms a p.l.i. ideal (generated
by R).

Remark 1. Each member of a p.l.i. σ -ideal forms a boundary set.

Proof. If we had an interval (α, β) in a p.l.i. σ -ideal J in R then the union of intervals k(−ε, ε) with ε :=
1
2 (β − α), over all

positive integers kwould coincide with the whole of R, contradicting the properness of J. �

We say that a property P (x) holds for J-almost all x ∈ R iff P (x) is valid for all x ∈ R \ U provided that U ∈ J.
For a subsetM ⊂ R2 and x ∈ R we define a section

M[x] := {y ∈ R : (x, y) ∈ M}.

Motivated by the Fubini theorem we define the family

Ω(J) := {M ⊂ R2
: M[x] ∈ J for J-almost all x ∈ R}

and refer the reader to the paper of Ger [21] or to themonograph of Kuczma [22, Chapter XVII, Section 5]) for further details.
In the sequel we will need the following.
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Lemma 5. Given a p.l.i σ -idealJ inR and a positive number c, assume that an additive function A : R −→ R enjoys the property
that A|(c,∞)\E = 0 for some E ∈ J. Then A vanishes on R.

Proof. Without loss of generality we may assume that E = −E. Consequently, that symmetry property is shared by the set
P := ((−∞, −c) ∪ (c, ∞)) \ E, i.e. P = −P . Plainly, due to the oddness of A one has A|P = 0. Fix arbitrarily an x ∈ R. We
are going to show that

P ∩ (x + P) ≠ ∅. (13)

Indeed, otherwise we would have

P ′
∪ (x + P ′) = R, where P ′

:= R \ P,

whence

[−c, c] ∪ E ∪ [x − c, x + c] ∪ (x + E) = R.

In particular, we get int (E ∪ (E + x)) ≠ ∅, which contradicts Remark 1 because, obviously, the union E ∪ (E + x) forms a
member of the σ -ideal J.

Thus the inequality (13) has been proved. Taking now a point p from the intersection P ∩ (x + P) we infer that both p
and x − p belong to P , whence

A(x) = A(p) + A(x − p) = 0,

which finishes the proof. �

We proceed with proving the following result.

Theorem 6. Given a p.l.i. σ -ideal J in R assume that functions f , g, h : (0, ∞) −→ R satisfy the Pexider functional equation

f (x + y) = g(x) + h(y) (14)

for all pairs (x, y) ∈ (0, ∞)2 \ M and some member M of the family Ω(J) such that T (M) ∈ Ω(J) for every unimodular
transformation T of the real plane. Then there exist exactly one additive function A : R −→ R and real constants α, β such that

f (x) = A(x) + α + β, g(x) = A(x) + α and h(x) = A(x) + β

for J-almost all x ∈ (0, ∞).

Proof. Proceeding like in the proof of Theorem 8 from Ger’s paper [21] we derive the existence of a positive constant x0
(by means of Remark 1, being as small as required) and real constant y0 such that the function

F(x) := f (x + 2x0) + y0, x ∈ (0, ∞),

satisfies the Cauchy functional equation Ω(J)-almost everywhere, i.e. there exists a set N ∈ Ω(J) such that

F(x + y) = F(x) + F(y) for all pairs (x, y) ∈ (0, ∞)2 \ N.

Moreover, we have also

g(x) = f (x + x0) + y1 and h(x) = f (x + x0) + y2 for J-almost all x ∈ (0, ∞),

with some real constants y1, y2. It is not hard to check (somewhat tedious but easy calculations using the unimodular images
ofM) that then the function Φ : R −→ R given by the formula

Φ(x) :=

F(x) whenever x ∈ (0, ∞)
0 for x = 0
−F(−x) whenever x ∈ (−∞, 0)

admits a member N0 of the family Ω(J) such that

Φ(x + y) = Φ(x) + Φ(y) for all pairs (x, y) ∈ R2
\ N0.

An appeal to the main result of de Bruijn [23] (see also Ger [24] where the notation coincides with that used in the present
paper) gives the existence of exactly one additive function A : R −→ R such that

Φ(x) = A(x) for J-almost all x ∈ R.
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Consequently, there exists a set E(x0) ∈ J and some real constants α0, β0 such that

f (x + 2x0) = A(x) + α0 + β0, g(x + x0) = A(x) + β0 and h(x + x0) = A(x) + β0

for all x ∈ (0, ∞) \ E(x0). Hence

f (t) = A(t) + α + β for t ∈ (2x0, ∞) \ Ẽ(x0), g(t) = A(t) + β for t ∈ (x0, ∞) \ Ẽ(x0)

and h(t) = A(t) + β for t ∈ (x0, ∞) \ Ẽ(x0),

where we have put Ẽ(x0) := (E(x0) + 2x0) ∪ (E(x0) + x0) ∈ J and α := α0 − A(x0),
β := β0 − A(x0). Since, as it was told earlier, the point x0 might be chosen as small as we wish, for every positive integer

n there exist an additive map An : R −→ R, a set En ∈ J and real constants αn, βn such that for each t ∈ ( 1
n , ∞) \ En one

has

f (t) = An(t) + αn + βn, g(t) = An(t) + αn and h(t) = An(t) + βn.

Fix arbitrarily positive integers n,m, n < m, to get

An(t) + αn = Am(t) = αm for all t ∈


1
n
, ∞


\ E,

where we have put

E :=

∞
n=1

En ∈ J.

Now, fix a t ∈ ( 1
n , ∞) \ Ẽ with Ẽ :=


∞

k=1
1
k E ∈ J then kt ∈ ( 1

n , ∞) \ E for every positive integer k, whence

kAn(t) + αn = An(kt) + αn = Am(kt) + αm = kAm(t) + αm

and, a fortiori,

An(t) = Am(t) for all t ∈


1
n
, ∞


\ Ẽ.

Therefore, the additive function An −Am vanishes J-almost everywhere on the halfline ( 1
n , ∞) whence in view of Lemma 5,

An = Am =: A does not depend on n as well as the constants αn =: α and βn =: β . This forces the equalities

f (t) = A(t) + α + β, g(t) = A(t) + α and h(t) = A(t) + β

to be valid for every t ∈ ( 1
n , ∞) \ E, n ∈ N, which completes the proof. �

A careful inspection of the proof of Theorem4 aswell as that of Proposition 2 ensures that dealingwith the p.l.i. σ -ideal of
all sets of Lebesgue measure zero in R wewere using exclusively these properties of that set family which are axiomatically
guaranteed in the definition of an abstract p.l.i. ideal. Therefore we terminate this paper with the statement of the following
generalization of Theorem 4.

Theorem 7. Given a p.l.i. σ -ideal J in R assume that functions a, b, c, d : (0, ∞) −→ R satisfy the functional equation (11) for
some member M of the family Ω(J). Then in the case where the set T (M) falls into Ω(J) for every unimodular transformation
T of the real plane, there exist an additive function A : (0, ∞) −→ R, logarithmic type functions La, Lb : (0, ∞) −→ R and real
constants α, β, γ such that

a(x) = A(x) + La(x) + α, b(x) = A(x) + Lb(x) + β, c(x) = A(x) + La(x) + Lb(x) + γ

and

d(x) = La


x

x + 1


− Lb(x + 1) + α + β − γ

for J-almost all x ∈ (0, ∞).

The following final remark seems to be noteworthy.

Remark 2. Instead of all possible unimodular transformations of the plane, spoken of in both Theorems 6 and 7, it would
suffice to consider only three specific ones: T1(x, y) = (y, x), T2(x, y) = (x + y, −y), T3(x, y) = (−x − y, x), (x, y) ∈ R2.
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