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Building on techniques developed by Cowen (1988) [3] andNazarov–Shapiro (2007) [10], it
is shown that the adjoint of a composition operator, induced by a unit disk-automorphism,
is not strongly asymptotically Toeplitz. This result answers Nazarov–Shapiro’s question in
Nazarov and Shapiro (2007) [10].
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1. Introduction

In the early 60s, Brown and Halmos [2] characterized the classical Toeplitz operators on the Hardy space H2 of the unit
disk with a simple operator equation:

The operator T ∈ B(H2) is a Toeplitz operator if and only if T ∗
z TTz = T , where Tz is the unilateral forward shift.

From the matricial point of view, this fact also reveals an interesting characterization of (classical) Toeplitz operators, on
H2: T is a (classical) Toeplitz operator when its matrix, with respect to the monomial basis of H2, has constant diagonals.
Indeed, the point here, as noted by Barría and Halmos [1], is that the matrix of composing TTz is obtained from that of T by
erasing the first column, while the matrix of composing T ∗

z T is obtained from that of T by erasing the first row. Hence, the
matrix of T ∗

z TTz is obtained from that of T by moving one step down the main diagonal, and so leaves the matrix unchanged
if and only if each diagonal is constant.

Twenty years later, Barría and Halmos [1] introduced a (natural) asymptotic generalization of that operator-theoretic
characterization. According to them, an operator T ∈ B(H2) is (strongly) asymptotically Toeplitz if the Toeplitz sequence of T ,
given by,

(Tn(T ))∞n=0 :=

T ∗n
z TT n

z

∞
n=0

converges in the strong operator topology. In 1989, A. Feintuch [7] extended their definition considering other usual
topologies on B(H2). We thus have three flavors of asymptotic Toeplitzness: uniform, strong and weak. More precisely,
an operator T ∈ B(H2) is called uniformly asymptotically Toeplitz, strongly asymptotically Toeplitz, andweakly asymptotically
Toeplitz, if its Toeplitz sequence is convergent in the uniform operator topology, the strong operator topology, and the weak
operator topology, respectively. For each of them the operator-limit of (Tn(T ))∞n=0 is a (classical) Toeplitz operator whose
symbol is called the asymptotic symbol of T .

✩ This paper is based on a research which forms a part of the second author’s University of Toledo Ph.D. Thesis written under Professor Željko Čučković’s
supervision.
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It is worth mentioning that the class of uniformly asymptotically Toeplitz operators forms a (uniformly closed) subspace
of all bounded operators on H2, and it contains both Toeplitz and compact operators. Hence, any compact perturbation of
a Toeplitz operator belongs to this class of operators. But, surprisingly, Feintuch proved that these are the only uniformly
asymptotically Toeplitz operators [7, Theorem 4.1]:

Theorem (Feintuch’s Characterization of Uniform Asymptotic Toeplitzness). A bounded operator on H2 is uniformly asymptoti-
cally Toeplitz if and only if it is a compact perturbation of a Toeplitz operator.

Hence, if the difference of a bounded operator, on H2, from any Toeplitz operator is not a compact operator, then it does not
respect uniform asymptotical Toeplitzness. And this is one of the major tools we use to prove Theorems 4.8 and 4.10.

Recently, Nazarov and Shapiro [10], studied the Toeplitz sequence of composition operators, on H2, in the weak, strong,
and uniform operator topology, and showed that the study of such phenomena led to surprising results and interesting
open problems. Among other things, they also established a weakened variant of the weak asymptotic Toeplitzness: the
‘arithmetic means’ of the Toeplitz sequence of a composition operator, namely,

1
N + 1

N
n=0

Tn(Cϕ), (N = 0, 1, 2, . . .),

and proved that for every composition operator, except the identity, thesemeans converge in theweak operator topology to
zero [10, Theorem 2.2]. Since, among the three flavors of Toeplitzness, only strongly asymptotic Toeplitzness fails to respect
adjoints [1, Example 12], they also studied the behavior of the Toeplitz sequence of the adjoint of composition operators,
and proved, under each of these hypotheses:

(i) ϕ(0) = 0, or
(ii) |ϕ| < 1 a.e. on ∂U,

onH2, C∗
ϕ is strongly asymptotically Toeplitz [10, Proposition 4.1 and Theorem4.2]. At the end of their paper [10], they stated

that ‘‘We do not knowany non-rotational examples of composition operatorswhose adjoints are not strongly asymptotically
Toeplitz. Perhaps they are all!’’; But, in this paper, we provide a class of composition operators whose adjoints are not
strongly asymptotically Toeplitz:

Theorem. The adjoint of composition operators, induced by non-trivial U-automorphisms, are not strongly asymptotically
Toeplitz.

The work we describe here has its roots in [1], but, is mainly inspired by Nazarov and Shapiro [10]. Here is a brief outline
of what follows. In Section 2, we set up the notation and introduce the main concepts required for what follows. Section 3
provides us with more tools and techniques to prove our result on the asymptotic Toeplitzness of adjoint of U-automorphic
composition operators.

2. Prerequisites

This introductory section is dedicated to setting up the notation and introducing themain concepts alongwith a collection
of some fundamental facts required for what is to follow.

2.1. Notations

• The symbol U denotes the open unit disk of the complex plane, and ∂U the unit circle.
• The symbol ϕ always denotes a holomorphic self-mapping of U.
• Hol(U) stands for the space of all functions holomorphic on U.
• B(H) is the space of all bounded linear operators on some Hilbert space H .
• the usual Lebesgue space L2, as always, is the space of (equivalence classes of) measurable functions on ∂U which are

square-integrable with respect to the normalized arc-length measurem (m(∂U) = 1).
• L∞ denotes the (Banach) space of essentially bounded measurable functions on ∂U, equipped with the essential

supremum norm, defined as

∥f ∥ess := inf{C ≥ 0 | |f (eıθ )| ≤ C for almost every eıθ }.

• We write H∞ for the space of bounded holomorphic functions on U, and denote its natural norm by ∥ · ∥∞, i.e.,

∥f ∥∞ := sup
z∈U

|f (z)|, (f ∈ H∞).

• For f ∈ Hol(U), we adopt the notation f̂ (n) for the n-th coefficient in the power series expansion of f about the origin.
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2.2. The space H2

The Hardy space H2 is the collection of all f ∈ Hol(U) for which

∥f ∥2
H2 :=

∞
n=0

|f̂ (n)|2 < ∞.

The above formula defines a norm that turns H2 into a Hilbert space whose inner product is given by

⟨f , g⟩H2 :=

∞
n=0

f̂ (n)ĝ(n) (f , g ∈ H2).

There is also a ‘‘boundary version’’ setting for H2 in which H2 is isometrically isomorphic to a (closed) subspace of
L2 = L2(∂U,m) consisting of (boundary) functions whose Fourier coefficients of negative index all vanish. These boundary
functions turn out to be just the radial limits of each H2-function, i.e.,

f ∗(eıθ ) = lim
r↑1

f (reıθ ),

which is known to exist for (m-) almost every point eıθ ∈ ∂U. We will write f (eıθ ) instead of f ∗(eıθ ), for each eıθ ∈ ∂U at
which this radial limit exists, relying on the context to determine what we mean by the symbol f . With this identification
the norm and inner product in H2 can be computed on ∂U as

∥f ∥2
H2 =

 2π

0
|f (eıθ )|2

dθ
2π

and ⟨f , g⟩H2 =

 2π

0
f (eıθ )g(eıθ )

dθ
2π

(f , g ∈ H2).

These materials can be found in detail in [6] or [11].

2.3. Composition operators

Composing functions, in Hol(U), with a holomorphic self-mapping ϕ of U, define a linear transformation Cϕ , called a
composition operator and ϕ as its symbol:

Cϕ f := f ◦ ϕ, (∀f ∈ Hol(U)).

This transformation is even continuous if that space is given its natural topology of uniform convergence on compact sets.
On the Hardy space H2, if ϕ fixes the origin, Littlewood’s Subordination Principle [9], assures us that Cϕ is a contraction.
And a consequence of it, asserts that every composition operator restricts to a bounded operator on the Hardy space H2

[12, pp. 13–15].

2.4. Toeplitz operators

Any essentially bounded function φ on ∂U induces, in a natural way, two bounded operators: one on L2 and one on H2,
as follows:

• theMultiplication operator Mφ is just multiplication by φ: Mφ f = φf , for each f ∈ L2;
• the Toeplitz operator Tφ is defined, in terms of the orthogonal projection P from L2 onto H2, as the compression of Mφ to

H2: Tφ f = PMφ f , for each f ∈ H2.

If φ is the boundary function of an H∞-function, also denoted by φ, then Mφ takes H2 into itself, so Tφ is the restriction
of Mφ to H2. In this case, Tφ can be identified with the operator of pointwise multiplication by the holomorphic function φ,
acting on H2, now viewed as a space of functions holomorphic on U.

The best known such operator is the one induced by the coordinate function φ(z) = z, and is denoted by Tz , and called
the unilateral forward shift on H2 because it shifts the Taylor series coefficients of H2-functions one unit to the right, placing
a zero in the empty initial position:

(Tz f )(z) = zf (z), (z ∈ U, f ∈ H2).

A routine adjoint computation shows that T ∗

φ = Tφ̄ , for φ ∈ L∞. Again the best known example is T ∗
z , the (Hilbert-

space) adjoint of the unilateral forward shift, and is called the unilateral backward shift. It is easy to check the following
representation for the unilateral backward shift on H2:

T ∗

z f

(z) =

f (z) − f (0)
z

, (f ∈ H2, z ∈ U).

Thus for each f ∈ H2, we have

f (z) = f̂ (0) + zT ∗

z f (z), (z ∈ U).
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2.5. Reproducing kernel for H2

H2-functions can blow out to infinity near ∂U, but not too fast, for example, ln 1
1−z . This property can be obtained from

the boundedness of pointwise evaluation of H2-functions [12, p. 10]; precisely, for each α ∈ U

|f (α)| ≤
1

1 − |α|2
∥f ∥H2 , (f ∈ H2).

Hence, by the Riesz Representation theorem, we know that there is a unique function (kernel function) Kα ∈ H2, with

∥Kα∥
2
H2 =

1
1 − |α|2

,

such that the reproducing kernel property holds in H2; Indeed, the ‘‘reproducing kernel’’ terminology comes from the fact
that for each α ∈ U and f ∈ H2, the function Kα ‘‘reproduces the value of f at α’’ in the following sense:

f (α) = ⟨f , Kα⟩H2 , (α ∈ U).

Since the functions {zk | k = 0, 1, 2, . . .} are an orthonormal system of functions in H2, one can show that

Kα(z) =
1

1 − ᾱz
, (z ∈ U).

The behavior of the reproducing kernels near ∂U will play a pivotal role in the proof of Theorems 4.8 and 4.10. Indeed,
the normalized reproducing kernels kα := Kα/∥Kα∥H2 converge weakly to zero as |α| → 1−.

2.6. The adjoint of a composition operator induced by a linear fractional transformation

One of the most fundamental questions related to composition operators is how to obtain a reasonable representation
for their adjoints. By definition the adjoint of a composition operator Cϕ , is the operator C∗

ϕ given by the equation

⟨C∗

ϕ f , g⟩H2 = ⟨f , Cϕg⟩H2 , (f , g ∈ H2),

from which we derive the fact that such adjoints permute reproducing kernels, i.e., for any holomorphic self-mapping ϕ of
U, and any point α ∈ U, we have [12, p. 43]

C∗

ϕKα = Kϕ(α), (1)

i.e., the set of reproducing kernel functions is invariant under the adjoint of any composition operator. This property also
characterizes the composition operators on any functional Banach space [4, Theorem 1.4].

Although reproducing kernels span a dense subspace of H2, the equation above cannot be regarded as a formula for C∗
ϕ .

In 1988, using an algebraic manipulation based on the fact in (1), Cowen [3, Theorem 2] established the first major and
general result on the adjoint problem:

Theorem 2.1 (Cowen’s Adjoint Formula). Let

ϕ(z) =
az + b
cz + d

(2)

be a nonconstant (ad − bc ≠ 0) linear fractional self-mapping of U, i.e., (ϕ(U) ⊂ U). The adjoint C∗
ϕ can be written as

TgCσϕT
∗

h , (3)

where

g(z) :=
1

−b̄z + d̄
, σϕ(z) :=

āz − c̄
−b̄z + d̄

, and h(z) := cz + d,

and Tg and Th denote the Toeplitz operators.

Cowen’s adjoint formula (3) involves three functions constructed from the coefficients of the given linear fractional map:

(i) g and h are obviously inH∞. Thus, both of them induce Toeplitz operators onH2 which are just pointwisemultiplications
by g and h, respectively; moreover, they are invertible on H2.

(ii) The linear fractional map σϕ , associated to ϕ, is sometimes referred to as the ‘‘Krein adjoint’’ of ϕ [5]. When ϕ is a self-
mapping of U, σϕ will be a U-self-mapping [3], and so induces a composition operator on H2, Cσϕ .

Remark 2.2. Notice that the Cowen’s adjoint formula also holds for constant maps. Indeed, if ϕ is a constant function, it
easily turns out that σϕ(z) = 0. In this case, Cϕ and Cσϕ are just point-evaluation functionals on H2.
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For our purpose here, we apply the nice formulation, obtained in [8], of the Cowen’s adjoint formula, i.e., for f ∈ H2 and
z ∈ U

C∗

ϕ f (z) =


T 1

−b̄z+d̄
CσϕT

∗

cz+d(f )


(z)

=
(ad − bc)z

(āz − c̄) (−b̄z + d̄)
f (σϕ(z)) +

c̄
c̄ − āz

f (0) (4)

to give a concrete variant of the adjoint of a composition operator induced by a U-automorphism:
for α ∈ U, the U-automorphism ϕα , interchanging the point α ∈ U and the origin, i.e.,

ϕα(z) :=
α − z
1 − ᾱz

, (z ∈ U), (5)

induces a composition operator whose adjoint, acting on the monomial bases of H2, has the following form:
C∗

ϕα
zn

(z) =


Kα(z) if n = 0
z
n


ϕn

α(z)
′ if n = 1, 2, . . . (6)

where Kα , as usual, is the reproducing kernel function. Indeed, applying Cowen’s adjoint formula (3) for each z ∈ U, we have
C∗

ϕα
zn

(z) = Kα(z)


(I − αT ∗

z )zn

(ϕα(z)).

Now, if n = 0, (I − αT ∗
z )1 = 1, i.e.,


C∗

ϕα
1

(z) = Kα(z). And, for n = 1, 2, 3, . . ., using (4) along with comparing the

coefficients of two linear fractional maps (2) and (5), we have
C∗

ϕα
zn

(z) =

|α|
2
− 1

(α − z) (1 − αz)
zϕn

α(z)

= zϕ′

α(z)ϕn−1
α (z)

=
z
n


ϕn

α

′
(z).

3. Asymptotic Toeplitzness of the adjoint of U-automorphic composition operators

We already have almost all the ingredients to prove our first result. But before that, we need to state the following two
facts:

Using a clever application of Littlewood’s Subordination Theorem [9, Theorem 215, p.168] Nazarov and Shapiro showed,
in the proof of [10, Theorem 3.3], that

Lemma 3.1 (Nazarov–Shapiro). For α ∈ U \ {0}, there is a positive constant C, which depends on α but not on n, such that
∞

k=n

ϕn
α(k)

2 > C, for n = 0, 1, 2, . . ..

And the next lemma assures us that the only possible asymptotic symbols for the adjoint of a composition operator are
the constants 1 (for the identity operator) and 0:

Lemma 3.2. Let ϕ be neither a rotation nor the identity map. If C∗
ϕ is strongly asymptotically Toeplitz, then its asymptotic symbol

should be zero.
Proof. Since C∗

ϕ is strongly asymptotically Toeplitz, by definition, there exists a T ∈ B(H2) such that

lim
n→∞

Tn(C∗

ϕ )f − Tf

H2 = 0, ∀f ∈ H2,

on the other hand, this shows

lim
n→∞


Tn(C∗

ϕ )f , g

H2 = ⟨Tf , g⟩H2 , ∀f , g ∈ H2,

which implies

lim
N→∞


1

N + 1

N
n=0

Tn(C∗

ϕ )f , g


H2

= ⟨Tf , g⟩H2 , ∀f , g ∈ H2,

or, equivalently,

lim
N→∞


1

N + 1

N
n=0

Tn(Cϕ)f , g


H2

= ⟨T ∗f , g⟩H2 , ∀f , g ∈ H2.

But, [10, Theorem 2.2] asserts that T ∗ is a zero operator; which finishes the proof. �
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Having necessary ingredients, we are ready to state and prove our main result:

Theorem 3.3. For α ∈ U \ {0}, C∗
ϕα

is not strongly asymptotically Toeplitz.

Proof. If C∗
ϕα

is strongly asymptotically Toeplitz, then, by Lemma 3.2, the asymptotic symbol of C∗
ϕα

should be zero. Thus, it
will suffice to show that the norms of the vectors Tn(C∗

ϕα
)(1) are bounded away from zero.

Using (6), for n = 1, 2, . . ., we obtain

Tn(C∗

ϕα
)(1) = T ∗n

z C∗

ϕα
T n
z 1 =

1
n
T ∗n−1
z


ϕn

α(z)
′

=
1
n
T ∗n−1
z


∞
k=1

kϕn
α(k)zk−1



=
1
n

∞
k=n

kϕn
α(k)zk−n.

Thus, Tn(C∗

ϕα
)(1)

2 =

∞
k=n

k2

n2
|ϕn

α(k)|2 ≥

∞
k=n

|ϕn
α(k)|2


=
Tn(Cϕα )(1)

2 . (7)

But Lemma 3.1 confirmed us that the last sum in (7) is bounded away from zero, which asserts that

inf
n

Tn(C∗

ϕα
)(1)

 > 0,

and contradicts our assumption and the proof is completed. �

Remark 3.4. It is worth mentioning that Theorem 3.3 provides a class of bounded operators, on H2, which are weakly
asymptotically Toeplitz [10, Corollary 2.4], but not strongly asymptotically Toeplitz. Also, it gives a class of bounded
operators, on H2, neither themselves nor their adjoints [10, Theorem 3.3] are strongly asymptotically Toeplitz.
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