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a b s t r a c t

We consider the spectrally hyperviscous Navier–Stokes equations (SHNSE) which add
hyperviscosity to the NSE but only to the higher frequencies past a cutoff wavenumberm0.
In Guermond and Prudhomme (2003) [18], subsequence convergence of SHNSE Galerkin
solutions to dissipative solutions of the NSE was achieved in a specific spectral-vanishing-
viscosity setting. Our goal is to obtain similar results in a more general setting and
to obtain convergence to the stronger class of Leray solutions. In particular we obtain
subsequence convergence of SHNSE strong solutions to Leray solutions of the NSE by fixing
the hyperviscosity coefficientµwhile the spectral hyperviscosity cutoffm0 goes to infinity.
This formulation presents new technical challenges, andwe discuss how itsmotivation can
be derived from computational experiments, e.g. those in Borue and Orszag (1996, 1998)
[3,4]. We also obtain weak subsequence convergence to Leray weak solutions under the
general assumption that the hyperviscous coefficient µ goes to zero with no constraints
imposed on the spectral cutoff. In both of ourmain results the Aubin Compactness Theorem
provides the underlying framework for the convergence to Leray solutions.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

We obtain subsequence convergence results for solutions of the 3-D spectrally hyperviscous Navier–Stokes equations
(SHNSE):

ut + νAu + µAϕu + (u · ∇) u + ▽p = g, (1.1a)

∇ · u = 0. (1.1b)

Here A = −△, u = (u1, u2, u3) is the velocity field of the fluid, g = (g1, g2, g3) is the external force, and p is the pressure.
We have that ui = u (x, t) , gi = gi (x, t) , i = 1, 2, 3, and p = p (x, t) where x ∈ Ω , a domain in R3. We assume that Ω

is a periodic box; then ‘‘modding out’’ the constant vectors as in standard practice, A has eigenvalues 0 < λ1 < λ2 < · · ·

with corresponding eigenspaces E1, E2, . . . Let Pm be the projection onto E1 ⊕ · · · ⊕ Em, let Qm = I − Pm and let PEj be
the projection onto each Ej. The general class of operators Aϕ considered in [1] satisfy Aϕ =


∞

j=1 a

λj

PEj such that (for a

constant α > 1) Aϕ ≥ Am ≡ QmAα in the sense of quadratic forms, i.e.,

Aϕv, v


≥ (Amv, v).

Specializing towhat would arise in typical computations we identify here an applicable distinguished class (ADC) in which
Aϕ =

m
j=m0+1 djλ

α
j PEj + QmAα

=
m

j=m0+1 djPEjA
α

+ QmAα where {dj}mj=m0+1 is such that 0 < dj ≤ 1 and dj ↑ 1. Included
in the ADC is the special casem0 = m and dm0+1 = dm+1 = 1 in which case a(λ) is a Heaviside function and Aϕ = Am.
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The ADC derives much of its motivation from the basic idea in large-eddy-simulation (LES) of adding the divergence of
a subgrid-scale (SGS) stress tensor to the Navier–Stokes equations (NSE) in order to model the effect of the subgrid scales
on the resolvable scales. The most common LES approach models the SGS stress tensor using a scalar eddy viscosity. A
number of standard implementations of this approach have well-known limitations, however (see e.g. [3,4,22]), and in
response the concept of spectral-eddy viscosity (SEV) was introduced in [22]; therein it is demonstrated that for eddy
viscosity to accurately model the effects of the subgrid scales, the eddy viscosity coefficient νev must depend spectrally
on j. As developed in [7,8] a working fit to the predictions of [22] has the nondimensional form dj = νev(j) = ν0(j/N) =

K−3/2
0 [0.441+15.2 exp(−3.03N/j)] for j ≤ N where K0 = 2.1 denotes the Kolmogorov constant. It was suggested in [8] that

the introduction of a hyperviscous term νhAαu could approximate the spectral growth of νev(j); see also [6]where arguments
employing vector–calculus techniques and certain physical assumptions are used to show that a hyperviscous term of order
α = 2 can approximate the SGS tensor. The resulting technique has beenwidely employed; see the references in e.g. [6] and
in particular the computational experiments in [3,4] which use the hyperviscosity term ν2A2 (and higher powers of it) in
robust and effective application to high-Reynolds number regimes. Moreover, the computational results using hyperviscous
terms are observed in [4] to be virtually identical to those using the full SGS stress tensor directly.

Since for high Reynolds numbers the hyperviscosity coefficient µ = ν2 is small, it therefore makes sense that in some
cases the hyperviscous term may be negligible when acting on the low-frequency components of u. For higher frequencies
the combined term ν2λj would then becomemore significant due to the growth of λj with j. Thuswe can envision a cutoffm0

such that ν2λj is significant for j > m0 and insignificant for j ≤ m0. In this way and form = m0 we canmotivate the operator
Aϕ = Am ≡ QmAα on physical grounds as a specific SGS modeling technique, and more subtle gradations of negligible vs.
nonnegligible terms can bemodeled bymore general operators in the ADC. Such cases will be the focus of Theorem 2 below.

This idea of having a spectral cutoff m0 > 0 in the ADC versions of the operators Aϕ is related to the spectral-vanishing-
viscosity (SVV) method, introduced in the study of gas dynamics in [32] to obtain stable and accurate approximation to the
correct entropy solution of conservation laws. In SVV the distribution of the coefficients dj is similar to the SEV case but
spectral viscosity is added only to the high wavenumber modes. SVVwas first applied to the incompressible 3-D NSE in [19]
for Reynolds numbers up to Re = 395, andwas used in obtaining improved accuracy in long-term computations of 2-D flows
past a circular cylinder in [31] with Re = 100 and Re = 500. Higher Reynolds numbers have since been treated effectively
in 3-D using SVV, e.g. in [20] with Re = 1250 in a study of a triangular duct, in [29,28] in computing the turbulent wake of a
cylinder with Re = 3900, and in [27] with Re = 768 000 in a treatment of the Ahmed car-body problem. In these works SVV
‘‘can be thought of as using hyperviscous dissipation that will affect only the high Fourier modes’’ [19], and in fact the SVV
terms qualitatively resemble spectrally-applied hyperviscous terms in truncation due to the generally exponential growth
of the coefficients dj.

In fact spectral hyperviscosity, or superviscosity, has already been used in the modeling of gas dynamics in [33]; H1-
stability was established, and convergence proven under the same L∞-stability assumption used in [31]. Applying spectral
hyperviscosity directly to the 3-DNSE in computationswas suggested in [19], discussed experimentally in [6], and advocated
in [18,17]. With the coefficients µ and m0 chosen in (1.1) to depend on certain negative and positive powers, respectively,
of the truncation order N according to a specific version of SVVmethodology, it was shown in [18] that a subsequence of the
resultingGalerkin solutions uN converges to aweak dissipative solution of theNSE using the definition of dissipative solution
advanced in [5,12,30]. The choices ofµ andm0 in this case are designed to tune the system (1.1) so as to ‘‘introduce the least
possible dissipation while ensuring that the limit solution is dissipative’’ and the results represent the first of theoretical
type for (1.1) with 0 < m0 ≤ m.

In [1] global regularity for the general class of Aϕ described above was established for α ≥ 5/4, generalizing the classical
results in [26] which held for the case m0 = m = 0. Estimates on the dimension of the attractor for (1.1) were obtained
in [1] by adapting elements of the ‘‘CFT’’ framework [9,11,34,35] and the generalized Lieb–Thirring inequalities [34–36].
Additionally in [1] the machinery developed in [15,16] was adapted to establish the existence of an inertial manifold of
dimension m0 for Aϕ in the ADC case. In [2] the strong convergence of Galerkin solutions was obtained and continuous
dependence on data was established with estimates optimized for the high frequencies.

In this paper we similarly show as in [18] that the system (1.1) approximates the NSE through subsequence convergence,
but here the target solutions will be Leray solutions and we will consider a wider class of operators Aϕ . First introduced and
explored among the classical results in [23,25,24], we recall that u is a Leray solution of (1.1) if u solves an appropriate weak
version of (1.1) (see (3.12) below) and also satisfies the energy inequality in a particular weak form (see (3.16) below). Let
P be the Leray projection onto the solenoidal vectors; then setting as in standard practice H = PL2(Ω), V = PH1(Ω), and
V ′

= V = PH−1(Ω), the following is the first of our main results.

Theorem 1. Let {uk}
∞

k=1 be the corresponding strong solutions of (1.1)with uk(x, 0) = u0(x) and withµ = µk such that µk ↓ 0
as k → ∞. Assume that α ≥ 5/4, and let the corresponding Aϕ = Aϕ,k be in the applicable distinguished class. Then on each
interval [0, T ] there exists a subsequence, also denoted {uk}

∞

k=1, and a divergence-free vector u ∈ L∞([0, T ];H) ∩ L2([0, T ]; V )

such that uk → u strongly in L2([0, T ];H), uk → u weakly in L2([0, T ]; V ), d
dt uk →

d
dt u weakly in Lr([0, T ]; PH−α), and u is a

Leray weak solution of the NSE. Here r = 4/(5 − 2α) if 5/4 ≤ α < 3/2 and r = 2 if α ≥ 3/2.

We note that the assumption µk ↓ 0 as k → ∞ is the only restriction we place on the µk and there is no restriction
placed onm0 (in particularm0 can be constant or arbitrarily depend on k).With Aϕ as in Theorem1we have thatµk∥Aϕu∥2 ≤
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µk∥Aαu∥2 ∼ µk∥u∥H2α(Ω) since 0 < dj ≤ 1, so we also have the same sense of the hyperviscosity term Aϕ being ‘‘spectrally
small’’ as in [18, Proposition 3.1]. In fact since Theorem 1 can be readily adapted to include Galerkin approximations to the
solutions uk, it therefore strengthens the results in [18] by demonstrating that any scheme of dissipation represented by
the µk will, as long as µk ↓ 0 as k → ∞, guarantee subsequence convergence to a Leray solution. We also note that Leray
solutions represent a significantly stronger subclass of the dissipative solutions.

We note also that d
dt uk →

d
dt u in a different and weaker Banach space than in the classical results of Leray (see

also [10] and the references contained therein), but in a stronger Banach space than in [18] if α ≥ 3/2. We also note
that a result similar to Theorem 1 was established for the NS-α model in [13], along with global regularity and attractor
results. In particular subsequence convergence to a weak solution in the sense of (3.12) belowwas established as α ↓ 0, and
d
dt uk →

d
dt u in again a different and weaker Banach space than in the classical results of Leray.

We now examine the case in whichµ and the dj are fixed (e.g.µ = ν2 as in [4,5]), butm0 → ∞; such a convergence case
has not been considered previously from the theoretical point of view. Replacing m0 by k for a corresponding m = mk ≥ k
where k → ∞, and denoting again the resulting Aϕ by Aϕ,k, the following is our second main result.

Theorem 2. Let Aϕ,k be as above, let {uk}
∞

k=1 be the corresponding strong solutions of (1.1) such that k = m0 and k → ∞, and
assume that α > 5/4. Then on each interval [0, T ] there exists a subsequence, also denoted {uk}

∞

k=1, and a divergence-free vector
u ∈ L∞([0, T ];H) ∩ L2([0, T ]; V ) such that uk → u strongly in L2([0, T ];H), uk → u weakly in L2([0, T ]; V ), d

dt uk →
d
dt u

weakly in L4/3([0, T ]; V ′) and u is an appropriate weak solution of (1.1). If we further assume that α > 3/2 then u is a Leray
weak solution of (1.1).

By an appropriate weak solution of (1.1) wemean that (3.12) is satisfied below. To obtain this we assume from the outset
the same condition on α as in [18]. To further obtain that u is a Leray weak solution, i.e. that the energy inequality (3.16)
below is satisfied, we need the further assumption α > 3/2, but this restriction leaves out no cases of practical interest that
we are aware of.

In Theorem 2 we again have a sense in which adding the spectrally hyperviscous term produces a perturbation of the
NSE which is suitably spectrally small. This will be evident in the Proof of Theorem 2 and will be discussed in detail in the
conclusion; in particular, if Pk projects onto the first k eigenspaces of A andQk = I−Pk, thenwewill show that a subsequence
of Pkuk converges weakly to u and that Qkuk vanishes so that in some sense Pkuk is approximately a Galerkin solution. Also
in Theorem 2 we have in this case that d

dt uk →
d
dt u in exactly the same Banach space as in the classical result of Leray. In

both Theorems 1 and 2 the Aubin Compactness Theorem plays a central role in establishing convergence to Leray solutions.
After some preliminary observations and calculations in Section 2, we will prove Theorem 1 in Section 3 and Theorem 2 in
Section 4.

2. Preliminaries

We express the Sobolev inequalities on Ω in terms of the operator A = −△:

∥υ∥q ≤ M1
Aθυ


p (2.1)

where q ≤ 3p/ (3 − 2θp) and M1 = M1 (θ, p, q, Ω). For the semigroup exp (−tA) we have the decay estimatee−tAυ

2 ≤ ∥υ∥2 e

−λ1t . (2.2)

Like the standard NSE, (1.1) satisfies an energy inequality, whichwe derive as follows: taking the inner product of both sides
of (1.1) with u we have that

1
2

d
dt

∥u∥2
2 + ν

A1/2u
2
2 + µ

A1/2
ϕ u

2
2

= (g, u) (2.3)

where we note that since div u = 0 we have that (∇p, u) = 0 and ((u · ∇) u, u) = − ((div u) u, u) = 0.
Now

(g, u) =

A−1/2g, A1/2u


≤

ν

2

A1/2u
2
2 +

1
2ν

A−1/2g
2
2 ; (2.4)

combining (2.4) with (2.3) and multiplying by 2 we have our basic energy inequality

d
dt

∥u∥2
2 + ν

A1/2u
2
2 + 2µ

A1/2
ϕ u

2
2

≤
1

νλ1
∥g∥2

2 (2.5)

where we note that by Poincaré’s inequality
A−1/2g


2 ≤ λ

−1/2
1 ∥g∥2; note that (2.5) reduces to the standard NSE energy

inequality when µ = 0. Integrating both sides of (2.5) we have that

∥u∥2
2 + ν

 T

0

A1/2u
2
2 ds + 2µ

 T

0

A1/2
ϕ u

2
2
ds ≤ ∥u0∥

2
2 +

1
νλ1

 T

0
∥g∥2

2 ds. (2.6)
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Discarding the term u
A1/2

ϕ u
2
2
in (2.5) and again using Poincaré’s inequality we obtain

d
dt

∥u∥2
2 + νλ1 ∥u∥2

2 ≤
1

νλ1
∥g∥2

2 (2.7)

so that, setting

Lg = sup
t≥0

∥g∥2 (2.8)

we have that

d
dt

∥u∥2
2 + νλ1 ∥u∥2

2 ≤
L2g
νλ1

. (2.9)

Solving the differential inequality (2.9) we have that for u0 = u (x, 0)

∥u (t)∥2
2 ≤ ∥u0∥

2
2 e

−νλ1t +

 t

0


L2g
νλ1


e−νλ1(t−s)ds (2.10)

or, since L2g/ (νλ1) is a constant,

∥u (t)∥2
2 ≤ ∥u0∥

2
2 e

−νλ1t +


Lg
νλ1

2

. (2.11)

Thus, we have the a priori estimate

∥u (t)∥2
2 ≤ ∥u0∥

2
2 +


Lg
νλ1

2

≡ U2
g . (2.12)

This concludes our preliminary observations and in the next section we will prove Theorem 1.

3. Proof of Theorem 1

For [t0, t] ⊂ [0, T ] we take the L2([t0, t];H) inner product of both sides of (1.1) with a smooth (divergence-free) test
function v = v(x, t) and using self-adjointness we obtain the variational formulation

(uk(t), v) +

 t

t0
ν

A1/2uk, A1/2v


+ µk


A1/2

ϕ uk, A1/2
ϕ v


+ ((uk · ∇)uk, v)ds = (uk(t0), v) +

 t

t0
(g, v) ds (3.1)

where (·, ·) denotes the inner product in H . Note that since the a

λj

are positive real numbers for j ≥ m0 + 1 in the

definition of Aϕ , we can define A1/2
ϕ by A1/2

ϕ =


∞

j=m0
a(λj)

1/2PEj . We first establish suitable convergence of subsequences
of {uk}

∞

k=1. We first assume that α ≥ 3/2; applying A−α/2 and the Leray projection P to both sides of (1.1), using (2.8) and
(2.12), taking L2-norms, and noting that α/2 ≥ 3/4, we have for an appropriateM1 from (2.1) thatA−α/2(uk)t


2 ≤ ν

A1−α/2uk

2 + µk

A−α/2A1/2
ϕ uk


2
+
PA−α/2 (uk · ∇uk)


2 +

A−α/2Pg

2

≤
νλ

1/2
1

λ
α/2
1

A1/2uk

2 +

µk

λ
α/2
1

A1/2
ϕ uk


2
+
A−(α/2−3/4)A−3/4 (uk · ∇uk)


2 + λ

−α/2
1 ∥g∥2

≤
νλ

1/2
1

λ
α/2
1

∥∇uk∥2 +
µk

λ
α/2
1

A1/2
ϕ uk


2
+

1

λ
α/2−3/4
1

M1 ∥uk∥2 ∥∇uk∥2 + λ
−α/2
1 ∥g∥2

≤ νλ
(1−α)/2
1 ∥∇uk∥2 + µkλ

−α/2
1

A1/2
ϕ uk


2
+ λ

−(α/2−3/4)
1 M1Ug ∥∇uk∥2 + λ

−α/2
1 Lg (3.2)

where we have used Poincaré’s inequality in the second line of (3.2). Squaring both sides of (3.2), there is a constant C0 such
that A−α/2(uk)t

2
2 ≤ C0


ν2λ1−α

1 ∥∇uk∥
2
2 + µ2

kλ
−α
1

A1/2
ϕ uk

2
2
+ λ

−(α−3/2)
1 M2

1U
2
g ∥∇uk∥

2
2 + λ−α

1 L2g

. (3.3)

From (3.3) and from (µk)
2

≤ µk (without loss of generality we can assume that µk ≤ 1) we have that there is a constant
C1 = C1(ν, λ1, α,M1,Ug) such thatA−α/2(uk)t

2
2 ≤ C1


ν
A1/2u

2
2 + 2µk

A1/2
ϕ u

2
2


+ λ−α

1 L2g . (3.4)
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Integrating both sides of (3.4) and using (2.6), (2.8) we have that T

0

A−α/2(uk)t
2
2 dt ≤ C1


∥u0∥

2
2 +

1
νλ1

L2gT


+ λ−α
1 L2gT . (3.5)

From (3.5) we thus have that d
dt uk is uniformly bounded in L2([0, T ]; PH−α). If 5/4 ≤ α < 3/2, then the third term in the

second line of (3.2) can be estimated by
A−α/2 (uk · ∇uk)


2 ≤ M ′ ∥uk∥

α−1/2
2 ∥∇uk∥

5/2−α

2 ≤ M ′Uα−1/2
g ∥∇uk∥

5/2−α

2 for an
appropriate constantM ′ (see e.g. [10, Chapter 6]); substituting the right-hand side of this for the third term in the last line of
(3.2), it then follows from (2.6) that each term in the last line of (3.2) and hence (uk)t is uniformly bounded in Lr([0, T ]; PH−α)
for r = 4/(5 − 2α). For what follows next we need the Aubin Compactness Theorem; the following is the version stated
in [14, p. 224]:

Theorem 3 (Aubin Compactness Theorem). Let X0, X, X1 be three Banach spaces and suppose that X0 and X1 are reflexive, X0 ⊂ X
with compact injection and X ⊂ X1 with continuous injection. Let T > 0 and p0, p1 > 1. Consider the space

Y =


v ∈ Lp0([0, T ]; X0);

d
dt

v ∈ Lp1([0, T ]; X1)


endowed with the norm ∥v∥Y = ∥v∥Lp0 ([0,T ];X0) + ∥

d
dt v∥Lp1 ([0,T ];X1). Then the injection of Y into Lp0([0, T ]; X) is compact.

We set X0 = V , X = H, X1 = PH−α(Ω), and set p0 = 2, p1 = r , where as in Theorem 1 r = 4/(5−2α) if 5/4 ≤ α < 3/2
and r = 2 if α ≥ 3/2. Note that X1 has the norm ∥v∥PH−α(Ω) = ∥A−α/2v∥2. Standard Sobolev theory shows that the
hypotheses of Theorem 3 are met. From (2.6) and (3.5) we have that the sequence {uk}

∞

k=1 is contained in closed balls in
X0, X , and X1, from which we conclude from Theorem 3 that there is a subsequence (also denoted {uk}

∞

k=1) contained in
L2([0, T ]; V ) and a u ∈ L2([0, T ]; V ) such that ∥uk − u∥L2([0,T ];H) → 0, uk → u weakly in L2([0, T ]; V ), and (uk)t → ut

weakly in Lr([0, T ]; PH−α(Ω)) as k → ∞. From the weak convergence in L2([0, T ]; V ) it follows that

ν

 t

t0


A1/2uk, A1/2v


ds → ν

 t

t0


A1/2u, A1/2v


ds (3.6)

as k → ∞, while using that |dj| ≤ 1 we have for each t thatµk

A1/2

ϕ uk(t), A1/2
ϕ v(t)

 = µk
uk(t), Aϕv(t)


≤ µk∥uk(t)∥2∥Aϕv(t)∥2

≤ µkUg∥Aαv(t)∥2 ↓ 0 (3.7)

and thus by the Dominated Convergence Theorem we have that t

t0
µk

A1/2

ϕ uk, A1/2
ϕ v


ds =

 t

t0
µk

uk, Aϕv


ds → 0 (3.8)

as k → ∞. Note that (3.7) is independent of the choice ofm0 and in particular of any potential dependence of Aϕ on k. Since
uk → u weakly in L2([0, T ]; PH1(Ω)) we may also assume that uk(t) → u(t), uk(t0) → u(t0) weakly in PH1(Ω) for all
t, t0 ∈ [0, T ] \ E where E has Lebesgue measure zero, so that

(uk(t0), v) → (u(t0), v) , (uk(t), v) → (u(t), v) (3.9)

as k → ∞ for all t, t0 ∈ [0, T ] \ E. For the nonlinear term we can use the classical Galerkin-approximation proof of weak
Leray solutions of the NSE or directly note that for the appropriate tensor product ⊗ we have that

|((uk · ∇)uk, v) − ((u · ∇)u, v)| ≤ |(((uk − u) · ∇)uk, v)| + |((u · ∇)(uk − u), v)|

≤ ∥((uk − u) · ∇)uk∥1∥v∥∞ + |(∇(uk − u), u ⊗ v)|

≤ ∥uk − u∥2∥∇uk∥2∥v∥∞ + |(∇(uk − u), u ⊗ v)| (3.10)

where in the third line we use the estimate |(((uk − u) · ∇)uk, v)| ≤ ∥((uk − u) · ∇)uk∥1∥v∥∞ and observe that u ⊗ v is
in L2(Ω) since ∥u ⊗ v∥2 ≤ ∥u∥2∥v∥∞. From this it follows by (2.6), the Dominated Convergence Theorem, from uk → u
weakly in L2([0, T ]; PH1(Ω)), and from uk → u strongly in L2([0, T ]; PL2(Ω)) that t

t0
(g, v) + (uk, (uk · ∇)v)ds →

 t

t0
(g, v) + (u, (u · ∇)v)ds. (3.11)
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Combining (3.6), (3.8), (3.9), and (3.11) with (3.1) we have that

(u(t), v) + ν

 t

t0


A1/2u, A1/2v


+ ((u · ∇)u, v)ds = (u(t0), v) +

 t

t0
(g, v) ds (3.12)

and thus u is a suitable weak solution of the NSE.
Meanwhile from (2.3) we have, neglecting the term involving A1/2

ϕ uk, that

1
2

∥uk(t)∥2
2 + ν

 t

t0

A1/2uk
2
2 ds ≤

1
2

∥uk(t0)∥2
2 +

 t

t0
(g, uk) ds. (3.13)

For t0 ∈ [0, T ] \ E we have that

1
2

∥uk(t0)∥2
2 +

 t

t0
(g, uk) ds →

1
2

∥u(t0)∥2
2 +

 t

t0
(g, u) ds (3.14)

and we have that

lim sup
k→∞


1
2

∥uk(t)∥2
2 + ν

 t

t0

A1/2uk
2
2 ds


≥ lim sup

k→∞

1
2

∥uk(t)∥2
2 + ν lim inf

k→∞

 t

t0

A1/2uk
2
2 ds

≥
1
2

∥u(t)∥2
2 + ν

 t

t0

A1/2u
2
2 ds (3.15)

where we have used Fatou’s lemma in the last line of (3.15). Combining (3.14) with (3.15) we have that

1
2

∥u(t)∥2
2 + ν

 t

t0

A1/2u
2
2 ds ≤

1
2

∥u(t0)∥2
2 +

 t

t0
(g, u) ds (3.16)

and hence u satisfies the standard energy inequality. Combining this with (3.12) we have that u is a Leray weak solution of
the NSE. This completes the Proof of Theorem 1.

4. Proof of Theorem 2

Let Pk be the projection onto the first k = m0 eigenspaces of A and let Qk = I − Pk. With Aϕ = Aϕ,k and with the
decomposition uk = Pkuk + Qkuk the variational formulation (3.1) becomes

(Pkuk(t), v) +

 t

t0
ν

A1/2Pkuk, A1/2v


+ µ


A1/2

ϕ Pkuk, A1/2
ϕ v


+ ((Pkuk · ∇)Pkuk, v)ds

= (Pkuk(t0), v) +

 t

t0
(g, v) ds − Qk(u, v) (4.1)

where

Qk(u, v) = (Qkuk(t), v) +

 t

t0
ν

A1/2Qkuk, A1/2v


+ µ


A1/2

ϕ Qkuk, A1/2
ϕ v


− (Qkuk(t0), v) ds + QN k(u, v) (4.2)

with

QN k(u, v) =

 t

t0
((Qkuk · ∇)Pkuk, v) + ((Pkuk · ∇)Qkuk, v) + ((Qkuk · ∇)Qkuk, v)ds. (4.3)

We first show that Qk(u, v) → 0 as k → ∞. For this it will be useful to show for large enough β that ∥Aβ/2Qkuk(t)∥2 → 0
uniformly in t as k → ∞. In fact we will show this provided that α > 5/4 and 0 ≤ β < 2α − 5/2. Taking the H-inner
product of both sides of (1.1) with AβQkuk = QkAβuk, and noting that ((uk · ∇)uk,QkAβukv) = (Qk(uk · ∇)Pkuk, AβQkukv) +

(Qk(uk · ∇)Qkuk, AβQkuk) where we have used that Q 2
k = Qk, we have that

1
2

d
dt

∥Aβ/2Qkuk∥
2
2 + ν

A(1+β)/2Qkuk
2
2 + µ

Aβ/2A1/2
ϕ Qkuk

2
2

≤ |(Qk(uk · ∇)Pkuk, AβQkuk)| + |(Qk(uk · ∇)Pkuk, AβQkuk)| + (Qkg, AβQkuk)

≤ |(A−(α−β)/2Qk(uk · ∇)Pkuk, A(α+β)/2Qkuk)| + |(A−(α−β)/2Qk(uk · ∇)Qkuk, A(α+β)/2Qkuk)|

+ |(A−(1−β)/2Qkg, A(1+β)/2Qkuk)|. (4.4)
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Using that A1/2
ϕ Qkuk ≥ dk+1Aα/2Qkuk in the sense of quadratic forms, setting d = µdk+1, and using Young’s inequality we

have that
1
2

d
dt

∥Aβ/2Qkuk∥
2
2 + ν

A(1+β)/2Qkuk
2
2 + d

A(α+β)/2Qkuk
2
2

≤
1
d
∥A−(α−β)/2Qk(uk · ∇)Pkuk∥

2
2 +

d
4

A(α+β)/2Qkuk
2
2 +

1
d
∥A−(α−β)/2Qk(uk · ∇)Qkuk∥

2
2

+
d
4

A(α+β)/2Qkuk
2
2 +

1
2ν

A−(1−β)/2Qkg
2
2 +

ν

2

A(1+β)/2Qkuk
2
2 . (4.5)

After combining the terms in (4.5), multiplying by 2, using Poincaré on the term involving g , neglecting the term
ν
A(1+β)/2Qkuk

2
2, and using (2.8), we have that

d
dt

∥Aβ/2Qkuk∥
2
2 + d

A(α+β)/2Qkuk
2
2 ≤

2
d
∥A−(α−β)/2Qk(uk · ∇)Pkuk∥

2
2

+
2
d
∥A−(α−β)/2Qk(uk · ∇)Qkuk∥

2
2 +

1

νλ
1+β

k+1

∥Qkg∥2
2

≤
2
d
∥A−(α−β)/2

∥
2
2∥(uk · ∇)Pkuk∥

2
2

+
2
d
∥A−(α−β)/2Qk∥

2
2∥(uk · ∇)Qkuk∥

2
2 +

1

νλ
1+β

k+1

∥g∥2
2

≤
2

dλα−β

k+1

∥uk∥
2
2∥∇Pkuk∥

2
∞

+
2

dλα−β

k+1

∥uk∥
2
2∥∇Qkuk∥

2
∞

+
1

νλ
1−β

k+1

L2g . (4.6)

Using (2.1) with the appropriate constantM2, we have from (2.12), (4.6), and Poincaré’s inequality that

d
dt

∥Aβ/2Qkuk∥
2
2 + d

A(α+β)/2Qkuk
2
2 ≤

2M2

dλα−β

k+1

U2
g ∥A

5/4Pkuk∥
2
2 +

2M2

dλα−β

k+1

U2
g ∥A

5/4Qkuk∥
2
2 +

1

νλ
1−β

k+1

L2g

≤
2M2

dλα−β

k+1

λ
5/2
k U2

g ∥Pkuk∥
2
2 +

2M2

dλ2α−5/2
k+1

U2
g ∥A

(α+β)/2Qkuk∥
2
2 +

1

νλ
1−β

k+1

L2g

≤
2M2U4

g

dλα−β−5/2
k+1

+
2M2U2

g

dλ2α−5/2
k+1

∥A(α+β)/2Qkuk∥
2
2 +

1

νλ
1−β

k+1

L2g . (4.7)

Next we choose k large enough so that

λ
2α−5/2
k+1 ≥ 4M2U2

g d
−2 (4.8a)

which guarantees that

2M2U2
g

dλ2α−5/2
k+1

≤
d
2
. (4.8b)

Using the condition (4.8) in (4.7) and combining terms, we obtain that

d
dt

∥Aβ/2Qkuk∥
2
2 + (d/2)

A(α+β)/2Qkuk
2
2 ≤

2M2U4
g

dλα−β−5/2
k+1

+
1

νλ
1−β

k+1

L2g (4.9)

from which after applying Poincaré’s inequality again we have that

d
dt

∥Aβ/2Qkuk∥
2
2 + (d/2)λα

k+1

Aβ/2Qkuk
2
2 ≤

2M2U4
g

dλα−β−5/2
k+1

+
1

νλ
1−β

k+1

L2g . (4.10)

Integrating the inequality (4.10) we have that

∥Aβ/2Qkuk(t)∥2
2 ≤ ∥Aβ/2Qku0∥

2
2e

−(d/2)λα
k+1t +

 t

0


2M2U4

g

dλα−β−5/2
k+1

+
1

νλ
1−β

k+1

L2g


e−(d/2)λα

k+1(t−s)ds

≤ ∥Aβ/2Qku0∥
2
2 +


2M2U4

g

dλα−β−5/2
k+1

+
1

νλ
1−β

k+1

L2g

 t

0
e−(d/2)λα

k+1(t−s)ds
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≤ ∥Aβ/2Qku0∥
2
2 +


2M2U4

g

dλα−β−5/2
k+1

+
1

νλ
1−β

k+1

L2g


∞

0
e−(d/2)λα

k+1sds

≤ ∥Aβ/2Qku0∥
2
2 +

4M2U4
g

d2λ2α−β−5/2
k+1

+
2

d2λα−β+1
k+1

L2g . (4.11)

Thus we see from (4.11) and ∥Aβ/2Qku0∥2 = ∥QkAβ/2u0∥2 that ∥Aβ/2Qkuk(t)∥2 → 0 as k → ∞ uniformly in t . Then in
particular ∥Qkuk(t)∥2 → 0 in the case β = 0 and for β > 0 by Poincaré’s inequality for any nonnegative γ with γ < β

∥Aγ /2Qkuk(t)∥2
2 ≤

1

λ
(β−γ )

k+1

∥Aβ/2Qkuk(t)∥2
2

≤
1

λ
(β−γ )

k+1


∥Aβ/2Qku0∥

2
2 +

4M2U4
g

d2λ2α−β−5/2
k+1

+
2

d2λα−β+1
k+1

L2g


(4.12)

so that also ∥Aγ /2Qkuk(t)∥2 → 0 as k → ∞ uniformly in t .
To apply this fact to (4.1), we first estimate the nonlinear terms in QN k(u, v); as a starting point for this we note that

for a given sufficiently smooth a(x, t) the operator a · ∇ is skew-adjoint, so in particular we have in a calculation similar to
(3.10) that

|((Pkuk · ∇)Qkuk, v)| = −|(Qkuk, (Pkuk · ∇)v)|

≤ ∥Qkuk∥2∥Pkuk∥2 ∥ ∥∇v∥∞

≤ ∥Qkuk∥2∥uk∥2 ∥ ∥∇v∥∞

≤ ∥Qkuk∥2Ug ∥ ∥∇v∥∞ (4.13)

and in turn the term in the last line of (4.13) is bounded by ∥uk∥2Ug∥∥∇v ∥∞ ≤ U2
g ∥∥∇v∥∞. Similarly the other terms

in the integrand of (4.3) are bounded by ∥Qkuk∥2Ug∥∥∇v ∥∞ ≤ U2
g ∥∥∇v∥∞, so by the Dominated Convergence Theorem

QN k(u, v) → 0 as k → ∞. For the other integral in Qk(u, v), we have for example that | (Qkuk(t), v) | ≤ ∥Qkuk∥2 ∥ ∥v∥2

and that |


A1/2

ϕ Qkuk, A
1/2
ϕ v


| = |


Qkuk, Aϕv


| ≤ ∥Qkuk∥2 ∥ ∥Aϕv∥2; the other terms in the first integral on the right-hand

side can be estimated similarly, so this integral also goes to zero as k → ∞ by the Dominated Convergence Theorem. Hence
Qk(u, v) → 0 as k → ∞, and thus in essence by (4.1) Pkuk solves the weak form of the NSE except for a small perturbing
term that goes to zero.

We next show that Pkuk has a convergent subsequence in a suitable topology. Applying the Leray projection P and Pk to
both sides of (1.1) and noting that PkAϕu = 0 since k = m0 < m0+1, we have that Pkuk satisfies the equation

(Pkuk)t = νA (Pkuk) + PkP (uk · ∇) uk + Pkf (4.14)

where f = Pg . Applying A−1/2 to both sides of (4.14) as in [11, Chapter 6] and taking L2-norms, we have thatA−1/2 (Pkuk)t

2 ≤ ν

A1/2Pkuk

2 +

PkPA−1/2 (uk · ∇uk)

2 +

A−1Pkf

2

≤ ν
A1/2uk


2 +

A−1/2 (uk · ∇uk)

2 + λ−1

1 ∥Pkf ∥2

≤ ν
A1/2uk


2 + M ′

∥uk∥
1/2
2 ∥∇uk∥

3/2
2 + λ−1

1 ∥f ∥2 Lg (4.15)

where in the last line of (4.15) we have again used the classical Sobolev inequality (as in the development after (3.5))
for an appropriate constant M ′. By (2.6) each term on the right-hand side of (4.15) is in L4/3([0, T ]) and hence d

dt Pkuk ∈

L4/3([0, T ]; V ′). Thus we can again apply the Aubin Compactness Theorem (Theorem 3), with X0 = V , X = H , and X1 = V ′,
and with p0 = 2, p1 = r , from which we conclude that there is a subsequence (also denoted {Pkuk}

∞

k=1) contained in
L2([0, T ];H) and a u ∈ L2([0, T ]; V ) such that ∥Pkuk −u∥L2([0,T ];H) → 0, Pkuk → uweakly in L2([0, T ]; V ), and (Pkuk)t → ut

weakly in L2([0, T ]; V ′) as k → ∞. We have that (3.6)–(3.11) follow as in Section 3 above with Pkuk replacing uk; together
with Qk(u, v) → 0 as k → ∞ we obtain that u satisfies (3.12). Note that so far we only need that α > 5/4, since we only
have used (4.11) with β = 0.

Meanwhile, taking the H-inner product of both sides of (4.14) with Pkuk and integrating we have that

1
2

∥Pkuk(t)∥2
2 + ν

 t

t0

A1/2Pkuk
2
2 ds =

1
2

∥Pkuk(t0)∥2
2 +

 t

t0
(g, Pkuk) ds −

 t

t0
(P (uk · ∇)Qkuk, Pkuk) ds (4.16)

since P2
k = Pk and since (P (uk · ∇) Pkuk, Pkuk) = 0; also note that we can replace f by g since (I − P)g is orthogonal to Pkuk.

Using that PPkuk = Pkuk, using that ∥Pkv∥2 ≤ ∥v∥2, using Poincaré’s inequality, using that A−1/2div is a bounded operator
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on L2(Ω) with ∥A−1/2div∥2 ≤ 1, using (2.1) for an appropriate constantM3, and using (4.11) with β = 1/2, we have that

|(P (uk · ∇)Qkuk, Pkuk)| = |((uk · ∇)Qkuk, Pkuk)| =
A−1/2 (uk · ∇)Qkuk, A1/2Pkuk


≤ ∥A−1/2div(uk ⊗ Qkuk)∥2∥PkA1/2uk∥2

≤ ∥A−1/2div∥2∥uk∥6∥Qkuk∥3∥A1/2uk∥2

≤ M3∥A1/2uk∥2∥A1/4Qkuk∥2∥A1/2uk∥2

≤ M3


∥A1/4Qkuk∥

2
2 +

4M2U4
g

d2λ2α−3
k+1

+
2

d2λα+1/2
k+1

L2g

1/2

∥∇uk∥
2
2. (4.17)

If α − 3/2 > 0 as in the second assumption on α in Theorem 2, then the term in brackets in (4.17) goes to zero for each t as
k → ∞, so by (2.6), (4.17), and the Dominated Convergence Theorem the third term on the right-hand side of (4.16) goes
to zero as k → ∞. For a set E of Lebesgue measure zero and for t0 ∈ [0, T ] \ E we thus have that

1
2

∥Pkuk(t0)∥2
2 +

 t

t0
(g, Pkuk) ds −

 t

t0
(P (uk · ∇)Qkuk, Pkuk) ds →

1
2

∥u(t0)∥2
2 +

 t

t0
(g, u) ds. (4.18)

Since (3.15) holds as before with Pkuk replacing uk, we thus have that (3.16) as well as (3.12) hold for the u produced here in
the development following (4.15). Hence u is a Leray weak solution of the NSE and this completes the Proof of Theorem 2.

5. Conclusion

That the applicable distinguished class operators Aϕ in Theorem 2 represent a ‘‘small’’ hyperviscosity perturbation of the
NSE is reflected both in terms of the estimate (4.11) and the mechanics of showing that (3.12) and (3.16) are satisfied. In
particular the perturbation term Qk(u, v) → 0 as k → ∞ and similarly the term involving Qkuk in (4.18) goes to zero as
well. Taken together, the convergence behavior of these perturbative terms shows that in a tangible sense Pkuk for large k is
close to and behaves like a Galerkin solution for the NSE.

Weobserve also that (4.11) gives an estimate that streamlines the proof of global regularity for (1.1); in fact ∥A1/2u(t)∥2
2 =

∥A1/2Pku(t)∥2
2 + ∥A1/2Qku(t)∥2

2 ≤ λk∥Pku(t)∥2
2 + ∥A1/2Qku(t)∥2

2 and the latter term is bounded by (4.11). We also note that
if k is larger than the Kolmogorov wavenumber κ we have an explicit estimate in (4.11) which reflects the Kolmogorov
theory [21] that wavenumbers in the dissipative range are insignificant dynamically; this is shown here in a concrete
theoretical sense where (4.11) is used to demonstrate that Qk(u, v) → 0 as k → ∞.

As we have noted Theorem 2 is designed to be applicable in the case thatµ is fixed and in particular in the caseµ = ν2 as
motivated by [4,5]. In this case we have argued that we can envision a cutoffm0 such that ν2λj is significant for j ≥ m0 and
insignificant for j ≤ m0; of future interest within the framework of this approach would be further theoretical or empirical
investigation toward determining or estimating the optimal spectral cutoffm0.
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