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1. Introduction
1.1. Micromagnetics

In the theory of micromagnetics the energy of micromagnetics of a ferromagnetic body 2 € R? is given
by

E(m) :AEI/|Vm|2+Kd/|Vu\2+Q/<p(m)—2/H6H~m,
o) R3 19, 0
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where m: 2 — S? with m = 0 in R?\ £ is a unit vector field representing the magnetization vector, A.,,
Kg, @ are material parameters, H.,; is the externally applied magnetic field, ¢ is the anisotropy energy
density and w is the induced field potential, obtained from Maxwell’s equations of magnetostatics,

curl Hijpg = 0 in R3,
div(Hipg +m) =0 in R3,

where H;,q = Vu. Namely, u is a weak solution of
Au =divm in R3,

i.e., Vu is the Helmoltz projection of m onto the L? closure of the gradient fields in L?(R3). The energy
density ¢ is a non-negative function called the anisotropy energy density. It is typically a polynomial, with
the symmetry properties inherited from those of the underlying crystalline lattice. The zeroes of ¢ form the
set of preferred directions of magnetization (easy axes), e.g., [6]. According to the theory of micromagnetics,
stable magnetization patterns are described by the minimizers (global and local) of the micromagnetic energy
functional, e.g., [14,6-8]. This is a non-convex and nonlocal minimization problem due to the non-convex
constraint |m| = 1 in (2. This theory is used for the analysis and design of magnetic devices. It explains
observations on many length scales, and it also explains the magnetic hysteresis, through the multiplicity
of local minima, e.g., [6].

1.2. Motivation

In recent years the study of thin structures in micromagnetics, in particular thin films and wires, has
been of great interest, see [1,2,5,9,16-21] for nanowires and [4,7,8,10,15,17]. It was suggested in [1] that
magnetic nanowires can be used as storage devices. It is known that the magnetization pattern reversal
time is closely related to the writing and reading speed of such a device, thus it has been suggested to
study the magnetization reversal and switching processes. In [9] the magnetizetion reversal process has
been studied numerically in cobalt nanowires by the Landau-Lishitz—Gilbert equation. In thin wires the
transverse mode has been observed: the magnetization in almost constant on each cross section forming a
domain wall that propagates along the wire, while in relatively thick wires the vortex wall has been observed:
the magnetization is approximately tangential to the boundary and forms a vortex which propagates along
the wire. In [13] similar study has been done for thin nickel wires and the same results have been observed.
When a homogenous external field is applied in the axial direction of the wire facing the homogenous
magnetization direction, then at a critical strength the reversal of the magnetization typically starts at
one end of the wire creating a domain wall, which moves along the wire. The domain wall separates the
reversed and the not yet reversed parts of the wire. In [3] Cantero-Alvarez and Otto considered the problem
of finding the scaling of critical field in terms of the thin film cross section and material parameters. The
authors found four different scalingS and corresponding four different regimes. In Fig. 1 one can see the
transverse and the vortex wall longitudinal and cross section pictures for wires with a rectangular cross
section.

A distinctive crossover has been observed between the two different modes, which is expected to occur
at a critical diameter of the wire. It has been suggested that the magnetization switching process can be
understood by analyzing the micromagnetics energy minimization problem for different diameters of the
cross section. In [16] K. Kiihn studied 180 degree static domain walls in magnetic wires with circular cross
sections. Kithn proved that indeed, the transverse mode must occur in thin magnetic wires as was predicted
by experimental and numerical analysis before in [9] and in [13], while in thick wires a vortex wall has the
optimal energy scaling. Some of the results proven by K. Kiihn for thin wires has been later generalized in
[12] to any wires with a bounded, Lipschitz and rotationally symmetric cross sections, see also [11]. Slastikov
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Fig. 1.

and Sonnenberg proved the energy I'-convergence result in [20] for any C! cross sections in finite curved
wires. It is shown in [16,12,20] that the minimal energy scales like d?, where d is the diameter of the wire,
provided the wire cross section has comparable dimensions. It turns out that if the dimensions of the cross
section are not comparable, then the minimal energies decay faster than d? and a logarithmic term occurs.
In this paper we study the minimal energy scaling in infinite thin films, as both sides of the cross section
go to zero, but one faster that the other. The minimal appears to scale like d?(Inl — Ind), where 0 < d < [
are the dimensions of the cross section. The paper is organized as follows: In Section 2 we make some
notations and formulate the main results. In Section 3 we prove that for small cross section diameters the
magnetostatic energy can ba approximated by a quadratic form in the second and the third components
of the magnetization m. In Section 4 we prove when the diameter goes to zero the energy minimization
problems I'-converge to a one-dimensional problem. In Section 5 we prove a rate of convergence on the
minimal energies as the diameter of the film goes to zero. Finally, in Appendix A we prove two auxiliary
lemmas.

2. The main results

Denote £2(1,d) = R x R(l,d), where R(l,d) = [I,] x [—d, d] and throughout this work it will be assumed
that 0 < d < [. Denote the aspect ratio ¢ = %l. Consider the energy of micromagnetics without an external
field and anisotropy energy, i.e., the energy of an isotropic ferromagnet with the absence of an external field:

E(m) :Aex/\Vm|2+Kd/|Vu|2.
2 R

By scaling of all coordinates one can reach the situation when A., = K4, so we will henceforth assume that
A., = K; = 1. Denote

AR)={m:2—S* : me H.(2), E(m) < oo},
and also let us introduce 180 degree domain walls
AQ)={m:N -S> : m—ee H' ()},

where
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(—1,0,0) ifz < —1
é(z,y,2) =% (£,0,0) f-1<zx<1
(1,0,0) ifl<uz

Roughly speaking, we are considering the set of all magnetizations that satisfy lim,_, 1o m(z,y, z) = L€,
for all y and z. The target of this paper is the study of the minimal energy scaling and the minimizers in
minimization problem

inf  E(m) (2.1)

meA(2(L,d))
when [ — 0 and ¢ — 0. It turns out that after rescaling the energy by a suitable factor, the new
rescaled energies I'-converge to a one dimensional energy, e.g., [16,12,20]. Consider sequences of domain—
magnetization—energy triples (§2(1,, dn),m”, E(m™)) such that d,,l, — 0 and ¢, = ‘li—" — 0 as n goes to

infinity. Denote for simplicity 2, = 2(l,,dy), Ap = A(2(ln,dy)), An = A(2(1,,dy)). Set A, = m,
iy = l)\d" and rescale the magnetization m as follows: m(x,y, z) = m(A,z,l,y, d,z). Note that, in contrast

E(m™)

n

o [16,20,11], we rescale m in the x direction as well. Denote now E( ") = and consider the rescaled

minimization problems

inf E(1h) (2.2)
meA,

instead of the original problem

inf E(m).
meAn,

The rescaled energy functional will have the form:

Eag(m").

n

. 1 A2
B(ir) == [ (joair (@ + J2 o @) + o @) ) de +
2(1,1) "

The limit (reduced) energy functional Ey turns out to be

4 [ 10zmPdz + 2 [ [mo|?dz, if mz=0
400, otherwise

Eo(m) = {
and the admissible set Ay for the reduced variational problem is
Ag={m:R — S? | m(£o0) = +1}.

The reduced or limit variational problem is to minimize the reduced energy functional Ey over the admissible
set Ay, i.e.,

inf Ep(m). (2.3)

meAg

Define furthermore
Ag:{m€A0|ngO}

The equality min,eca, Eo(m) = min,,ca3 Eo(m) suggests considering the minimization problem
min,, ¢ 43 £o(m) instead of miny,ea, Eo(m). Next, define the notion of convergence of the magnetizations
like in [16,12].
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Definition 2.1. The sequence {m"} C A(£2) is said to converge to m" € A(§2) as n goes to infinity if:

(i) Vm"™ = Vm? weakly in L?(12),
(i) m"™ — m° strongly in L} (£2).

The following result is then the main contribution of the work:

Theorem 2.2 (I'-convergence). The reduced variational problem is the I'-limit of the full variational problem
with respect to the convergence stated in Definition 2.1. This amounts to the following three statements:

o Lower semicontinuity. If a sequence of rescaled magnetizations {r"} with m™ € A,, converges to some
m® € A(2) in the sense of Definition 2.1 then

Ey (mo) < lim inf E(m”)

n—oo

« Recovery sequence. For every m® € Ay and every sequence of pairs {(l,,,d,)} with l,,d, — 0, ¢, — 0,
there exists a sequence {m™} with m™ € A,, such that
m™ — m® in the sense of Definition 2.1

Eo(m®) = lim E(m™)

n—oo

« Compactness. Let {(l,,,d,)} be such that l,,,d, — 0 and ¢, — 0. Assume m™ € A,, and E(1h™) < C for
all n € N. Then there exists a subsequence of {m™} (not relabeled) such that after a translation in the
x direction the sequence 1h" converges to some m® € A3 in the sense of Definition 2.1.

From the above I'-convergence result, we get the convergence of the minimal energies as a property of
I'-convergence:

Corollary 2.3. Due to the above theorem, we have

lim min E(m") = min E(m). (2.4)

n—00 ;mnec A, meAo

As will be seen later min,,eca, E(m) = %. The next theorem establishes a rate of convergence for (2.4),

which is again contribution of our work:

Theorem 2.4 (Rate of convergence). For sufficiently small d and ¢ the following bound holds:

, 2
min E(m) — min Eo(m)‘ < _200
i V| 1n¢|

-+ 20C1,
meA meAoy

where C' is the Poincaré constant for rectangles.
3. An approximation of the magnetostatic energy

Recall that the map u is a weak solution of Au = divm if and only if

/Vu -V = /m -V, forall p € CF° (R?’). (3.1)
R3 o)
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The left hand side of the above equality can be written as a sum volume and surface contributions as:

/Vu-thz—/divm%p—i—/m-mp, for alltpéC’é’o(RB), (3.2)
R3 2 0N

where n is the outward unit normal to 9f2. Denoting
w(© == [ 1€ )vm©ds and u(©) = [ 16— e)m m)(©)de,
Q o0

where I'(§) = is the Green function in R3, we obtain

1
€]
/VUU~V¢:/divm'4p, /VUS-V¢:/m'n~gp, forallngC’go(R?’). (3.3)
R3 0 R3 on

Denote furthermore
E, :/|Vuv|27 E, :/|Vus|2, Eys :/VUU'VUS.
R3 R3 R3
Following Kohn and Slastikov as in [15], define the average of the magnetization vector over the cross section:
_ 1
m(x,y,z) = m mdydz, (x,y,z) € 1.
R(1,d)

Like m, we extend m as 0 outside §2. In this section we prove upper and lower bounds on the magnetostatic
energy for thin films. We start with the E, part of the energy. If the parametrization

{y:y(t)v tG[O,Q}
z=2z(t), te€]0,2]

of OR(l,d) is chosen by symmetry, so that y(t + 1) = —y(t), 2(t + 1) = —z(t), then Theorem 3.3.5 of [12]
delivers a formula for F4(m) in Fourier space for m = m(x), namely:

Theorem 3.1. For every m = m(zx) € A(£2) there holds:

g (k)|

1 1 . 2
Bum) = 575 [ g {laPlnatin) [+ o7
RS

+ ab (g (k1 )rig (k1) + the (k1) hs (k1)) } dk,

where

1
a(ks, k3,w) = —2i/z'(t) sin(kay(t) + k3z(t)) dt,
0

b(ka, k3, w) = Zi/y’(t) sin(kay(t) + k3z(t)) dt.

Observe, that when the cross section is the rectangle R(I, d) then the formula for F can be easily simplified
in further steps, namely, for any m = m(z) € A({2), we have the following representation formula:
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i) = & [ S)snlide) (|m2<x>|2 | Iaa >2> .

e e 22 v

Set now for convenience

sin?(ly) sin®(dz)
1(,d, z) :/Tdydz,
i y?lel

then

:_/ (1 d,2)|s(@)[* + I(d, 1, 2)|fia(x)[?) da.

The following functions will play an important role in this work. Denote for any ¢ > 0,

Tsin2t 1—e 2
/m ST T g bo=an.
0

P\E

(3.4)

o=

Mlo

Lemma 3.2. For any 0 < d <1, we have

(i) I(d,l,z) < 2nlda. and I(l,d,z) < 2nldb,., for all x € R,
(if) I(d,l,z) < mlde(3 —1ne), for all x € R,
(i) I(d,l,x) > wldc|Inc|(1 — ﬁ), forall z € [—1,1].
Proof. We will use the following two identities, that are well known and can be found in most advanced
calculus and complex analysis textbooks:

oo

[oe]
sin? ¢ ™ sin®(pt)
dt = = dt = — (1 —e 204 0. 3.5
/ : /t2+q 4q( e ), p,g> (3.5)

For any = # 0, we have by making a change of variables y — |z|y, z — |z|z and putting a = I|x|,b = d|z],

[eole ) . 21 . Qd
I(g,d,x):zl//wdydz
) 2Ll

_ i]o]osirﬂ(ay) sin?(bz) dy .
) v (1 + 42 + 22)
00

Utilizing now the second identity of (3.5) and making a change of variables y = i, we obtain

oo
7r /sinQ(ay) 1 — e 2VyrHl
2 / y? NOES
o0
_ 27mb/sin2t 1 — e wVita?
t2 V12 + a2

I(l,d,x) = dy

X

dt

2
0

t 1 _ t2+12$2
— 2rld [ sin? oo dt
V2 + 1222
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By the inequality

20 fo——— _ 2l 2t
d t2+d22>gt*

C

and the fact that the function 1=¢— decreases over (0, 4+0), we get

t

—+oo
in2t 1—e %
I(d,1,z) < 2nld / 51?2 =" dt = 2nlda,. (3.6)
0 C
Similarly, we have I(l,d, z) < 2wldb,.
For (ii) we have that I(d,l,z) < I; + I + I3, where
c
in2¢t 1—e %
no=nlde | 22225 " qt,
12 t
1 2t
I, = nlde /sm t 1—e % Loeme g,
t 1—e %
Iy = mlde / sin’ = g
1
It is clear that
/ sin?t 1-— ’27 f
I, = 27ld T dt < 2xid [ dt = 2wlde,
0 ¢ 0

1
I, < Wldc/ % dt = —wldcIn e,

C

—+o0
t
I; < wlde / Sl? dt < wlde / = dt = rlde.
1

Therefore, we obtain I(d,l,z) < wlde(3 — Inc) and (ii) is proved.
To get a lower bound on I(d, [, ), note that the main contribution to the integral comes from the interval
[¢,1]. The idea is replacing in the previous argument [c, 1] by [ 1=¢ ¢¢] where € is a small positive number

vet to be chosen. Assume € < 1 and z € [—1, ;]. For any t € [¢' ¢, ¢°], we have
2 2
El\/t2 + 22d2 > 2 > 2¢”¢,
c
and

d
\/t2+x2d2§t+|x|d§t+7=t+c,

hence

CE
sin?t 1—e 2

I(d,l,x)zﬂldc/ T (3.7)

cl—e
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_ 1 €
If we choose now € = NI then ¢¢ — 0, thus we get

Thus we obtain by (3.7),

. 1
1(d,1,2) > wlde(1 — &) (1 - C) / dt
2 t+c

cl

> lde(1 - 2¢) (e + <) — In(e+ 1)),
It is clear that

ln(c + cl_e) =Ilnc+ ln(l + c_e)
<lIlnc+ 1n(2c_6)
< (1-2¢)Ine,

and
ln(c + ce) >Inc* =¢€lne,
1-2¢°=1—-2e"¢>1—2¢>1—2
Concluding, we obtain

I(d,l,z) > m(1 — 2c) (1 — 3e)ldc| Inc]

> wlde|In¢|(1 — 5e)

= 7ldc|In¢| <1 —

v/|In c|)
Corollary 3.3. We have that

Qe 1

lim =-.
=0 c|lne] 2
Proof. The proof follows from (ii) and (iii) parts of the above lemma. 0O

It is straightforward to see that due to the symmetry of the cross section R(I,d) one has E,;(m) = 0 for
all m = m(z) € A(£2). We estimate now the volume contribution E, to E,q4-

Lemma 3.4. For any 0 < d <1 and m = m(z) € A the following bound holds:

Ey(m) < M,, <l2d2 + 1d? <1 +1In é)) : (3.8)

where M, is a constant depending on the magnetization m.
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Proof. By density argument (3.3) holds for ¢ = u, thus,

E,(m) :/|Vuv|2 = —/divm-uv = //F(g—gl)divm(g) divm(&;) dé dé;.
2 2 N

R3

For any m = m(z) € A, we have divm = 9,m;(x), thus

8 m1 8 ml(xl)
E,( déd
47r// =

where £ = (z,y, z) and & = (1,1, 21). We have by integration by parts

Oxmy () do — / dm*(z) +oodm*(a:)
E—&al ) lE-él € = &1
R —o0 0
2 (@ - z)m*(@)
_ dz,
T VAt ) R/ g—ar

where

mi(z)+1 itz <0
mi(x) —1 ifx>0.

) ={

Then it has been shown in [12] that m*(x) € L*(R). We can estimate E,(m) < I + Iz, where

|0xma (21)]
d&; dy dz,
= 27 / /\/xl (y—y1)?2+ (2 — 21)? '

R(l,d)
|Ozma (z1)m* ()]
I, = dédg;.
o= [ [ e
20
We have furthermore
SVt -n)?+ (e - a)
1 2 1
< = Oy d
- 2/<| o (1) +$%+(y—y1)2+(2—21)2> "

R

™

2/ (y—y1)2+ (z —21)

1
= §||azm1||2L2(R) +

Recall now Lemma A2 from [11], which asserts that for any point (y1,21) € R? one has

1
V=) + (2 —21)?

R(l,d)

dydz < 10d<1 +1n %) . (3.9)

Thus we obtain for Iy,
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Iy < —[|0sma |32 () 2d® + 5 / / dyy dz; dy dz
u 4 — )2 — -2
(Ld) B(Ld) Vi —y1)2+(z—2)
4 2 2 2 2 Z
< —ll0emi 72 gy *d® +101d% (1 +1In = ).

By making a change of variables & = £; — £ and utilizing again (3.9), we can estimate,

[m* ()] - |0xma (2 + 2)|

I =
’ [€a]?

d&z d§

2 Rx[—l—y,l—y]x[—d—z,d—z]
< 1 / |m*(x)|? + [0pmy (20 + 2)|?
2 Bk

drdéy dydz
R(l,d) RX [—l—y,l—y]x[~d—z,d—z] R

2 dés
2+ 10 ey) /

RX[—l—y,l—y|X[—d—z,d—Z=]
1
2+ (21— 2)

= 27rld(Hm*H2Lz(R) + ||6‘xm1|\%2(R)) / = dy; dz;
R(l,d) Vi —v)

2
L2(R) + Haﬂﬂm1H%2(R))

< 20mld? (1 +1In é) (|[m*
The summary of the estimates on I3 and Iy completes the proof. O
4. The convergence of the energies
Consider a sequence of domain—magnetization—energy triples {({2,,m", E(m™))} where 2, = R x

R(l,,dy), m™ € A, = A(Qn) and I,,c, — 0. Lemma 3.2 suggests that for sufficiently big n one can
formally write for any m = m(x),

Es(m”) 2 %lndnacn /‘m?(@ﬁdm + %lndnbcn /’mg‘(l-)|2d$
R R

Next, Lemma A.2 asserts that a., scales like ¢, Inc, and b., — 7. Furthermore, by Lemma 3.4, for a
fixed m™ = m”(z) the summand E,(m") decays at least like I,d? In® (ZTZ' Rescaling the magnetizations
m"™(z,y,z) = m"( Az, lpy, d,z), we can rewrite the exchange energy for all m™(x) € A, as

lndy i Ao Ao
Eeu(m"(x)) = 3 / <|8$m (33)’2 + l—2|8ym (x)|2 + d—2|8zm (m)’2> dz,
(L) n n

and it is clear that 772": £2(1,1) — S2. Thus one would expect that for sufficiently big n the approximation
holds

Eer(m"(z)) = 4l;dn /lawm"(x)fdx
R

and

™

n 4 n 2 n 2
E (m"(z)) =~ ;lndncnlncnb\n/(’mg ()| + m|m3 (x)‘ )dx.
R
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This calculation suggests that the coefficients ” 2 and I, d,c,|In ¢, | A, should be taken equal and they will

1
both be the scaling of E(m™). This leads to A, \/m

Proof of Theorem 2.2. Lower semicontinuity. One can without loss of generality assume that E (™) < M
for some M > 0 and all n € N. Following Kohn and Slastikov [15] let us prove that

E n Eag(m"
Jim inf Zmag(m™) (o Bnag (M) (4.1)
n—00 n n—00 Hn

By the Poincaré inequality, we have

/|m —mf* < C(d*+1?) / |Vm|? < C(d® +1*)E(m).
2

Owing now to Lemma A.1 and the above inequality, we have

|Emag (mn) - Emag (mn)| < Mlﬂn V 1721 + d7217 (42)

for some M;, which implies (4.1). Let now {g,} be a sequence with 0 < ¢, < 1 yet to be defined. We have
by the Plancherel equality,

E.,
n——— /\8 7 (€))7 d¢
4q"l n /ya () de
qnlndn/ E
=4 n d
. / ’x m”(z)|" da

and according to part (iii) of Lemma 3.2, we have for big n as well,

1
Ty
E' oy ) 4 —
s(m™) > _lndncn|lncn|<1 ) / ( ‘ () ’2 + ‘mg(ﬂf)’2> dz.
n T, |1ncn |Incp|
1

Now choose ¢, so that

4 5 4qnd
—lndncn|lncn<1— > _ 2n i
n \/|1ncn| lnﬂn
or
1 5
= —l,dpcp|lne, || 1 — — |,
dn o non n| n|( \/m)

and it is clear that ¢, — 0. Applying now the obtained inequalities, (4.1) and the convergence Vii™ — Vm?
in L2(£2(1,1)), we obtain
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n Ee(lj n . . E n
lim inf = ) > liminf(1 — ¢y,) / |8177’1”‘2 d¢ + liminf qn&) + lim inf o(m")
Q(1,1)
EEI " . . E n"
= liminf(1 — ¢,) / |3z77'1"‘2 d¢ + liminf qnﬂ) + lim inf (m")
n—oo n—oo n n—oo l,[,n
9 EE(L‘ " . . ES n"
> liminf(1 — ¢y,) / |8z77'1”‘2 d¢ + liminf qnﬂ + lim inf (m™)
n—oo n—oo n n—oo /_Ln

2(1,1)

>4/|8 m ‘ —‘rllﬁI_l}Qfﬂ_—l nd cn|lncn|< \/%cﬂ) ]R/<|mg|2+|lncn|mg‘2)

= 4/|8mm0‘2dx—|— é1iminf)\i /(|m§(x)|2 + |1ncn||m§(x)‘2) dz.
R "R

T n—oo

It is then standard to prove that the convergence 7" — m® in L? (£2(1,1)) implies

0 2 0 2
llnn—l>1£f_/| 2> /‘mz(x)’ and hnrr_l)loréf—/| ?> /|m3(:1:)
R R

thus since | In ¢, | = oo, we conclude that

lim inf E(m™) > FEy (mo).

n—oo un

Recovery sequence. Let us prove that the sequence m”™(x), where

m"(Anx,y,2) =m(x), if &€ Ny, d,) and m™(€) =0, if&€R3\ 2, d,),
satisfies the required condition. If m$ is not identically zero, then Eq(m°) = oo and due to the lower
semi-continuity part of the foregoing theorem, we have that Eo(m°) < liminf, . Ey,(m™), thus the proof

follows. Assume now that mJ = 0. It remains to only prove the reverse inequality limsup,,_, . En(m") <
Eo(mP). Tt is clear that

E(m") = 4, /|8wm0’2 dz + Ernag (m")
R
Due to Lemma 3.2 and the Plancherel equality, we have

Ey(m") < %lndncn(|lncn| +3) /|mg(x)|2dm,

R
thus
lim sup / ‘m2 ’ dx.
n—oo
We have furthermore by Lemma 3.4 that
lim sup (m™) =0,
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thus combining all the obtained inequalities for the energy summands, we discover

lim sup E, (m") < Ey (mo) .

n—oo
Compactness. The inequality E(m™) < Cu,, implies
, n|2 ; nl|2 l121 , n|2 dgz
/ ‘(%m } <, / ‘Oym ‘ SC/\—2 and / yazm ‘ <C-—+%

2(1,1) 2(1,1) " 2(1,1)

thus a subsequence (not relabeled) of {V772"} has a weak limit f = f(z) in L?(£2(1,1)). On the other hand
7™ has a unit length pointwise, thus a subsequence (not relabeled) of {17} has a strong local limit m° in
L2(£0(1,1)). It is then straightforward to show that m° is weakly differentiable with f = Vm?, thus {7h"}
converges to mY in the sense of Definition 2.1. It has been proven in [11], that actually one can translate
the subsequence {77"} in the = direction so that the limit m° satisfies m®(4o00) = +1. Finally owing to the
lower semi-continuity part of the lemma, we discover Eg(m?) < liminf E(rh") < C' < oo, thus md = 0, i.e.,
m® e A3. O

5. The rate of convergence

Recall that for any « > 0 one can explicitly determine the minima of the energy functional e.g., [16,12,11],

Eo(m) = /|8zm(x)|2dx+a/(|my(x)|2+ }mz(x)|2) dz

R R

in the admissible set
Ao ={m:R—=R® : |m| =1, m(£o0) = £1}.

The minimizer is given by the formula

m=m>P = Ve pro1 2Bevor cos 6 ﬂ sin 0 (5.1)
62\/&%'624—1’ 62\/&7:,ﬁ2_|_1 ’62\/&7:,ﬂ2+1 )

where § € R. Note that the minimal value of the energy does not depend on 6, i.e., it is invariant under
rotations in the cross section plane, and for a fixed § any minimizer can be obtained from m® := m®! by a
translation in the x direction. The minimizer m® satisfies m$(0) = 0. The minimal value of E, in Ay will
be 4./a. Therefore, due to the fact m® € A3, the minimizers m® of Ey have the form

2z 2 2z
R Gl )

2z ) T2z ) (5.2)
evr -fB2+1 evr-pB2+1

The minimal value of Ej is \1/—6;.

Proof of Theorem 2.4. We need to get accurate lower and upper bounds on E(m). For an upper bound,
we choose the recovery sequence m(z,y,z) = m°(5=), where ms = 0 and m° is a minimizer of the energy
functional

Eo(m) = 4/ |0, m|? dz + % /(|m2(x)‘2 + ]m3(m)‘2) dz.
R R
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Due to Lemma 3.2, we have for big n,

R

R

E(mo) <

Next, due to Lemma 3.4, we get for big n,

E(m)
fin

12 0/ 3|2
R

16 10
< —+ ——+2/ldy | lncy),
=77 e T [ In cal

thus the minimal energy satisfies the inequality

min,, . ; E(m) 16 10
Mmed, BN 25 0 Lo fidiIncy. 5.3
. T STl " [ In cp| (5.3)

Assume now m € A, is an energy minimizer in (2,. We have that I(l,,d,,z) > I(d,,l,,z), thus by
Lemma 3.2, we have

1
Tn

By 2 2htucalineal (1= =) [ (el + f?) .
mag = L nlnCn n \/m :
Tl

According to (5.3), we have for big n,

min_ -z E(m 1
MS—(;+1<11-
T

Hn e

We have furthermore for big n, that

[ e Py do < [ (e + o mf?) ds

R\[- 2, ]

R
l?L /(|8x7’7l2|2 + |61m3|2) dx
R

ln
< i, /(|3xm2|2 + \8$m3|2) dx
2,

thus

—lndpen|Incy| / (|fn2|2 + |m3|2) dz < —12c,| Incy|pin,
T T

R\[- &, 2]
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therefore, we obtain
Emtlg(m) >_ lnd CTL|1 C7L| (1 /—_) /(|m2| + |m3| ) dac — —l C ‘lll C I/J . <J.4>
n n |1 Cn| J n-n n n

It is straightforward to see using the definition of the average that
[ (sl +mal?) = [ (l? + iaP2) = [ (s —af? + g — o).
o 2, 2,
thus by the Poincaré inequality, we get for big n,
[ (sl maf?) < [ (al? 4 al?) + 1100 (12 4 ). (5.5)
.Qn -Qn

Next, due to estimate (4.1), we have for big n, that

Emag(m) > Emag(m) — Mijiny d% =+ lrzzﬂ

where My = 11C and C is the Poinceré constant for R(l,, d,,). Combining now the last inequality with (5.4)
and (5.5), for bin n, we discover

4 5
Erag(m) > =l dpen|Incy| (1 — 7> /(|m2|2 + |m3|2) dz
| T [In e,
R
11
— ?l%cn| Incp|pn — 12CHn /12 + d2. (5.6)

For the whole energy, we obtain for big n,

E 1
lim) > 4(1 - \/%) ( / |0,17| A€ + - / (|rhal® + [rhs|?) d§> —20C1,.
" fen 2(1,1) 2(1,1)

It has been shown in [11, Lemma 3.3|, that if m € A,, then m(+o0) = %1, thus we have 1i(+o0,y, z) = £1
on a full measure subset @ of R(1,1). Therefore, we have for any (y,z) € @ that

, 2 1 , 2 , 2 4
R/ Ouri(z,y, ) da + / (rate .2 + a9 ) o >

which gives
) 1 ) .
2(1,1) £2(1,1)
Finally we get for the energies,

Em) 16 200,40

Hn VT T /[Ine,|

A combination of the last inequality and (5.3) completes the proof. In conclusion, let us mention that for

sufficiently small d and [ the minimizer m must have almost the shape of m®? i.e., must be a transverse
wall. O
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Appendix A

In this section we recall a key inequality and study the function a..

Lemma A.1. For any vector fields my, mo € M(£2) with finite energies there holds

| Emag(m1) = Emag(mz)| < [lmy —mal|72(q) + 2lm1 —ma||L2(2)\/ Emag(m1).

Proof. The proof is trivial and can be found in [16]. O
Consider now ¢ — a. as a map from (0, +00) to (0, +00).
Lemma A.2. The function a. has the following properties:

(i) ac increases in (0,400),
(i) limeo 75y = 3
(iii) limes o0 G = 5.

Proof. The first property follows from the fact that the function 1%4 decreases over (0, +00). The second

property is Corollary 3.3. Assume now ¢ > 4. It is clear that

1z o b e [O,E],
c 2

thus taking into account the inequality \/c < §, we discover

l—e % t 1
L >l-->1-—, iftel0,el.
= c c
Therefore, for a. we have on one hand
c +o0o
1 2t in?t
liminfa, > liminf{ 1 - — /sm dt = / s dt = E,
c—00 c—00 \/E 12 t2 2
0 0
but on the other hand
+oo
.2
t
ae < / 51?2 dt:g for any ¢ > 0,
0

which achieves the proof. O
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