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1. Introduction

The purpose of this paper is to give the second main theorem with truncated counting functions for
meromorphic maps intersecting moving targets on parabolic manifolds. As the application, we also discuss
the uniqueness problem with moving targets on parabolic manifolds.

In 1926, by using the second main theorem and Borel’s lemma, R. Nevanlinna [13] proved the five-value
theorem and four-value theorem for meromorphic functions. More precisely, let fi and fo be two nonconstant
meromorphic functions on the complex plane C, and let ai,...,a, be ¢ points in C U {oco} = P(C). If
SUDPD fbfy,a; = SUPP ffy,a,;, L < J < g, then f1 = fo for ¢ > 55 if g o, = piy.0;, 1 < J < g, then there exists
a Mobius transformation L such that fo = Lo f; for ¢ > 4. Here py, o, is the pull-back divisor of a; by f;
fort=1,2and j=1,...,q.

For the higher dimensional case, in 1975, H. Fujimoto considered the uniqueness problem for meromorphic
maps with counting multiplicities. Let f; and f; be linearly nondegenerate meromorphic maps from C™
into P"(C), and H; € P*(C*), 1 < j < q, such that Hy,..., H, are in general position. He (8] proved that if
Wfy Hy = Pfa Hy 1< J < g, then f1 = f5 for ¢ > 3n 4 2, and there exists a projective linear transformation
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L of P*(C) such that fo = Lo f; for ¢ = 3n+1. Here puy, pr;, t = 1,2, 1 < j < g, is the intersection divisor of
fr and Hj, which will be defined in Section 2.4. For the uniqueness problem without counting multiplicities,
Smiley [18] showed that if suppuy, m, = supp s, x, and dim(supp pys, g, N supp pys a;) < m — 2 for
1<i<j<gq,then fi = fo on U?:l supp p sz, implies fi = fa for ¢ > 3n + 2. Ji [10] gave an algebraic
dependence theorem for ¢ > 3n + 1.

In the proof of uniqueness theorems without counting multiplicities, the following Cartan’s truncated
second main theorem (see [2]) is an essential tool.

Theorem A. Let f : C™ — P*(C) be a linearly nondegenerate meromorphic map, and H; € P"(C*),
1 <5 <gq, such that Hy,...,H, are in general position. Then, for s > 0,

(g —n—1)T(r,s) .<. Z N;TL})IJ, (r,s) +o(Ty(r,s)),

where .<. means that the inequality holds for all v except for a finite measure subset E C [s,400).

Using a generalization of Theorem A, W. Stoll [22] studied the uniqueness problem for meromorphic
maps by replacing C™ by parabolic covering spaces.

Let M be a connected complex manifold of dimension m with a surjective, proper holomorphic map
7: M — C™. Then 7 = ||7||? is a parabolic exhaustion of M and (M, 1) is called a parabolic covering space
of C™. Let V be a Hermitian vector space of dimension n + 1 > 1.

Let f; : M — P(V) be a meromorphic map for t =1,..., ) and A be a nonempty subset of M. f1,..., fa
are said to be in p-special position on A if, for any x € A, there exist an open, connected neighborhood U,
of x and a reduced representation F; : Uy, — V (of f;) such that, for any 1 <#; <tg <--- <t, <A,

Ftl(:c) AR /\Ftp(l') =0.

If A= M omit “on A”. Also “special position” means “A-special position”. (For the definitions of mero-
morphic map and reduced representation, see Section 2.3.) Then f; and fo are in 2-special position if and
only if f1 = fo. If f1,..., f\ are in A-special position, then fi,..., f) are algebraically dependent, where
fi,-.., fr are said to be algebraically dependent if and only if there is a proper analytic subset S of P(V)*
such that (f1,..., fn) C S. (See Proposition 1.1 in [22].)

Stoll [22] extended the results given by Smiley [18] and Ji [10] as follows.

Theorem B. Let (M, 7) be a parabolic covering space of C™ with branching divisor B of w. Let V' be a Her-
mitian vector space of dimension n+1 > 1. Let | and X be integers with2 <l < A< n+1. Fort=1,..., A,
let fy : M — P(V) be a linearly nondegenerate meromorphic map. Assume Ng(r,s) = O(Zi\zl Ty, (r,s)) and
log = = O(Z;\:l Ty, (r,s)), forr — oo. Let Hy, ..., Hy be in general position in P(V*) with ¢ > n+1. Assume

that A; = supp iy, g, = SUpp fif, q;, = -+ = Supp iy, m, for each j =1,...,q, and dim(A4; N A;) <m — 2
for 1 < i < j < q. Define A = ngl Aj. Assume that fi,..., fx are in l-special position on A. If
q > /\fl)\Jrl +n+ 1, then f1,..., fx are in special position. In particular, f1,..., [\ are algebraically de-
pendent.

Remark 1.1. Consider M = C™ with the identity 7 : M — C™, and V = C"*!. Then Theorem B gives the
result of Smiley [18] for A = 2 and ¢ = 3n + 2, and extends the theorem of Ji [10] who considers the case
=2, A=3and ¢ = 3n+ 1. For more results of related subjects, we refer readers to the references [3-6,9,
23,25,26).
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For M = C™ and V = C"" Ru [15] generalized Stoll’s result to moving targets, in which the fixed
target H; € P"(C*) is replaced by meromorphic map g; : C™ — P"(C*) for 1 < j < ¢. He firstly established
the following truncated second main theorem for moving targets.

Theorem C. Let f : C™ — P*(C) be a nonconstant meromorphic map. Let g1,...,gq : C™ — P*(C*) be
g meromorphic maps located in general position such that (f,g;) is free for 1 < j < q (for definition, see
Section 2.4). If ¢ > 2n + 1, then

q (n)
m f , S ZN 7” S +O(1IE§IX T ( ))+O(Tf(7',$))

Applying Theorem C, Ru [15] gave the following theorem, which generalizes Theorem B for the case
M =C™ and V = C"*1.

Theorem D. Let f1, fa,..., fr : C™ — P™(C) be nonconstant meromorphic maps. Let g1,...,g, : C™ —
P*(C*) be moving targets located in general position and Ty, (r,s) = o(maxi<i<x{T},(r,5)}) for r — oo,
1 < j < q. Assume that (ft,g;) is free for 1 < j < q, 1 <t < X. Assume that A; = supppy, 4, =

SUPD fif,,q, = - = SUPP fy g, for 1 < j < g, and dim(A;NA;) <m—2 for1 <i<j<q. Let A= U?ZIA
2
Let 1, 2 <1 < A, be an integer such that f1,..., fx are in l-special position on A. If ¢ > ")\(27"7[5))‘, then

fi,---, [\ are in special position.

In this paper, we will extend the above theorems to more general parabolic manifolds. Throughout this
paper, we shall use the standard notation in the value distribution theory of meromorphic maps on parabolic
manifolds (see [20,24]). Some notation and definitions will be introduced in Section 2.

To establish the value distribution theory, we shall work on admissible parabolic manifolds, which satisfy
the following assumptions:

(i) M is a connected complex manifold of dimension m.
(ii) There exists a parabolic exhaustion function 7 on M.
(iii) For any positive integer n, let ¥ : M — P™*(C) be a linearly nondegenerate meromorphic map. Then
there is a holomorphic differential form B of degree (m — 1,0) on M such that ¥ is general for B (see
p. 144 of [20] or Section 1.3 of [12]) and

Mip_1BAB <Y (r)o™!

on M[r| for some real positive valued function Y'(r) on M, which is independent of ¥ (Y (r) is called
a majorant for B). Here, for any positive integer m,

= <E>m(_1)""“’5”m!.

Iy 1=
2

We note that the manifold M with dimension m in Theorem B is an important class of admissible
parabolic manifold. Let m : M — C™ be a surjective, proper holomorphic map and S be the branching
divisor of M. Then 7 = ||7||? is a parabolic exhaustion of M. Let ¥ : M — P"*(C) be a linearly nondegenerate
meromorphic map. Stoll [20] showed that there exists a holomorphic differential form B of degree (m —1,0)
on C™ such that the holomorphic form B = 7* B of degree (m—1,0) on M is majorized by 7 with majorant
Y(r) <1+r*=2 for all » > 0 (cf. Theorem 10.2 in [20]). Further, we have

0 < Ng(r, s) = Ric.(r, s),
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where Ric.(r, s) is the Ricci function (for definition, see p. 1048 of [24]), which depends only on the geometry
(topology) of the manifold M.

An available technique to prove the second main theorem with moving targets is the combination of
H. Cartan’s and Steinmetz’s technique [2,19,16]. In applying this technique to meromorphic maps on
parabolic manifolds, the main difficulty lies in that it is hard to extend the logarithmic derivative lemma
to meromorphic maps on parabolic manifolds. In [1], Ashline gave a version of the logarithmic derivative
lemma on parabolic manifolds with an additional assumption that there exists a holomorphic m form @ # 0
on M. Thus a second main theorem for meromorphic maps with moving targets was proved.

Motivated by the analogy between Nevanlinna theory and Diophantine approximation discovered by
C. Osgood, P. Vojta and S. Lang, etc., Ru [14] got the following second main theorem with moving targets,
and the logarithmic derivative lemma could be avoided.

Theorem E. Let (M, 1) be an admissible parabolic manifold with dimension m. Let V' be a Hermitian vector
space with dimV =n+1> 1. Let f : M — P(V) be a meromorphic map. Let gi,...,94 : M — P(V*) be
meromorphic maps located in general position. Let Rg be the smallest subfield containing all the coordinate
functions of all gj, 1 < j < q. Assume that f is linearly nondegenerate over Rg and logY (r) = o(T(r, s))
for r — oo, where Y (r) is the majorant for B. Then, for s > 0 and for every ¢ > 0, there are constants
Ci,e >0 and Ca . > 0 dependent on €, such that

(g—n—1—¢e)Ty(r,s) ZNfgﬂ r,s) + C1  Ric.(r, s)+CQE<logr+ max Tg (r, ))
Jj=1

We note that the counting functions in these theorems are not truncated. In [11], Liu obtained a gener-
alized Schmidt’s subspace theorem in Number Theory. Motivated by the technique shown in [11] and the
analogy between Nevanlinna theory and Diophantine approximation, we can prove the following truncated
second main theorem.

Theorem 1.1. Let (M, 1) be an admissible parabolic manifold with dimension m. Let V' be a Hermitian vector
space with dimV =n+1> 1. Let g1, ..., 94 : M — P(V*) be meromorphic maps located in general position.
Let f: M — P(V) be a nonconstant meromorphic map such that Ric.(r,s) = o(T¢(r,s)) and logY (r) =
o(Ty(r,s)) for r — oo. Assume that (f,g;) is free for 1 < j < q and dim(supp s, NSUPpP pifg;) < m — 2
for1<i<j<gq.Ifq>2n+4+1, then, for s >0,

q

Ty(r,s) Z (rys —|—O( max Ty (7, )) +o(Ty(r,s)). (1)

1<5<q

2n+1

Using this second main theorem, we obtain the following results for the uniqueness problem.

Theorem 1.2. Let fi,..., fx : M — P(V) be nonconstant meromorphic maps with Ric,(r,s) = o(Ty,(r, s))
and logY (r) = o(TYy,(r,s)) forr — 00,1 <t < A. Let g1,...,94 : M — P(V*) be meromorphic maps located
in general position and Ty, (r,s) = o(maxi<i<x Ty, (r,5)) for r — 0o, 1 < j < q. Assume that (f,g;) is

free for 1 < j < q, 1 <t < A\ Assume that Aj = supp iy, g, = SUPD fif,,g; = *** = SUPD fif, g, fOT each
j=1,...,q, and dim(4, NA4;) <m—2 for1 <i < j <gq. Define A = Uq Aj. Assume that f1,..., fa
are in l-special position on A, where | is an integer with 2 <1 < X. If ¢ > (2"% then f1,..., f\ are in

special position.

For M = C™ and V = C"*!, we have the following corollary.
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Corollary 1.1. Let f1,...,fx : C™ — P"(C) be nonconstant meromorphic maps. Let ¢1,...,94 : C™ —
P*(C*) be moving targets located in general position and Ty, (r,s) = o(maxi<i<x{T},(r,5)}) for r — oo,
1 < j < q. Assume that (ft,g;) is free for 1 < j < q, 1 <t < X. Assume that A; = supppy, 4, =
SUPD fify g, = **+ = SUPP sy g, for 1 < j < g, and dim(A; N A;) < m —2 for 1 < i < j < q. Let
A= U‘;:l Aj. Assume that f1,..., fx are in l-special position on A, where | is an integer with 2 <1 < . If

q> "()\2_”7;;11»‘, then f1,..., fx are in special position.

We organize our paper as follows: In Section 2, we recall some basic notation and definitions in the value
distribution theory of meromorphic maps on parabolic manifolds. We give some truncated second main
theorems for moving targets in Section 3, and prove Theorem 1.2 in Section 4.

2. Preliminaries

In this section, we list some fundamental notation, facts and results of meromorphic maps on parabolic
manifolds. For references, see [20] or [24].

2.1. Parabolic manifolds

Let M be a connected, complex manifold of dimension m. Let 7 be a nonnegative function of class C*°
on M. For r >0 and S C M, define

S[r]:{ZGS}T(x)§r2}, S(r)z{m€5|7(m)<r2},
S(ry={z e8| 7(x)=r"}, S,={zeS|7(z)>0}.
Define
v=dd°T on M, w=ddlogT on M,, o=d%logT Aw™ Y on M,.

Then 7 is said to be a parabolic exhaustion and (M, T) a parabolic manifold if and only if 7 is unbounded,
M]r] is compact for all » > 0 and

w >0, do=w" =0, o™ Z£0 on M,.

Then v > 0 on M. Define R, = {r € R* | dr(x) # 0 for all € M(r)}. Then Rt \ R, has measure zero. If
r € R,, then M(r) is the boundary of M(r) and M (r) is a differentiable, (2m — 1)-dimensional submanifold
of class C'*° which we orient to the exterior of M (r).

For all r € R, me o is a positive constant, independent of r (cf. p. 133 of [20]). Let xk = fM(T) o.In

addition,
/vm: / ™ = KM

M]r] M(r)
2.2. Divisor

A function v : M — Z is called a divisor if for each point x in M there exists a connected, open
neighborhood U of # and if there exist holomorphic functions g # 0 and h # 0 on U with v|y = pu) — pp,
where p(x) and pj(x) denote the zero multiplicities of g and h at x € U, respectively. If v = 0, then v
is called the null divisor. For v # 0, its support S = suppv is an analytic subset of M of pure dimension

Please cite this article in press as: Q. Yan, Second main theorem and uniqueness theorem with moving targets on parabolic
manifolds, J. Math. Anal. Appl. (2015), http://dx.doi.org/10.1016/j.jmaa.2014.08.048




Doctopic: Complex Analysis YJMAA:18805

6 Q. Yan / J. Math. Anal. Appl. e e o (e e 0ee) o6 0e—0oe

m — 1; if v = 0, then suppv is empty. A divisor v is nonnegative as a function if and only if for every x
in M, there exist a connected open neighborhood U of  and a holomorphic function g Z 0 on U such that
vlp = Mg-

Let f # 0 be a meromorphic function on M. For each € M, on a connected, open neighborhood U of x,
there exist holomorphic functions g # 0 and k # 0 such that f = £ on U with dimg~'(0)NA~1(0) < m—2.
Then the zero divisor M(}(Z 0) is defined by M(}|U = ,ug and the pole divisor u°(> 0) is defined by 3|y = ul.
The divisor of f is given by pu¢ly = ug — .

Let v be a divisor on M with S = suppv. The counting function of v is defined to be

No(r,s) = / n ()2

t i

where

n,(t) = Z v(z), ifm=1.

z€S[t]

Let f # 0 be a meromorphic function. For r; s in R, with 0 < s < r, Jensen’s formula holds:

Ny, (r,s) = /log|f\of/log|f|a.

M(r) M(s)

2.8. Meromorphic maps, reduced representation

Let M be a complex manifold with dim M = m. Let A # @) be an open subset of M such that S = M — A
is analytic. Then A is dense in M. Let V be a complex vector space with dimension n + 1 > 1. Let
f:+A—P(V) be a holomorphic map on A. The closure I" of the graph {(z, f(z)) | z € A} in M x P(V) is
called the closed graph of f. The map f is said to be meromorphic on M if (i) I'(f) is analytic in M x P(V)
and (ii) I'N (K x P(V)) is compact for each compact subset K C M, i.e., the projection p : I'(f) — M is
proper. If f is meromorphic, then the set of indeterminacy Iy = {x € M | $p~'(z) > 1} is analytic with
dimI; < m — 2 and is contained in S. The holomorphic map f : A — P(V) continues to a holomorphic
map f : M — Iy — P(V) such that we can assume that S = Iy. So a meromorphic function on M is a
meromorphic map f: M — P1(C) that is not identically oo.

Suppose that f : A — P(V) is a holomorphic map as above. Also, suppose that U is a nonempty,
open, connected subset of M. A holomorphic map F : U — V is called a representation of f on U if
F # 0 and if f(x) = P(F(x)) for all z € U N A such that F(x) # 0. The representation is called reduced
if dimF~1(0) < m—2.If F: U — V is a reduced representation, then U N I; = F~!(0). Also, f is
meromorphic if and only if for every point € M, there is a representation F' : U — V of f with x € U.

Next, F' : U — V is said to be a meromorphic representation of a meromorphic map f if for all x € U,
there exist an open, connected neighborhood U, C U of z, a holomorphic function 0 # h : U, — C, and a
representation F’ such that

F/

F' =hF F=—.
or =

Please cite this article in press as: Q. Yan, Second main theorem and uniqueness theorem with moving targets on parabolic
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Now, if FF : U — V and F' : U — V are two meromorphic representations of f, then there exists a
meromorphic function h #Z 0 on U such that

F =hF'.

If F is a representation and F” is a reduced representation of f, then there exists a holomorphic function
h # 0 on U such that

F=hF'.
If F and F’ are both reduced representations of f, then the above h will be nowhere zero.

Remark 2.1. There may be no global representation of f on M. However, if M = C™ and f: C™ — P*(C)
is a meromorphic map, then f has a global reduced representation F' = (fo,..., fn)-
The characteristic function of a meromorphic map f : M — P(V) is defined by

r

Ty(r,s) = /tzm T /f AV™TH(>0) forO<s<r,

MIt]

where (2 is the Fubini-Study form on P(V).
2.4. Projective distance

Suppose that f: M — P(V) and g : M — P(V*) are meromorphic maps. Let U be an open, connected
subset of M. Let F': U — V be a reduced representation of f and G : U — V* be a reduced representation
of g. Let {vg,...,vn} be an orthonormal basis of V', and let {v,...,v:} be the dual basis.

Take a € V* and b € V* \ {0}, there is a unique meromorphic function f,; called a coordinate function
on M such that

F,a
futlr = {5
if (F,b) % 0.
Define
F.G= En:(F, v;){G,v}),
. va
1]y = (;y (F,v;) ) (or [1Fll2 = max [(F.0)]),
n 1/2
o1 = () (or 161 = g (6],
We note that, by || - |2 < || - |1 < (n + 1)Y2|| - ||2, these two norms are equivalent.

Then the projective distance between f and g is defined by

|FLG)|

Filll = 7mar
I7:lllv = TETer

Note that ||f; g is a global function on M.

Please cite this article in press as: Q. Yan, Second main theorem and uniqueness theorem with moving targets on parabolic
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Now, (f,g) is called free if and only if there exist representations F': U — V of fand G: U — V* of g
such that FLG # 0. Suppose that (f, g) is free. Define the intersection divisor of f and g by

brglu = pra,
which is well-defined. The counting function for the intersection divisor of f and g is given by
Nyg(r,s) = Ny, ,(r,s)

and the truncated counting function (by a positive integer L) for the intersection divisor of f and g is

(L) _
Nﬁg (Ta S) = NM;LQ) (Ta S),

where u%g) (2) = min{L, ps 4(x)} for € M. For € R, define

1
myg(r) = / o8 gl

M(r)
2.5. First main theorem for moving targets
For r, s in R, with 0 < s < r, we have
Ty(r,s) + Ty(r,s) = Nypg(r,s) +myg(r) —mpg(s). (2)

Since Ty, T, and Ny 4 are all continuous in 7 and s, then my 4 will extend to a continuous function on R*
such that (2) holds for all 7, s in R with 0 < s < 7. (See (1.2) of [1].)

2.6. Second main theorem for fized targets

Let (M, 7) be an admissible parabolic manifold of dimension m. Let f : M — P*(C) be a meromorphic
map which is linearly nondegenerate over C. Let {H;}7_, be a family of fixed targets in P"(C*) located in
general position. Then, for s > 0 and for € > 0,

n 1 .
(g—n—1)Tf(r,s) .< N](C,H_(r, s)+ §n(n + 1) Ric,(r,s) + clogr

J

M=

1

<.
I

+n(n+ 1)k(L+¢)?(log Ty (r, s) + log Y (r) + log™ Ric,(r, 5)).

(Cf. [20].)
3. Truncated second main theorem for moving targets

In [17], Ru and Wang proved a truncated second main theorem for meromorphic maps from C™ into P"(C)
intersecting a finite set of moving targets, in which the set of moving targets is assumed to be nondegenerate
(see the definition below). Previously only general position or subgeneral position was considered.

Let g; be a meromorphic map from C™ into P (C*) with reduced representation G; = (gjo, - .., gjn) for
1 < j < q. For each j, there exists j with 0 < j < n such that g;; # 0, and put G = (0,315 - - - jn) With
Gji = gji/gjj for 0 <7 < n. Denote by M the field of all meromorphic functions on C™.
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Definition 3.1. The family G = {G1,...,G,} is said to be nondegenerate over M if dim(G)yp =n + 1 and
for each nonempty proper subset G; of G,

(GMN(G\G)Mm NG #0,
where (G) ¢ is the linear span of G over the field M.

Denote G = {él, ce éq} and Rg the smallest subfield of M which contains C and all gj; for all ¢, j.

Definition 3.2. The farmly G is said to be nondegenerate over Rg if dlm(g)Rg = n+1 and for each nonempty
proper subset g1 of g

(51)72@ NG\ Q~1)7ag NG #0,
where (QN)RQ is the linear span of G over the field Rg.

It is easy to show that if the family G is nondegenerate over M, then G is nondegenerate over Rg.
In 2003, Ru and Wang [17] proved the following second main theorem.

Theorem F. Let f : C™ — P"(C) be a nonconstant meromorphic map. Let gi,...,g, be ¢ meromorphic
maps of C™ into P"(C*) such that (f,g;) is free for 1 < j < q. Assume that G is nondegenerate over M.
Then

(r,s) .<. nZN(n (r,s —l—O( maXT (s ))—i—o(Tf(ns)).

1<5<

In [7], Do and Si improved Theorem F as follows.

Theorem G. Under the same assumptions as in Theorem F,

Ty(r,s) .< ZN(") (r,s) +O( Jax T, Ty, (r, )) + o(Ty(r,s)).

In this section, we will extend Theorem G to meromorphic maps on parabolic manifolds. Unfortunately,
the proof of Theorem G relies heavily on the lemma of logarithmic derivative. We note that, in [11], Liu
proved the counterpart of Theorem G in Diophantine approximation, namely, a Schmidt’s type theorem.
Hence, we will use the technique shown in [11] to avoid using the logarithmic derivative lemma.

Firstly, we generalize the definition of nondegenerate to moving targets on parabolic manifolds.

Let G = {g1,..., 94} be a family of ¢ target meromorphic maps from M into P(V*). For each j, let G be

a reduced representation of g; on U and j with 0 < j < n such that (G, vf} % 0. Then G =>" ggj—givj
(GJvU ) -

is a global meromorphic representation of g;. Denote G = {él, .. G ¢} We note that Gros) is meromorphic

on M fori=0,...,nand j =1,...,q. Denote by Rg the smallest subfield containing C and all meromorphic

functions EG? ’U*i for all 4, 7.

Definition 3.3. The family G is said to be nondegenerate over Rg if dim(g)ng = n+1 and for each nonempty
proper subset G of G,

(G1)rg N(G\ Gi)rs NG # 0.

We have the following truncated second main theorem.
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Theorem 3.1. Let (M, 1) be an admissible parabolic manifold with dimension m. Let V' be a Hermitian
vector space with dimV = n+1 > 1. Let ¢1,...,9¢ : M — P(V*) be ¢ meromorphic maps such
that G is nondegenerate over Rg. Let f : M — P(V) be a nonconstant meromorphic map such that
Ric,(r,s) = o(Ty(r,s)) and logY (r) = o(Ty(r,s)) for r — oco. Assume that (f,g;) is free for 1 < j < gq and
dim(supp .9, NSUPP fifg,) <m —2 for 1 <i < j < q. Then, for s >0, we have

q
(n)
Ty(r,s) .<. Z; Ny o (1s8) + O( Jax. Ty, (7, 5)) +o(Ty(r,s)).
J:
We first prove the following two lemmas.
Let F and G;, 1 < j < g, be the reduced representations of f and g;, 1 < j < ¢, on U. Consider

meromorphic functions (on U) FLG; == 37", ég;Z;i (Fyv;) = é:i;w 1<j<q.

Lemma 3.1. (Cf. [7.11].) Assume that G is nondegenerate over Rg. There exist an integer u > 1 and subsets
Ii,.... I, of G with the following properties:

(a) {FLéj}é_eIl is minimal and {F\_éj}é_elk is linearly independent over Rg for 2 < k < wu, where
J J
{F\_Gj}é_ell is minimal means {F\_Gj}éE[1 is linearly dependent over Rg but each nonempty proper
J J

subset of {F‘-éﬂ'}@'ell is linearly independent over Rg.
J
(b) w is the minimal positive integer such that

( U {FLGj}@je,k> = ({FLGi}a, o) n,-
k=1 Rg
(c) For each | with 2 <1 < u, there exist nonzero meromorphic functions c; € Rg \ {0} such that

-1
Z CjF\_Gj c (U{FLGj}éjelk>
k=1

éjell Rg
Proof. Since Gy € (G \ {él})Rg, this implies that
FLél S ({FL@j}?:Q)Rg.

Choose a subset I; of G containing G such that {Fl_éj}é_eIl is minimal. Assume that I, = {C~1'1, ce, étl}.
J
Then there exist meromorphic functions ¢; € Rg \ {0}, 1 < j <t; — 1, and ¢;; = —1 such that

t1
> ¢ FLG;=0.
j=1

It ({Fl_éj}éjeIl)Rg = ({Fl_é]’}@jeg~>ng, by taking u = 1, then the proof is finished.
Otherwise, there exists G € G such that G € (I)rg N (G \ I1)rg- One of the following two cases
holds:

(i) G € G\ I, we may assume that G = Gy, 41 € (I)Rrg, i€,
F\_Gt1+1 S ({FLGj}é_7€I1)Rg'
Put 12 = {ét1+1} and Ct14+1 = 1.
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(i) G € I, we may assume that G = Gy, € (G \ I1)rg- Then there exists a subset of G\ I1, we may assume
that it is {Gy,41,...,Gr }, and ¢; € Rg \ {0}, t1 +1 < j <ty such that

to
FI_th = Z CjFI_Gj
j=t14+1
and {FLéj};zztl+1 is independent over Rg. Set Iy = {Gy, 41, ..., Gy, }-
If ({Fl_éj}éjellulz)Rg = ({FLéj}éjeg‘)Rg, then the proof is finished; otherwise, repeating the above

¢ = n+ 1 is finite,
there exist a w and subsets I, ..., I,, satisfying the assertions (a)-(c) of the lemma. 0O

argument, we would get another subset I3. By continuing this process, since dim(é)R

Remark 3.1. 1) Obviously, the construction of I, ..., I, and {c;} is independent of the choice of the reduced
representation of f.
2) We may assume that the cardinality of I; satisfies §7; > 3 and #I; > 2 for 2 < < w.

(a) If 41, = 1, for some [ with 2 < [ < u, i.e., [; = {Gy,}, Gy, € G, then FLGy, € ( ic;ll{F‘-éj}éjelk)Rg’
s0

! -1
(U{FLGj}@jeIk> = (U{FLGj}@jeIk> :
k=1 Rg k=1 Rg

we can always delete I; from {I,...,I,,}. Hence §I; > 2 for any [ € {1,...,u}.
(b) If §I; =2 and (FLG1)r, = ({FLGj}éngN)Rg, then there exists co g € Rg such that

FLéa = Ca,ﬂFLég (3)
for any 1 < a < 8 < ¢. Since dim(g)ng =n+1, for any a € V* and b € V*\ {0}, (3) implies the
coordinate function f,, € Rg. Hence, Ty(r,s) < O(maxi<j<qTy,(r,s)) which implies Theorem 3.1.
Otherwise, we replace I} by {G1} U I which is minimal.

For an integer N with 1 < N < wu, put I := Ufcv:1 Iy = {él,...,ém}, il =tn.

For a reduced representation F': U — V of f and reduced representation G; : U — V* of g;, the map
fr =P(F;): M — PH~=1(C) is defined by

Fily = (hiFLG1,...,hiFLGy,),

where h; is a holomorphic function on U such that (h ]Fl_él, ey h[Fl_ét ~) is a reduced representation of
fronU.

Lemma 3.2. Let I = ngl I with 1 < N <wu. Then for s > 0, we have

Ty, (r,s) ZN(” (r,s +O(1I£1]a§qT (r, )) +o(Ty(r,s)).
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Proof. We now prove lemma by induction on N.
IfN=1,then I =1 ={G1,...,Gy, } := IyU{Gy, }. Since {FLGj}éjell is minimal, by the construction
in Lemma 3.1,

t1—1
F\_étl = Z CjFI_Gj, ¢ € Rg.

j=1

Take f : M — P*1=2(C) to be the meromorphic map with reduced representation

FIO (hIOCIFLGla---»hljoctlleLétlfl);

v =

where A} is a meromorphic function on U. It is easy to see that fj is linearly nondegenerate over C. By
the assumption dim(supp g4, NsUpp pis,g,) < m — 2 for any a # f3,

t—1 t—1 t—1
ZHED SIS SR WD 3
j:l
I-th
Set er,; = (0,...,0, 1,0,...,0) € C*Ho 1 <[ <t — 1. Then {ey,, l}l 1 is the orthonormal basis of

CHo, and let €Ty ! be the dual basis. Take Hy,; € P''=2(C*) Wlth representation HIO = ej, for
1 <1<t —1and Hy,,, €Pr72(C*) with representation HIO = Zl 1 61 I Obviously, Hry1,. .., Hyy 1,
are in general position. Note that Fy_ I_H[O 1= hy, aFLGy,1<1<t;—1,and Fy, I_H[O t, = hl, F\_th

By the second main theorem for fixed targets, we have

Tf;0 (r,8) .

AN

2)
Z fo;,mo (rys) +n(n+1)k(1 +¢€)*log Ty, (r,s) + o(T¢(r,s))

\'/\

Z Nf:;),Hzo S s) +n(n+1)k(1 +¢)*log Ty, (r,s) + o(Ty(r,s)).
Together with N}Z){HIW_ (r,s) < NJ(CT;)J (r,8) + O(maxi<j<q Ty, (r,8)), 1 <j <ty

Ty (1,s) . ZN") (r,s)+n(n+1)k (1+5)2long;0(r,s)+O<

Iy

1I£1Jaé<q Ty, (r, S)) +o(Ty(r,s)). (4)

On the other hand, by |C]‘FLéj| <(n+1) gg;zz; (F,v;)| for j =1,...,t; — 1, it follows that
_ G vt
max |¢;FLG,| < (n—|—1) nax lc;| - max (G v, max |(F, v;)|
1<j<t,—1 <j<ti—1 1<j<tq—1 (Gj,vi'f> 0<i<n
0<i<n J
and
ClFl_él
i | = ——2 L
maxi<j<t, —1 |¢; F'LGj|
S el |ca ~maxo<i<n [(G1,07)| 1
T on+l maxi<j<t;—1 |Cj| |<G17U;>‘ max1<3<t1,1 | G“Z ; 7
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which means

Mgy 1 (1) S, (r) + O max Ty, (r.5)).

Thus,

Tf}O (Ta 8) = mf}07H10,1 (7“) + Nf}O,H1O,1 (T’ S) + 0(1)

gmf7g1(r)+Nf7gl(r,s)+O( max T (r, ))

1<j<q
=Ty(r,s)+ O( ax T Ty, (r, s)) (5)
(4) and (5) yield
sz ) ZN(”) (r,s +O(1rélja§qT (r, )) + o(Ty(r,s)). (6)

Consider fr, : M — P ~1(C) with reduced representation
Fplu = (h1,FLGy,...,hr, FLGy,),

where hy, is a holomorphic function on U with ,u?” <y i1 1l G0y
We now compare T, (r,s) and Ty, (r,s).
Take Hy, ; € P1'~1(C*) with representation Hy, = er,.1- Then

|Fr,LHp, | _ |FLG,|
[Fn [ Hp 1l maxicjcy, [FLG

||f11;H1171|| =

and Fp, \_ﬁ[hl = h[lFl_él. Since

~ 1 ~
|FLGJ‘|:W|C]'F|_G]'|, ISjStl—l,
Cj
and
‘Fl_étl| = Z CjF\_éj S Z |CjF|_éj‘,
Giely G,€lo
we have

max |F\_éj| < IjIOomax{ max |1/cj|,1} - max |ch|_éj|
G el Gj€elo Gj€elo

which yields

/7 Hroall |1/e1]

1 Hryall < '
L t1, max{maxfgjefo 11/c;],1}

Therefore
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max{maxg o, [1/¢], 1}
My, by (1) S Mg g (1) + / log 1 /CI‘J‘ o(1)
M(r)
maxeg ¢ [1/¢]
Smyp Hy . (1) + / log ﬁj—coﬂa + / log™ |e1|o 4+ O(1)
M (r) M {r)
< myy iy, (1) + O mas T, (r.9)).

~ Iy R
By Fr,.Hyp 1 = TlchIO‘_HIO717 we have
)

Ny ity (r:8) < Ny 1y, (r8) + O max T, (r.5) ).

Then, we obtain that

Tfll (’I“, 5) = mf117H11,1(r) + Nfll,Hll,l (’I“, S) + O(1>

< Mgy g (1) Npg gy (78) + O max T, (r,5))

1<5<q

= Tf/ (r,s) + O( rgjax Ty, (r,s)). (7)

Thus, (6) and (7) imply
ty

Ty, (r.5) < Tjy (r.5) .< ZN"” () + O max T, (r,5)) +o(Ly(r.s)).

Lemma 3.2 is proved for N = 1.
Let us assume that Lemma 3.2 holds for some integer N with 1 < N < wu. If N 4+1 > u, then Lemma 3.2

is done by induction. So, it is enough to consider the case N +1 < u. Let I§ ., := U,ivzl I, I = NH I, =
I]Cv+1 U IN+1.
First of all, by induction, we obtain
sz]cv (r,s) Z N (r,s +O<1IE?X¢1T (r, )) +o(Ty(r,s)). (8)
G]eIN+1
On the other hand, by the proof of Lemma 3.1,
~ tN+1 ~ ~
FL Gy = Z c;FLGj, where Gy € Iy, ¢j € Rg.
Jj=tn+1
Let fr,,, : ]\{ — PHN+1-1(C) be t}~1e meromorphic map with reduced representation Fy . |u
(Wi s Cin+1F Gy, R ey FLGry ), where B is a meromorphic function on U with
tN+1 tN+1 N1
0 0
AN Dl RN SR RN S S )
J=tn—+1 j=tn-+1 j=tn—+1

Obviously, f7,  is linearly nondegenerate over C and, by repeating the argument as in the proof of (5),
Tf;N+1 (r,5) < Ty(r,s) + O(maxi<j<q Ty, (7, 5)).
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Let {ery.,, l}ﬁ N*1 be the orthonormal basis of CH~+1 and {67N+1,l}§ij\1]+1 be the dual basis. We can

take Hy,,, € PH~N+171(C*) with representation ﬁINH,I =€y, for 1 <U<#Iyyrand Hyypy gy, 41 €

BIN+1

P4N+1-1(C*) with representation §1N+1,ﬁ11\1+1 1= 21— which are in general position. Note that

CIng1l
FI/N“‘—}}IN“,I = hleJrlCtN-i-lF‘—étN-i-l, 1<I< ﬁIN_H,
and
FI/N+1L]§IN+1ﬂﬁIN+1+1 = h/IN+1FLétN~

By the second main theorem for fixed targets, we have

BIN+1
(#In+1—1) (#In+1—1)
Tf;N+1 (T7S) = z:1 NfIN+1 HIN+1J( ) N 1N+1 Hryyy, WN+1+1(T7 s)—'—O(Tf(’r’ 8))
j:
Z Ny n) (r,s —I—O( Jmax Ty Ty, (r, s)) + o(Ty(r,s)) +fow+1’HfN+1‘WN+1+1(T’ s).
GiElNt1
By the first main theorem, it follows that
)
mf}N+l’HIN+1vﬁIN+1+1 ’ Z N . T 5 JrO( mjaX T ( )) JrO(Tf(T’ S)) (9)
G] EIN+1
So, by (8) and (9),
TfIfVJrl (r,s) + mf}N+1’HIN+1=WN+1+1 Z N (r,s) + O(lriljaéing] (r s)) + O(Tf(r’ 8)) (10)
GJeI
Next, we show that
My s (1) +O( max T, (r $)) = Ty, (1) = Ty, (r,5). (11)

Claim.

maxg. ¢ |F|_G |

+O< max Ty (7, )) (12)

1<5<q

Ty, (r,s) — Tffz“v+1 (rys) < / log

e |FLG;
Ay maxg cre | LGy|

Proof of the claim. Let {Ux}xreca be an open covering of M, and let Fy : Uy — V and G : Uy — V* be
the reduced representations of f and g; on Uj.
Let

FI,)\ = FI|U,\ = ( .,hL)\FALéj,...)éjeI

be the reduced representation of fr on Uy, where hy ) is a holomorphic function on U, with u?” , <
~ 0 ,
2.G;er 1 awr)- Then

@(FL)\) = ( ey hI,)\F)\I_Gj, .. .)éjeljc\f+1

is a representation of frg  on Ux. (@(Fr,x) may not be a reduced representation.)
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Since Fry : Uy — C* is a reduced representation of f; on Uy, there exists a holomorphic function
gx, : UxNU, — C\ {0} such that

Frx=gxuFr, onUxnU,.

Let Ly, be the holomorphic line bundle on M with transition function {gy,}. Let {Ux,sx}rea be the
holomorphic frame such that

S =gxusx onUyNU,.

Define FI,A € F(U)\, MX(CM) by F‘[’)\ = (Z, F[’)\(Z)) for z € Uy. By FL,\@)S}\ = gAuFI)M®SA = FI,MQ@g,\Ns,\ =
Fy,,®s, on UyNU,, we can define a holomorphic section Fy, € I'((M x CH)® Ly, ) by Ff,|v, = EFr.x ® sy
Let £ be the standard Hermitian metric along the fibers of the trivial bundle M x C* and p be a Hermitian
metric along the fibers of L¢,. Then, by p. 140 of [21], we hold

T

dt m—
T r5) = [ o [ albannom+ [ oglFylise— [ 1oglFp o
s M[t] M (r) M (s)

On the other hand, we have
D(Fr ) =gau®(Frp) onUxnU,.

Define &(F; ) € I'(Ux, M x CHN+1) by &(Fy.5) = (2, 8(Fr.\)(2)) for z € Uy. Since

~ v v ~

D(Frn) @ sx = auP(Fru) ® sy = P(Fr) @ gapsy = P(Fr,,) @ sy

on UyNU,, there exists a holomorphic section FfIICV+1 € I'((MxCHy+1)® Ly, ) with Ffffv+1 lv, = @(FI,,\)(X)S,\.

Then, Fff?v is a representation section of ffﬁurl because @(F7 ) is a representation of f[fwl. We define a
+1

divisor

lu'FfIJCV+1 luy = Hé(Fy ) = Ho(Frn)-

Let ﬁdj(FI, ») be the reduced representation of fffw
D(Frn) = gauP(Fr,) on Uy NU,, we have

, on Uy, where hy is a holomorphic function. By

1 h 1
—@(FI)\) = _'ug)\u . _@(FLH) on U)\ N Uu-
h)\ h)\ h#

Since %@(FI,A) and h%@(FI’,L) are reduced, then Z—‘;gw is a nowhere zero holomorphic function. Hence,

Z—‘; is also holomorphic without zeros. That means up, = pp, on Uy NU,. Thus
MFfIIC\I+1 |U>\ - Mé(FI,)\) = /'[/@(FI,/\) = /’l/h)\|U)\ Z O

By p. 140 of [21], we have

r

dt o
Tflzc\r+1 (Ta S) :/tgm—,l / Cl(qup)/\U ! _NM¢(FLA)<T75)
s Mt]

[ oglErg, lespo — [ toglFyg lisyor
M{(r) M(s)
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We also note that, on Uy,

1Fs, llewp = I1Frall - Isxll, and [1Fy,g  Newp = [|2EFLA)| - Isallo,
where HFL)\” = maXé]E[ |h1,>\F)\\_éj| and ||Q5(F[’)\)H = maXéjelﬁlJrl |h]_’)\F)\\_éj|.
Consequently,

15l
Ty (r8) = Ty () = [ Mg 0 N, (05)+O()

(r) Ff]lc\’+1 Hé@p

maxs |F>\|_C~¥'|
< / log el - O'+O( max ng(r,s)),
Maxg ere | |FALG| 1<5<q

M(r)

where the last inequality provided by pn, < Zéje Inss MG, , and

J,mv}‘>

maXéjel |F)\\_Gj|

maxg cre |FALG,|

is a global function on M independent to A. This finishes the proof of the claim. O

Now, it suffices to show

maxgz ‘C‘Fl_é“ max s ., |FLG,|
Gs€lnis I ’ U—l—O(lrgaé( T,,(r, s)) > / log Gyl o (13)
e |FLGy | <i<q Ao maxg e |FLGj|
Firstly, we have
_max |F|_(~¥j| < max - _max \chl_(N}'j\
Gi€IN+1 Gi€IN+1 |Cj| G€IN+1
or
~ 1/¢c ~
_max |¢;FLG,| > 11/ tN+1|1 - max  |FLGj| - |cey,, |-
Gi€lNy1 maXCN,‘jelNJrl | /cj‘ Gi€IN+1
Hence,
maxgs c; FLG,| maxgs |FLG,|
/ log GJGINt}, J J O+O( max qu (7"7 8)) Z / log GJEIle J o (14)
|FLGtN‘ 1sjsa |FLGtN‘
M (r) M{(r)

We estimate the last integration in (14). Set

maxg o |FLGj|

—(2) = }
max g 1|F|_Gj|

GjEI]F(]Jr

MY(r) = {z e M(r) \

and M?(r) := M(r) \ M*(r). It is easy to see that M'(r) and M?(r) are measurable sets. We see that
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maxg |F|_G | maxg |FLG,|
Gsel = Gielvi ’ (z) for z € M?(r). (15)
maxg cre |FLG \ maxg cre |FLGj|

On the other hand, by FLG,, = ZéjeINH ¢;FLG,, we have

maxy 1<j<tne |G

|FLGry| = N1 - “max  |FLG| - |eiy - (16)
|CtN+1‘ G_,‘GIN+1
Since étN € I, we have
IFLGyy| < max |FLG,]. (17)

jelzc\7+1

Hence, by using (16) for z € M*(r) and (17) for z € M?(r),

maxg |FLG,| . .
G,erl J maXsy+1<5<t |C |
/ log jE€IN+1 o+ / log N S)ISUN+1 1)

s o+ log [ciy, |0
FL.G c /
M{(r) ‘ - tNl M1 (r) | tN+1| M1 (r)

maxgs IFLG,|
> / log SEISE RS R o+ 0(1)

max ~ FLG;
M2<’r‘> GjGIJC\]+1 ‘ ]|

/ : maxg eI|F|_éj\
0g
Maxg cre |FLG,|

o+ 0(1), (18)

M{(r)

where the last equation provided by (15). Together with

max 1 Cj
/ 1og tN+1<j<tNit1 | ]|0_+ / 10g|CtN+1‘O'

|CtN+1|
M (r) M (r)
max ; Ci
< / log tnH1<j<tnsn | ]|U—|— / log™ |CtN+1|J < O( max T, (r, s))
|Ctnis | 1<j<q
M{(r) M{(r)

(14) and (18) imply (13). Then (11) is derived from (12) and (13).
Hence, by (10) and (11), we have proved

Ty, (r, s) ZN (rys +O<1I£laXT (7, ))—i—o(Tf(r,s)). O
<j<
Gjel

Proof of Theorem 3.1. From Lemma 3.2, we can pick N =u, I = UZ:I I

Ty, (r,s) .<. Z N}Z)j (rys) + O(lrgjai( Ty, (r, )) + o(Ty(r,s)). (19)

G el

We now compare Ty, (r, s) and T¢(r, s).
Let F be the reduced representation of f on U and

Fily = (hiFLGy,... ,hiFLGy,)

be the reduced representation of fr.
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By the fact dim(g)ng = n+1, there exist n+1 vectors of G, then we may assume they are Gj17 ey Gy
which are linearly independent. By solving the linear system
<G11"U0> . <GJ1"U ) ~
<GJ1 77)71> (Gjl 77)7> <F, UO> P’I_Gj1
<Gjn+1 7v6> . <Gjn+1 7”2) F Up, ~
G V) Cor V) (F,vn) FLGy, .,
we obtain
(Fovi) = iy F Gy, 4+ iy, FLGy,, 0<i<m,
where ¢; ;, € Rg. On the other hand, by (b) of Lemma 3.1, we have
({FLG }G ez) ({F'—G }G eg)
which implies that (F,v;) = > & ; cg’jFl_éj, 0 <i <n, with ¢; ; € Rg. Hence, we get
max, ... & czlC;l _
max |(F,v;)| < 1 - OSS,’GJEI b -max |FLG,| - |4 |
0<i<n ‘00,1| Gjel '
and
. [ fr; Hrall (G, v7)l 0,1
||f?gl|| Z I / : . G * : - / b
i ‘0071| maxo<i<n |< lavi>| maXogiSmGje[ |Ci,j
which means
mp gy (r) < my, gy (1) + O max T, (r.s)).
By FLG1 = Y1 o(G1,v})(F,v;) and FI\_g]J =hry Egi ;(F v;), we have
Ny g, (r,5) < Ny, ity (r,5) + O( xmax T, (r,s)).
1<5<q
Thus,
Ty(r,s) <Ty, (r,s)+ O( max Ty (7, s)) (20)
1<5<q

From (19) and (20), we derive that

Ty(r,s) <. > N{W (r,s +O(113]a§ Ty, (r, )) +o(T(r,s))
Gjel

|'A

ZN(" (rys —I—O( max Ty, (r, )) +o(Ty(r,s)).

This completes the proof of Theorem 3.1. O
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The G (or G = {G1,...,G,}) are said to be in general position if any n + 1 vectors in G are linearly
independent over Rg. Obviously, if Gl, .. G are located in general position and ¢ > 2n + 1, then G is
nondegenerate over Rg. In this case, we have a stronger result (i.e. Theorem 1.1).

Proof of Theorem 1.1. We can prove (1) by induction on gq.
When ¢ = 2n + 1, (1) is just Theorem 3.1.
For ¢ > 2n + 1, we assume that (1) holds for ¢ — 1 and verify (1) for g.
In fact, choose ¢ — 1 moving targets at a time and apply (1). This gives ¢ inequalities as follows.

2qn+1Tfrs ZN") (r, +O(1r£1Ja§T (r, ))+0(Tf(r,s))
J#l
for I/ =1,...,q. Summing up these ¢ inequalities, we have

C];Z—ll)Tf(rs (g—=1) ZN(" (rys +O<1r£1JaxT (r, ))—l—o(Tf(r,s)),

which proves (1). O
4. Proof of Theorem 1.2

Assume that fi,..., f\ are not in special position. Let F; : U — V be a reduced representation of f; on
Ufort=1,...,\ Then Fy A---ANF\:U — A,V is not identically zero, there exists one and only one
divisor defined by

iAo Afa luv = HFE A AFy -

Obviously fifa...af, = 0. Also, we can define a meromorphic map fi1 A--- A fx : M — P(A, V) b
AN AL =PEFLA---ANF\)onU.

Set S = supp g a...afy - Then A C S. Denote by R(A) and R(S) the sets of regular points of A and S,
and denote by X(A) and X'(S) the sets of singular points of A and S. Define

A
I=5(S)US(A)UI(fi A+ A fr)U (qut)),

t=1

which has at most dimension m — 2.
There exists one and only one divisor v4 on M with v4(z) = 1 for all x € R(A) and va(z) = 0 for all
x € M — A. We now prove

A=1+Dva < ppaify

at every point xg € A — I.
By the definition of I, we can find an open, connected neighborhood U of zy and a holomorphic map

a=(a,a0,...,qm):U—=PxQ
with a(xg) = 0 such that

(1) UUI=0andUNA=UNS =0, (0)=UNR(A) =UNR(S),
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(2) there exist a reduced representation F; : U — V of f; for t = 1,..., A and a holomorphic function h on
U with

Loy A Afa U = By A n By = M
where P is a ball centered at 0 € C™~! and @ is a disc centered at 0 € C.

Let 11 : PXQ — P and m3 : P X Q — @ be the projections. Then mo oo = ap, f := M 0o =
(a1,...,m—1) : U = P.Let t : UN A — U be the inclusion map. Then v = ot : UNA — P is
biholomorphic. Let § = y~!: P — U N A be the inverse map. Observe that a,, ot = 0. For t € {1,...,\},
the Hartogs series development of F; on U uniquely defines holomorphic vector functions Wy : P — V for
all k > 0 such that

Fy =Y (om)" Wik o3

k=0
where the convergence is uniform on every compact subset of U. Then
= Wt + amUt7
where W; := Wy and U; := Z?}:O(am)kWtkH o . Denote by T, A] the set of all increasing injective
maps from {1,2,...,0} to {1,2,...,A}. For each n € T[0, )], there exists a unique 7 € T'[A — 6, \] such that
(Imn) N (Im 7)) = (. Abbreviate €, = singn. fi,..., fx being in I-special position on A implies that, for any
neT[l A,
Wn(l) VANRERA Wn(l) =0.
Thus
-1 0 A—6
LA ANFy = Z(am)A*(’ Z e,,( /\ Wiu) © B) A ( /\ Uﬁ@)) + () UL A+ AU
0=1 neTH,A] u=1 v=1

The lowest exponent of a, is A — 1+ 1> 0. Hence, (A =1+ 1)va < fig vy, -
We have, for every 1 <t < A,

q
n n
SN (r,s) < T Ve aean (1:9) (21)
Jj=1

By the first main theorem of the exterior product (cf. (3.28) of [22]),

(rys) +O(1). (22)

Hfl/-\"'/'\fA

=
||M>«

Combining (21) and (22) yields

Z ft»grs—)\_l+1ZszT8)+O()
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By Theorem 1.1, for 1 <t < ),

q
mTft('f', S) < m ZTfZ r, S + O(llil‘]ax T ( )) ‘I—O(Tft('r, S))

Thus

2n+lsztrs l+1ZTft"S+0 ZTftTS :

which gives a contradiction under the assumption that

n(2n + 1)\
A—1+1
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