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In this paper, with the motivation from Diophantine approximation, a truncated 
second main theorem is established for meromorphic maps from M into P(V ) with 
moving targets gj : M → P(V ∗), 1 ≤ j ≤ q, where M is a parabolic manifold 
and V is a Hermitian vector space. As an application of this second main theorem, 
a uniqueness theorem without counting multiplicities is given.
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1. Introduction

The purpose of this paper is to give the second main theorem with truncated counting functions for 
meromorphic maps intersecting moving targets on parabolic manifolds. As the application, we also discuss 
the uniqueness problem with moving targets on parabolic manifolds.

In 1926, by using the second main theorem and Borel’s lemma, R. Nevanlinna [13] proved the five-value 
theorem and four-value theorem for meromorphic functions. More precisely, let f1 and f2 be two nonconstant 
meromorphic functions on the complex plane C, and let a1, . . . , aq be q points in C ∪ {∞} = P

1(C). If 
suppμf1,aj

= suppμf2,aj
, 1 ≤ j ≤ q, then f1 ≡ f2 for q ≥ 5; if μf1,aj

= μf2,aj
, 1 ≤ j ≤ q, then there exists 

a Möbius transformation L such that f2 = L ◦ f1 for q ≥ 4. Here μft,aj
is the pull-back divisor of aj by ft

for t = 1, 2 and j = 1, . . . , q.
For the higher dimensional case, in 1975, H. Fujimoto considered the uniqueness problem for meromorphic 

maps with counting multiplicities. Let f1 and f2 be linearly nondegenerate meromorphic maps from Cm

into Pn(C), and Hj ∈ P
n(C∗), 1 ≤ j ≤ q, such that H1, . . . , Hq are in general position. He [8] proved that if 

μf1,Hj
= μf2,Hj

, 1 ≤ j ≤ q, then f1 ≡ f2 for q ≥ 3n + 2, and there exists a projective linear transformation 
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L of Pn(C) such that f2 = L ◦f1 for q = 3n +1. Here μft,Hj
, t = 1, 2, 1 ≤ j ≤ q, is the intersection divisor of 

ft and Hj , which will be defined in Section 2.4. For the uniqueness problem without counting multiplicities, 
Smiley [18] showed that if suppμf1,Hj

= suppμf2,Hj
and dim(suppμf1,Hi

∩ suppμf1,Hj
) ≤ m − 2 for 

1 ≤ i < j ≤ q, then f1 = f2 on 
⋃q

j=1 suppμf1,Hj
implies f1 ≡ f2 for q ≥ 3n + 2. Ji [10] gave an algebraic 

dependence theorem for q ≥ 3n + 1.
In the proof of uniqueness theorems without counting multiplicities, the following Cartan’s truncated 

second main theorem (see [2]) is an essential tool.

Theorem A. Let f : C
m → P

n(C) be a linearly nondegenerate meromorphic map, and Hj ∈ P
n(C∗), 

1 ≤ j ≤ q, such that H1, . . . , Hq are in general position. Then, for s > 0,

(q − n− 1)Tf (r, s) .≤.

q∑
j=1

N
(n)
f,Hj

(r, s) + o
(
Tf (r, s)

)
,

where .≤. means that the inequality holds for all r except for a finite measure subset E ⊂ [s, +∞).

Using a generalization of Theorem A, W. Stoll [22] studied the uniqueness problem for meromorphic 
maps by replacing Cm by parabolic covering spaces.

Let M be a connected complex manifold of dimension m with a surjective, proper holomorphic map 
π : M → C

m. Then τ = ‖π‖2 is a parabolic exhaustion of M and (M, τ) is called a parabolic covering space 
of C

m. Let V be a Hermitian vector space of dimension n + 1 > 1.
Let ft : M → P(V ) be a meromorphic map for t = 1, . . . , λ and A be a nonempty subset of M . f1, . . . , fλ

are said to be in p-special position on A if, for any x ∈ A, there exist an open, connected neighborhood Ux

of x and a reduced representation Ft : Ux → V (of ft) such that, for any 1 ≤ t1 < t2 < · · · < tp ≤ λ,

Ft1(x) ∧ · · · ∧ Ftp(x) = 0.

If A = M omit “on A”. Also “special position” means “λ-special position”. (For the definitions of mero-
morphic map and reduced representation, see Section 2.3.) Then f1 and f2 are in 2-special position if and 
only if f1 ≡ f2. If f1, . . . , fλ are in λ-special position, then f1, . . . , fλ are algebraically dependent, where 
f1, . . . , fλ are said to be algebraically dependent if and only if there is a proper analytic subset S of P(V )λ
such that (f1, . . . , fλ) ⊂ S. (See Proposition 1.1 in [22].)

Stoll [22] extended the results given by Smiley [18] and Ji [10] as follows.

Theorem B. Let (M, τ) be a parabolic covering space of Cm with branching divisor β of π. Let V be a Her-
mitian vector space of dimension n +1 > 1. Let l and λ be integers with 2 ≤ l ≤ λ ≤ n +1. For t = 1, . . . , λ, 
let ft : M → P(V ) be a linearly nondegenerate meromorphic map. Assume Nβ(r, s) = o(

∑λ
t=1 Tft(r, s)) and 

log r
s = o(

∑λ
t=1 Tft(r, s)), for r → ∞. Let H1, . . . , Hq be in general position in P(V ∗) with q ≥ n +1. Assume 

that Aj = suppμf1,Hj
= suppμf2,Hj

= · · · = suppμfλ,Hj
for each j = 1, . . . , q, and dim(Ai ∩ Aj) ≤ m − 2

for 1 ≤ i < j ≤ q. Define A =
⋃q

j=1 Aj. Assume that f1, . . . , fλ are in l-special position on A. If 
q > nλ

λ−l+1 + n + 1, then f1, . . . , fλ are in special position. In particular, f1, . . . , fλ are algebraically de-
pendent.

Remark 1.1. Consider M = C
m with the identity π : M → C

m, and V = C
n+1. Then Theorem B gives the 

result of Smiley [18] for λ = 2 and q = 3n + 2, and extends the theorem of Ji [10] who considers the case 
l = 2, λ = 3 and q = 3n + 1. For more results of related subjects, we refer readers to the references [3–6,9,
23,25,26].
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For M = C
m and V = C

n+1, Ru [15] generalized Stoll’s result to moving targets, in which the fixed 
target Hj ∈ P

n(C∗) is replaced by meromorphic map gj : Cm → P
n(C∗) for 1 ≤ j ≤ q. He firstly established 

the following truncated second main theorem for moving targets.

Theorem C. Let f : Cm → P
n(C) be a nonconstant meromorphic map. Let g1, . . . , gq : Cm → P

n(C∗) be 
q meromorphic maps located in general position such that (f, gj) is free for 1 ≤ j ≤ q (for definition, see 
Section 2.4). If q ≥ 2n + 1, then

q

n(2n + 1)Tf (r, s) .≤.

q∑
j=1

N
(n)
f,gj

(r, s) + O
(

max
1≤j≤q

Tgj (r, s)
)

+ o
(
Tf (r, s)

)
.

Applying Theorem C, Ru [15] gave the following theorem, which generalizes Theorem B for the case 
M = C

m and V = C
n+1.

Theorem D. Let f1, f2, . . . , fλ : Cm → P
n(C) be nonconstant meromorphic maps. Let g1, . . . , gq : Cm →

P
n(C∗) be moving targets located in general position and Tgj(r, s) = o(max1≤t≤λ{Tft(r, s)}) for r → ∞, 

1 ≤ j ≤ q. Assume that (ft, gj) is free for 1 ≤ j ≤ q, 1 ≤ t ≤ λ. Assume that Aj = suppμf1,gj =
suppμf2,gj = · · · = suppμfλ,gj for 1 ≤ j ≤ q, and dim(Ai∩Aj) ≤ m −2 for 1 ≤ i < j ≤ q. Let A =

⋃q
j=1 Aj. 

Let l, 2 ≤ l ≤ λ, be an integer such that f1, . . . , fλ are in l-special position on A. If q > n2(2n+1)λ
λ−l+1 , then 

f1, . . . , fλ are in special position.

In this paper, we will extend the above theorems to more general parabolic manifolds. Throughout this 
paper, we shall use the standard notation in the value distribution theory of meromorphic maps on parabolic 
manifolds (see [20,24]). Some notation and definitions will be introduced in Section 2.

To establish the value distribution theory, we shall work on admissible parabolic manifolds, which satisfy 
the following assumptions:

(i) M is a connected complex manifold of dimension m.
(ii) There exists a parabolic exhaustion function τ on M .
(iii) For any positive integer n, let Ψ : M → P

n(C) be a linearly nondegenerate meromorphic map. Then 
there is a holomorphic differential form B of degree (m − 1, 0) on M such that Ψ is general for B (see 
p. 144 of [20] or Section 1.3 of [12]) and

mim−1B ∧ B̄ ≤ Y (r)υm−1

on M [r] for some real positive valued function Y (r) on M , which is independent of Ψ (Y (r) is called 
a majorant for B). Here, for any positive integer m,

im :=
(√

−1
2π

)m

(−1)
m(m−1)

2 m!.

We note that the manifold M with dimension m in Theorem B is an important class of admissible 
parabolic manifold. Let π : M → C

m be a surjective, proper holomorphic map and β be the branching 
divisor of M . Then τ = ‖π‖2 is a parabolic exhaustion of M . Let Ψ : M → P

n(C) be a linearly nondegenerate 
meromorphic map. Stoll [20] showed that there exists a holomorphic differential form B̂ of degree (m −1, 0)
on Cm such that the holomorphic form B = π∗B̂ of degree (m −1, 0) on M is majorized by τ with majorant 
Y (r) ≤ 1 + r2n−2 for all r > 0 (cf. Theorem 10.2 in [20]). Further, we have

0 ≤ Nβ(r, s) = Ricτ (r, s),
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where Ricτ (r, s) is the Ricci function (for definition, see p. 1048 of [24]), which depends only on the geometry 
(topology) of the manifold M .

An available technique to prove the second main theorem with moving targets is the combination of 
H. Cartan’s and Steinmetz’s technique [2,19,16]. In applying this technique to meromorphic maps on 
parabolic manifolds, the main difficulty lies in that it is hard to extend the logarithmic derivative lemma 
to meromorphic maps on parabolic manifolds. In [1], Ashline gave a version of the logarithmic derivative 
lemma on parabolic manifolds with an additional assumption that there exists a holomorphic m form Θ �≡ 0
on M . Thus a second main theorem for meromorphic maps with moving targets was proved.

Motivated by the analogy between Nevanlinna theory and Diophantine approximation discovered by 
C. Osgood, P. Vojta and S. Lang, etc., Ru [14] got the following second main theorem with moving targets, 
and the logarithmic derivative lemma could be avoided.

Theorem E. Let (M, τ) be an admissible parabolic manifold with dimension m. Let V be a Hermitian vector 
space with dimV = n + 1 > 1. Let f : M → P(V ) be a meromorphic map. Let g1, . . . , gq : M → P(V ∗) be 
meromorphic maps located in general position. Let RG be the smallest subfield containing all the coordinate 
functions of all gj, 1 ≤ j ≤ q. Assume that f is linearly nondegenerate over RG and log Y (r) = o(Tf (r, s))
for r → ∞, where Y (r) is the majorant for B. Then, for s > 0 and for every ε > 0, there are constants 
C1,ε > 0 and C2,ε > 0 dependent on ε, such that

(q − n− 1 − ε)Tf (r, s) .≤.

q∑
j=1

Nf,gj (r, s) + C1,ε Ricτ (r, s) + C2,ε

(
log r + max

1≤j≤q
Tgj (r, s)

)
.

We note that the counting functions in these theorems are not truncated. In [11], Liu obtained a gener-
alized Schmidt’s subspace theorem in Number Theory. Motivated by the technique shown in [11] and the 
analogy between Nevanlinna theory and Diophantine approximation, we can prove the following truncated 
second main theorem.

Theorem 1.1. Let (M, τ) be an admissible parabolic manifold with dimension m. Let V be a Hermitian vector 
space with dimV = n +1 > 1. Let g1, . . . , gq : M → P(V ∗) be meromorphic maps located in general position. 
Let f : M → P(V ) be a nonconstant meromorphic map such that Ricτ (r, s) = o(Tf (r, s)) and log Y (r) =
o(Tf (r, s)) for r → ∞. Assume that (f, gj) is free for 1 ≤ j ≤ q and dim(suppμf,gi ∩ suppμf,gj ) ≤ m − 2
for 1 ≤ i < j ≤ q. If q ≥ 2n + 1, then, for s > 0,

q

2n + 1Tf (r, s) .≤.

q∑
j=1

N
(n)
f,gj

(r, s) + O
(

max
1≤j≤q

Tgj (r, s)
)

+ o
(
Tf (r, s)

)
. (1)

Using this second main theorem, we obtain the following results for the uniqueness problem.

Theorem 1.2. Let f1, . . . , fλ : M → P(V ) be nonconstant meromorphic maps with Ricτ (r, s) = o(Tft(r, s))
and log Y (r) = o(Tft(r, s)) for r → ∞, 1 ≤ t ≤ λ. Let g1, . . . , gq : M → P(V ∗) be meromorphic maps located 
in general position and Tgj (r, s) = o(max1≤t≤λ Tft(r, s)) for r → ∞, 1 ≤ j ≤ q. Assume that (ft, gj) is 
free for 1 ≤ j ≤ q, 1 ≤ t ≤ λ. Assume that Aj = suppμf1,gj = suppμf2,gj = · · · = suppμfλ,gj for each 
j = 1, . . . , q, and dim(Ai ∩ Aj) ≤ m − 2 for 1 ≤ i < j ≤ q. Define A =

⋃q
j=1 Aj. Assume that f1, . . . , fλ

are in l-special position on A, where l is an integer with 2 ≤ l ≤ λ. If q > n(2n+1)λ
λ−l+1 , then f1, . . . , fλ are in 

special position.

For M = C
m and V = C

n+1, we have the following corollary.
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Corollary 1.1. Let f1, . . . , fλ : C
m → P

n(C) be nonconstant meromorphic maps. Let g1, . . . , gq : C
m →

P
n(C∗) be moving targets located in general position and Tgj(r, s) = o(max1≤t≤λ{Tft(r, s)}) for r → ∞, 

1 ≤ j ≤ q. Assume that (ft, gj) is free for 1 ≤ j ≤ q, 1 ≤ t ≤ λ. Assume that Aj = suppμf1,gj =
suppμf2,gj = · · · = suppμfλ,gj for 1 ≤ j ≤ q, and dim(Ai ∩ Aj) ≤ m − 2 for 1 ≤ i < j ≤ q. Let 
A =

⋃q
j=1 Aj. Assume that f1, . . . , fλ are in l-special position on A, where l is an integer with 2 ≤ l ≤ λ. If 

q > n(2n+1)λ
λ−l+1 , then f1, . . . , fλ are in special position.

We organize our paper as follows: In Section 2, we recall some basic notation and definitions in the value 
distribution theory of meromorphic maps on parabolic manifolds. We give some truncated second main 
theorems for moving targets in Section 3, and prove Theorem 1.2 in Section 4.

2. Preliminaries

In this section, we list some fundamental notation, facts and results of meromorphic maps on parabolic 
manifolds. For references, see [20] or [24].

2.1. Parabolic manifolds

Let M be a connected, complex manifold of dimension m. Let τ be a nonnegative function of class C∞

on M . For r ≥ 0 and S ⊆ M , define

S[r] =
{
x ∈ S

∣∣ τ(x) ≤ r2}, S(r) =
{
x ∈ S

∣∣ τ(x) < r2},
S〈r〉 =

{
x ∈ S

∣∣ τ(x) = r2}, S∗ =
{
x ∈ S

∣∣ τ(x) > 0
}
.

Define

υ = ddcτ on M, ω = ddc log τ on M∗, σ = dc log τ ∧ ωm−1 on M∗.

Then τ is said to be a parabolic exhaustion and (M, τ) a parabolic manifold if and only if τ is unbounded, 
M [r] is compact for all r ≥ 0 and

ω ≥ 0, dσ = ωm ≡ 0, υm �≡ 0 on M∗.

Then υ ≥ 0 on M . Define R̂τ = {r ∈ R
+ | dτ(x) �= 0 for all x ∈ M〈r〉}. Then R+ \ R̂τ has measure zero. If 

r ∈ R̂τ , then M〈r〉 is the boundary of M(r) and M〈r〉 is a differentiable, (2m −1)-dimensional submanifold 
of class C∞ which we orient to the exterior of M(r).

For all r ∈ R̂τ , 
∫
M〈r〉 σ is a positive constant, independent of r (cf. p. 133 of [20]). Let κ =

∫
M〈r〉 σ. In 

addition, ∫
M [r]

υm =
∫

M(r)

υm = κr2m.

2.2. Divisor

A function ν : M → Z is called a divisor if for each point x in M there exists a connected, open 
neighborhood U of x and if there exist holomorphic functions g �≡ 0 and h �≡ 0 on U with ν|U = μ0

g − μ0
h, 

where μ0
g(x) and μ0

h(x) denote the zero multiplicities of g and h at x ∈ U , respectively. If ν ≡ 0, then ν
is called the null divisor. For ν �≡ 0, its support S = supp ν is an analytic subset of M of pure dimension 
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m − 1; if ν ≡ 0, then supp ν is empty. A divisor ν is nonnegative as a function if and only if for every x
in M , there exist a connected open neighborhood U of x and a holomorphic function g �≡ 0 on U such that 
ν|U = μ0

g.
Let f �≡ 0 be a meromorphic function on M . For each x ∈ M , on a connected, open neighborhood U of x, 

there exist holomorphic functions g �≡ 0 and h �≡ 0 such that f = g
h on U with dim g−1(0) ∩h−1(0) ≤ m −2. 

Then the zero divisor μ0
f (≥ 0) is defined by μ0

f |U = μ0
g and the pole divisor μ∞

f (≥ 0) is defined by μ∞
f |U = μ0

h. 
The divisor of f is given by μf |U = μ0

g − μ0
h.

Let ν be a divisor on M with S = supp ν. The counting function of ν is defined to be

Nν(r, s) =
r∫

s

nν(t)
dt

t
,

where

nν(t) = t2−2m
∫

S[t]

νυm−1, if m > 1,

nν(t) =
∑

z∈S[t]

ν(z), if m = 1.

Let f �≡ 0 be a meromorphic function. For r, s in R̂τ with 0 < s < r, Jensen’s formula holds:

Nμf
(r, s) =

∫
M〈r〉

log |f |σ −
∫

M〈s〉

log |f |σ.

2.3. Meromorphic maps, reduced representation

Let M be a complex manifold with dimM = m. Let A �= ∅ be an open subset of M such that S = M −A

is analytic. Then A is dense in M . Let V be a complex vector space with dimension n + 1 > 1. Let 
f : A → P(V ) be a holomorphic map on A. The closure Γ of the graph {(x, f(x)) | x ∈ A} in M × P(V ) is 
called the closed graph of f . The map f is said to be meromorphic on M if (i) Γ (f) is analytic in M ×P(V )
and (ii) Γ ∩ (K × P(V )) is compact for each compact subset K ⊆ M , i.e., the projection ρ : Γ (f) → M is 
proper. If f is meromorphic, then the set of indeterminacy If = {x ∈ M | �ρ−1(x) > 1} is analytic with 
dim If ≤ m − 2 and is contained in S. The holomorphic map f : A → P(V ) continues to a holomorphic 
map f : M − If → P(V ) such that we can assume that S = If . So a meromorphic function on M is a 
meromorphic map f : M → P

1(C) that is not identically ∞.
Suppose that f : A → P(V ) is a holomorphic map as above. Also, suppose that U is a nonempty, 

open, connected subset of M . A holomorphic map F : U → V is called a representation of f on U if 
F �≡ 0 and if f(x) = P(F (x)) for all x ∈ U ∩ A such that F (x) �= 0. The representation is called reduced
if dimF−1(0) ≤ m − 2. If F : U → V is a reduced representation, then U ∩ If = F−1(0). Also, f is 
meromorphic if and only if for every point x ∈ M , there is a representation F : U → V of f with x ∈ U .

Next, F : U → V is said to be a meromorphic representation of a meromorphic map f if for all x ∈ U , 
there exist an open, connected neighborhood Ux ⊆ U of x, a holomorphic function 0 �≡ h : Ux → C, and a 
representation F ′ such that

F ′ = hF or F = F ′
.

h
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Now, if F : U → V and F ′ : U → V are two meromorphic representations of f , then there exists a 
meromorphic function h �≡ 0 on U such that

F = hF ′.

If F is a representation and F ′ is a reduced representation of f , then there exists a holomorphic function 
h �≡ 0 on U such that

F = hF ′.

If F and F ′ are both reduced representations of f , then the above h will be nowhere zero.

Remark 2.1. There may be no global representation of f on M . However, if M = C
m and f : Cm → P

n(C)
is a meromorphic map, then f has a global reduced representation F = (f0, . . . , fn).

The characteristic function of a meromorphic map f : M → P(V ) is defined by

Tf (r, s) =
r∫

s

dt

t2m−1

∫
M [t]

f∗(Ω) ∧ υm−1(≥ 0) for 0 < s < r,

where Ω is the Fubini–Study form on P(V ).

2.4. Projective distance

Suppose that f : M → P(V ) and g : M → P(V ∗) are meromorphic maps. Let U be an open, connected 
subset of M . Let F : U → V be a reduced representation of f and G : U → V ∗ be a reduced representation 
of g. Let {v0, . . . , vn} be an orthonormal basis of V , and let {v∗0 , . . . , v∗n} be the dual basis.

Take a ∈ V ∗ and b ∈ V ∗ \ {0}, there is a unique meromorphic function fa,b called a coordinate function
on M such that

fa,b|U = 〈F, a〉
〈F, b〉 ,

if 〈F, b〉 �≡ 0.
Define

F�G =
n∑

i=0
〈F, vi〉

〈
G, v∗i

〉
,

‖F‖1 =
(

n∑
i=0

∣∣〈F, vi〉∣∣2
)1/2 (

or ‖F‖2 = max
0≤i≤n

∣∣〈F, vi〉∣∣),
‖G‖1 =

(
n∑

i=0

∣∣〈G, v∗i
〉∣∣2)1/2 (

or ‖G‖2 = max
0≤i≤n

∣∣〈G, v∗i
〉∣∣).

We note that, by ‖ · ‖2 ≤ ‖ · ‖1 ≤ (n + 1)1/2‖ · ‖2, these two norms are equivalent.
Then the projective distance between f and g is defined by

‖f ; g‖|U = |F�G|
‖F‖‖G‖ .

Note that ‖f ; g‖ is a global function on M .



JID:YJMAA AID:18805 /FLA Doctopic: Complex Analysis [m3L; v 1.136; Prn:4/09/2014; 7:19] P.8 (1-22)
8 Q. Yan / J. Math. Anal. Appl. ••• (••••) •••–•••
Now, (f, g) is called free if and only if there exist representations F : U → V of f and G : U → V ∗ of g
such that F�G �≡ 0. Suppose that (f, g) is free. Define the intersection divisor of f and g by

μf,g|U = μF�G,

which is well-defined. The counting function for the intersection divisor of f and g is given by

Nf,g(r, s) = Nμf,g
(r, s)

and the truncated counting function (by a positive integer L) for the intersection divisor of f and g is

N
(L)
f,g (r, s) = N

μ
(L)
f,g

(r, s),

where μ(L)
f,g (x) = min{L, μf,g(x)} for x ∈ M . For r ∈ R̂τ , define

mf,g(r) =
∫

M〈r〉

log 1
‖f ; g‖σ.

2.5. First main theorem for moving targets

For r, s in R̂τ with 0 < s < r, we have

Tf (r, s) + Tg(r, s) = Nf,g(r, s) + mf,g(r) −mf,g(s). (2)

Since Tf , Tg and Nf,g are all continuous in r and s, then mf,g will extend to a continuous function on R+

such that (2) holds for all r, s in R with 0 < s < r. (See (1.2) of [1].)

2.6. Second main theorem for fixed targets

Let (M, τ) be an admissible parabolic manifold of dimension m. Let f : M → P
n(C) be a meromorphic 

map which is linearly nondegenerate over C. Let {Hj}qj=1 be a family of fixed targets in Pn(C∗) located in 
general position. Then, for s > 0 and for ε > 0,

(q − n− 1)Tf (r, s) .≤.

q∑
j=1

N
(n)
f,Hj

(r, s) + 1
2n(n + 1) Ricτ (r, s) + ε log r

+ n(n + 1)κ(1 + ε)2
(
log Tf (r, s) + log Y (r) + log+ Ricτ (r, s)

)
.

(Cf. [20].)

3. Truncated second main theorem for moving targets

In [17], Ru and Wang proved a truncated second main theorem for meromorphic maps from Cm into Pn(C)
intersecting a finite set of moving targets, in which the set of moving targets is assumed to be nondegenerate 
(see the definition below). Previously only general position or subgeneral position was considered.

Let gj be a meromorphic map from Cm into Pn(C∗) with reduced representation Gj = (gj0, . . . , gjn) for 
1 ≤ j ≤ q. For each j, there exists j with 0 ≤ j ≤ n such that gjj �≡ 0, and put G̃j = (g̃j0, ̃gj1, . . . , ̃gjn) with 
g̃ji = gji/gjj for 0 ≤ i ≤ n. Denote by M the field of all meromorphic functions on Cm.
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Definition 3.1. The family G = {G1, . . . , Gq} is said to be nondegenerate over M if dim(G)M = n + 1 and 
for each nonempty proper subset G1 of G,

(G1)M ∩ (G \ G1)M ∩ G �= ∅,

where (G)M is the linear span of G over the field M.

Denote G̃ = {G̃1, . . . , G̃q} and RG the smallest subfield of M which contains C and all g̃ji for all i, j.

Definition 3.2. The family G̃ is said to be nondegenerate over RG if dim(G̃)RG = n +1 and for each nonempty 
proper subset G̃1 of G̃,

(G̃1)RG ∩ (G̃ \ G̃1)RG ∩ G̃ �= ∅,

where (G̃)RG is the linear span of G̃ over the field RG .

It is easy to show that if the family G is nondegenerate over M, then G̃ is nondegenerate over RG.
In 2003, Ru and Wang [17] proved the following second main theorem.

Theorem F. Let f : Cm → P
n(C) be a nonconstant meromorphic map. Let g1, . . . , gq be q meromorphic 

maps of Cm into Pn(C∗) such that (f, gj) is free for 1 ≤ j ≤ q. Assume that G is nondegenerate over M. 
Then

Tf (r, s) .≤. n

q∑
j=1

N
(n)
f,gj

(r, s) + O
(

max
1≤j≤q

Tgj (r, s)
)

+ o
(
Tf (r, s)

)
.

In [7], Do and Si improved Theorem F as follows.

Theorem G. Under the same assumptions as in Theorem F,

Tf (r, s) .≤.

q∑
j=1

N
(n)
f,gj

(r, s) + O
(

max
1≤j≤q

Tgj (r, s)
)

+ o
(
Tf (r, s)

)
.

In this section, we will extend Theorem G to meromorphic maps on parabolic manifolds. Unfortunately, 
the proof of Theorem G relies heavily on the lemma of logarithmic derivative. We note that, in [11], Liu 
proved the counterpart of Theorem G in Diophantine approximation, namely, a Schmidt’s type theorem. 
Hence, we will use the technique shown in [11] to avoid using the logarithmic derivative lemma.

Firstly, we generalize the definition of nondegenerate to moving targets on parabolic manifolds.
Let G = {g1, . . . , gq} be a family of q target meromorphic maps from M into P(V ∗). For each j, let Gj be 

a reduced representation of gj on U and j with 0 ≤ j ≤ n such that 〈Gj , v∗j 〉 �≡ 0. Then G̃j :=
∑n

i=0
〈Gj ,v

∗
i 〉

〈Gj ,v∗
j
〉v

∗
i

is a global meromorphic representation of gj. Denote G̃ = {G̃1, . . . , G̃q}. We note that 〈Gj ,v
∗
i 〉

〈Gj ,v∗
j
〉 is meromorphic 

on M for i = 0, . . . , n and j = 1, . . . , q. Denote by RG the smallest subfield containing C and all meromorphic 
functions 〈Gj ,v

∗
i 〉

〈Gj ,v∗
j
〉 for all i, j.

Definition 3.3. The family G̃ is said to be nondegenerate over RG if dim(G̃)RG = n +1 and for each nonempty 
proper subset G̃1 of G̃,

(G̃1)RG ∩ (G̃ \ G̃1)RG ∩ G̃ �= ∅.

We have the following truncated second main theorem.
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Theorem 3.1. Let (M, τ) be an admissible parabolic manifold with dimension m. Let V be a Hermitian 
vector space with dimV = n + 1 > 1. Let g1, . . . , gq : M → P(V ∗) be q meromorphic maps such 
that G̃ is nondegenerate over RG. Let f : M → P(V ) be a nonconstant meromorphic map such that 
Ricτ (r, s) = o(Tf (r, s)) and log Y (r) = o(Tf (r, s)) for r → ∞. Assume that (f, gj) is free for 1 ≤ j ≤ q and 
dim(suppμf,gi ∩ suppμf,gj ) ≤ m − 2 for 1 ≤ i < j ≤ q. Then, for s > 0, we have

Tf (r, s) .≤.

q∑
j=1

N
(n)
f,gj

(r, s) + O
(

max
1≤j≤q

Tgj (r, s)
)

+ o
(
Tf (r, s)

)
.

We first prove the following two lemmas.
Let F and Gj , 1 ≤ j ≤ q, be the reduced representations of f and gj , 1 ≤ j ≤ q, on U . Consider 

meromorphic functions (on U) F�G̃j :=
∑n

i=0
〈Gj ,v

∗
i 〉

〈Gj ,v∗
j
〉 〈F, vi〉 =

F�Gj

〈Gj ,v∗
j
〉 , 1 ≤ j ≤ q.

Lemma 3.1. (Cf. [7,11].) Assume that G̃ is nondegenerate over RG. There exist an integer u ≥ 1 and subsets 
I1, . . . , Iu of G̃ with the following properties:

(a) {F�G̃j}G̃j∈I1
is minimal and {F�G̃j}G̃j∈Ik

is linearly independent over RG for 2 ≤ k ≤ u, where 

{F�G̃j}G̃j∈I1
is minimal means {F�G̃j}G̃j∈I1

is linearly dependent over RG but each nonempty proper 
subset of {F�G̃j}G̃j∈I1

is linearly independent over RG.
(b) u is the minimal positive integer such that(

u⋃
k=1

{F�G̃j}G̃j∈Ik

)
RG

=
(
{F�G̃j}G̃j∈G̃

)
RG

.

(c) For each l with 2 ≤ l ≤ u, there exist nonzero meromorphic functions cj ∈ RG \ {0} such that

∑
G̃j∈Il

cjF�G̃j ∈
(

l−1⋃
k=1

{F�G̃j}G̃j∈Ik

)
RG

.

Proof. Since G̃1 ∈ (G̃ \ {G̃1})RG , this implies that

F�G̃1 ∈
(
{F�G̃j}qj=2

)
RG

.

Choose a subset I1 of G̃ containing G̃1 such that {F�G̃j}G̃j∈I1
is minimal. Assume that I1 = {G̃1, . . . , G̃t1}. 

Then there exist meromorphic functions cj ∈ RG \ {0}, 1 ≤ j ≤ t1 − 1, and ct1 = −1 such that

t1∑
j=1

cjF�G̃j = 0.

If ({F�G̃j}G̃j∈I1
)RG = ({F�G̃j}G̃j∈G̃)RG , by taking u = 1, then the proof is finished.

Otherwise, there exists G̃ ∈ G̃ such that G̃ ∈ (I1)RG ∩ (G̃ \ I1)RG . One of the following two cases 
holds:

(i) G̃ ∈ G̃ \ I1, we may assume that G̃ = G̃t1+1 ∈ (I1)RG , i.e.,

F�G̃t1+1 ∈
(
{F�G̃j}G̃j∈I1

)
RG

.

Put I2 = {G̃t1+1} and ct1+1 = 1.
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(ii) G̃ ∈ I1, we may assume that G̃ = G̃t1 ∈ (G̃ \ I1)RG . Then there exists a subset of G̃ \ I1, we may assume 
that it is {G̃t1+1, . . . , G̃t2}, and cj ∈ RG \ {0}, t1 + 1 ≤ j ≤ t2 such that

F�G̃t1 =
t2∑

j=t1+1
cjF�G̃j

and {F�G̃j}t2j=t1+1 is independent over RG . Set I2 = {G̃t1+1, . . . , G̃t2}.

If ({F�G̃j}G̃j∈I1∪I2
)RG = ({F�G̃j}G̃j∈G̃)RG , then the proof is finished; otherwise, repeating the above 

argument, we would get another subset I3. By continuing this process, since dim(G̃)RG = n + 1 is finite, 
there exist a u and subsets I1, . . . , Iu satisfying the assertions (a)–(c) of the lemma. �
Remark 3.1. 1) Obviously, the construction of I1, . . . , Iu and {cj} is independent of the choice of the reduced 
representation of f .

2) We may assume that the cardinality of Il satisfies �I1 ≥ 3 and �Il ≥ 2 for 2 ≤ l ≤ u.

(a) If �Il = 1, for some l with 2 ≤ l ≤ u, i.e., Il = {G̃tl}, G̃tl ∈ G̃, then F�G̃tl ∈ (
⋃l−1

k=1{F�G̃j}G̃j∈Ik
)RG , 

so

(
l⋃

k=1

{F�G̃j}G̃j∈Ik

)
RG

=
(

l−1⋃
k=1

{F�G̃j}G̃j∈Ik

)
RG

,

we can always delete Il from {I1, . . . , Iu}. Hence �Il ≥ 2 for any l ∈ {1, . . . , u}.
(b) If �I1 = 2 and (F�G̃1)RG = ({F�G̃j}G̃j∈G̃)RG , then there exists cα,β ∈ RG such that

F�G̃α = cα,βF�G̃β (3)

for any 1 ≤ α < β ≤ q. Since dim(G̃)RG = n + 1, for any a ∈ V ∗ and b ∈ V ∗ \ {0}, (3) implies the 
coordinate function fa,b ∈ RG . Hence, Tf (r, s) ≤ O(max1≤j≤q Tgj (r, s)) which implies Theorem 3.1. 
Otherwise, we replace I1 by {G̃1} ∪ I2 which is minimal.

For an integer N with 1 ≤ N ≤ u, put I :=
⋃N

k=1 Ik = {G̃1, . . . , G̃tN }, �I = tN .
For a reduced representation F : U → V of f and reduced representation Gj : U → V ∗ of gj , the map 

fI = P(FI) : M → P
�I−1(C) is defined by

FI |U = (hIF�G̃1, . . . , hIF�G̃tN ),

where hI is a holomorphic function on U such that (hIF�G̃1, . . . , hIF�G̃tN ) is a reduced representation of 
fI on U .

Lemma 3.2. Let I =
⋃N

k=1 Ik with 1 ≤ N ≤ u. Then for s > 0, we have

TfI (r, s) .≤.

tN∑
j=1

N
(n)
f,gj

(r, s) + O
(

max
1≤j≤q

Tgj (r, s)
)

+ o
(
Tf (r, s)

)
.
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Proof. We now prove lemma by induction on N .
If N = 1, then I = I1 = {G̃1, . . . , G̃t1} := I0 ∪{G̃t1}. Since {F�G̃j}G̃j∈I1

is minimal, by the construction 
in Lemma 3.1,

F�G̃t1 =
t1−1∑
j=1

cjF�G̃j , cj ∈ RG .

Take f ′
I0

: M → P
t1−2(C) to be the meromorphic map with reduced representation

F ′
I0

∣∣
U

=
(
h′
I0c1F�G̃1, . . . , h

′
I0ct1−1F�G̃t1−1

)
,

where h′
I0

is a meromorphic function on U . It is easy to see that f ′
I0

is linearly nondegenerate over C. By 
the assumption dim(suppμf,gα ∩ suppμf,gβ ) ≤ m − 2 for any α �= β,

μ0
h′
I0

≤
t1−1∑
j=1

μ0
〈Gj ,v∗

j
〉 +

t1−1∑
j=1

μ∞
cj and μ∞

h′
I0

≤
t1−1∑
j=1

μ0
cj .

Set eI0,l = (0, . . . , 0, 
l-th
1 , 0, . . . , 0) ∈ C

�I0 , 1 ≤ l ≤ t1 − 1. Then {eI0,l}t1−1
l=1 is the orthonormal basis of 

C
�I0 , and let {e∗I0,l}

t1−1
l=1 be the dual basis. Take HI0,l ∈ P

t1−2(C∗) with representation H̃I0,l = e∗I0,l for 
1 ≤ l ≤ t1 − 1 and HI0,t1 ∈ P

t1−2(C∗) with representation H̃I0,t1 =
∑t1−1

l=1 e∗I0,l. Obviously, HI0,1, . . . , HI0,t1

are in general position. Note that F ′
I0

�H̃I0,l = h′
I0
clF�G̃l, 1 ≤ l ≤ t1 − 1, and F ′

I0
�H̃I0,t1 = h′

I0
F�G̃t1 .

By the second main theorem for fixed targets, we have

Tf ′
I0

(r, s) .≤.

t1∑
j=1

N
(t1−2)
f ′
I0

,HI0,j
(r, s) + n(n + 1)κ(1 + ε)2 log Tf ′

I0
(r, s) + o

(
Tf (r, s)

)

.≤.

t1∑
j=1

N
(n)
f ′
I0

,HI0,j
(r, s) + n(n + 1)κ(1 + ε)2 log Tf ′

I0
(r, s) + o

(
Tf (r, s)

)
.

Together with N (n)
f ′
I0

,HI0,j
(r, s) ≤ N

(n)
f,gj

(r, s) + O(max1≤j≤q Tgj (r, s)), 1 ≤ j ≤ t1,

Tf ′
I0

(r, s) .≤.

t1∑
j=1

N
(n)
f,gj

(r, s) + n(n + 1)κ(1 + ε)2 log Tf ′
I0

(r, s) + O
(

max
1≤j≤q

Tgj (r, s)
)

+ o
(
Tf (r, s)

)
. (4)

On the other hand, by |cjF�G̃j | ≤ (n + 1)|cj | max0≤i≤n | 〈Gj ,v
∗
i 〉

〈Gj ,v∗
j
〉 〈F, vi〉| for j = 1, . . . , t1 − 1, it follows that

max
1≤j≤t1−1

|cjF�G̃j | ≤ (n + 1) max
1≤j≤t1−1

|cj | · max
1≤j≤t1−1

0≤i≤n

∣∣∣∣ 〈Gj , v
∗
i 〉

〈Gj , v∗j 〉

∣∣∣∣ · max
0≤i≤n

∣∣〈F, vi〉∣∣
and

∥∥f ′
I0 ;HI0,1

∥∥ = |c1F�G̃1|
max1≤j≤t1−1 |cjF�G̃j |

≥ ‖f ; g1‖
n + 1 · |c1|

max1≤j≤t1−1 |cj |
· max0≤i≤n |〈G1, v

∗
i 〉|

|〈G1, v∗1〉|
· 1
max 1≤j≤t1−1 | 〈Gj ,v∗

i 〉
〈Gj ,v∗〉 |

,

0≤i≤n j
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which means

mf ′
I0

,HI0,1(r) ≤ mf,g1(r) + O
(

max
1≤j≤q

Tgj (r, s)
)
.

Thus,

Tf ′
I0

(r, s) = mf ′
I0

,HI0,1(r) + Nf ′
I0

,HI0,1(r, s) + O(1)

≤ mf,g1(r) + Nf,g1(r, s) + O
(

max
1≤j≤q

Tgj (r, s)
)

= Tf (r, s) + O
(

max
1≤j≤q

Tgj (r, s)
)
. (5)

(4) and (5) yield

Tf ′
I0

(r, s) .≤.

t1∑
j=1

N
(n)
f,gj

(r, s) + O
(

max
1≤j≤q

Tgj (r, s)
)

+ o
(
Tf (r, s)

)
. (6)

Consider fI1 : M → P
t1−1(C) with reduced representation

FI1 |U = (hI1F�G̃1, . . . , hI1F�G̃t1),

where hI1 is a holomorphic function on U with μ0
hI1

≤
∑t1

j=1 μ
0
〈Gj ,v∗

j
〉.

We now compare TfI1
(r, s) and Tf ′

I0
(r, s).

Take HI1,1 ∈ P
t1−1(C∗) with representation H̃I1,1 = e∗I1,1. Then

‖fI1 ;HI1,1‖ = |FI1�H̃I1,1|
‖FI1‖‖H̃I1,1‖

= |F�G̃1|
max1≤j≤t1 |F�G̃j |

and FI1�H̃I1,1 = hI1F�G̃1. Since

|F�G̃j | = 1
|cj |

|cjF�G̃j |, 1 ≤ j ≤ t1 − 1,

and

|F�G̃t1 | =
∣∣∣∣ ∑
G̃j∈I0

cjF�G̃j

∣∣∣∣ ≤ ∑
G̃j∈I0

|cjF�G̃j |,

we have

max
G̃j∈I1

|F�G̃j | ≤ �I0 · max
{

max
G̃j∈I0

|1/cj |, 1
}
· max
G̃j∈I0

|cjF�G̃j |

which yields

‖fI1 ;HI1,1‖ ≤
‖f ′

I0
;HI0,1‖
�I0

· |1/c1|
max{maxG̃j∈I0

|1/cj |, 1}
.

Therefore
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mfI1 ,HI1,1(r) ≤ mf ′
I0

,HI0,1(r) +
∫

M〈r〉

log
max{maxG̃j∈I0

|1/cj |, 1}
|1/c1|

σ + O(1)

≤ mf ′
I0

,HI0,1(r) +
∫

M〈r〉

log
maxG̃j∈I0

|1/cj |
|1/c1|

σ +
∫

M〈r〉

log+ |c1|σ + O(1)

≤ mf ′
I0

,HI0,1(r) + O
(

max
1≤j≤q

Tgj (r, s)
)
.

By FI1�H̃I1,1 = hI1
h′
I0

c1
F ′
I0

�H̃I0,1, we have

NfI1 ,HI1,1(r, s) ≤ Nf ′
I0

,HI0,1(r, s) + O
(

max
1≤j≤q

Tgj (r, s)
)
.

Then, we obtain that

TfI1
(r, s) = mfI1 ,HI1,1(r) + NfI1 ,HI1,1(r, s) + O(1)

≤ mf ′
I0

,HI0,1(r) + Nf ′
I0

,HI0,1(r, s) + O
(

max
1≤j≤q

Tgj (r, s)
)

= Tf ′
I0

(r, s) + O
(

max
1≤j≤q

Tgj (r, s)
)
. (7)

Thus, (6) and (7) imply

TfI1
(r, s) ≤ Tf ′

I0
(r, s) .≤.

t1∑
j=1

N
(n)
f,gj

(r, s) + O
(

max
1≤j≤q

Tgj (r, s)
)

+ o
(
Tf (r, s)

)
.

Lemma 3.2 is proved for N = 1.
Let us assume that Lemma 3.2 holds for some integer N with 1 ≤ N ≤ u. If N + 1 > u, then Lemma 3.2

is done by induction. So, it is enough to consider the case N +1 ≤ u. Let IcN+1 :=
⋃N

k=1 Ik, I :=
⋃N+1

k=1 Ik =
IcN+1 ∪ IN+1.

First of all, by induction, we obtain

TfIcN+1
(r, s) .≤.

∑
G̃j∈Ic

N+1

N
(n)
f,gj

(r, s) + O
(

max
1≤j≤q

Tgj (r, s)
)

+ o
(
Tf (r, s)

)
. (8)

On the other hand, by the proof of Lemma 3.1,

F�G̃tN =
tN+1∑

j=tN+1
cjF�G̃j , where G̃tN ∈ IcN+1, cj ∈ RG .

Let f ′
IN+1

: M → P
�IN+1−1(C) be the meromorphic map with reduced representation F ′

IN+1
|U =

(h′
IN+1

ctN+1F�G̃tN+1, . . . , h′
IN+1

ctN+1F�G̃tN+1), where h′
IN+1

is a meromorphic function on U with

μ0
h′
IN+1

≤
tN+1∑

j=tN+1
μ0
〈Gj ,v∗

j
〉 +

tN+1∑
j=tN+1

μ∞
cj and μ∞

h′
IN+1

≤
tN+1∑

j=tN+1
μ0
cj .

Obviously, f ′
IN+1

is linearly nondegenerate over C and, by repeating the argument as in the proof of (5), 
Tf ′ (r, s) ≤ Tf (r, s) + O(max1≤j≤q Tgj (r, s)).
IN+1
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Let {eIN+1,l}
�IN+1
l=1 be the orthonormal basis of C�IN+1 , and {e∗IN+1,l

}�IN+1
l=1 be the dual basis. We can 

take HIN+1,l ∈ P
�IN+1−1(C∗) with representation H̃IN+1,l = e∗IN+1,l

for 1 ≤ l ≤ �IN+1 and HIN+1,�IN+1+1 ∈
P�IN+1−1(C∗) with representation H̃IN+1,�IN+1+1 =

∑�IN+1
l=1 e∗IN+1,l

, which are in general position. Note that

F ′
IN+1

�H̃IN+1,l = h′
IN+1

ctN+lF�G̃tN+l, 1 ≤ l ≤ �IN+1,

and

F ′
IN+1

�H̃IN+1,�IN+1+1 = h′
IN+1

F�G̃tN .

By the second main theorem for fixed targets, we have

Tf ′
IN+1

(r, s) .≤.

�IN+1∑
j=1

N
(�IN+1−1)
f ′
IN+1

,HIN+1,j
(r, s) + N

(�IN+1−1)
f ′
IN+1

,HIN+1,�IN+1+1
(r, s) + o

(
Tf (r, s)

)
.≤.

∑
G̃j∈IN+1

N
(n)
f,gj

(r, s) + O
(

max
1≤j≤q

Tgj (r, s)
)

+ o
(
Tf (r, s)

)
+ Nf ′

IN+1
,HIN+1,�IN+1+1(r, s).

By the first main theorem, it follows that

mf ′
IN+1

,HIN+1,�IN+1+1(r) .≤.
∑

G̃j∈IN+1

N
(n)
f,gj

(r, s) + O
(

max
1≤j≤q

Tgj (r, s)
)

+ o
(
Tf (r, s)

)
. (9)

So, by (8) and (9),

TfIcN+1
(r, s) + mf ′

IN+1
,HIN+1,�IN+1+1(r) .≤.

∑
G̃j∈I

N
(n)
f,gj

(r, s) + O
(

max
1≤j≤q

Tgj (r, s)
)

+ o
(
Tf (r, s)

)
. (10)

Next, we show that

mf ′
IN+1

,HIN+1,�IN+1+1(r) + O
(

max
1≤j≤q

Tgj (r, s)
)
≥ TfI (r, s) − TfIcN+1

(r, s). (11)

Claim.

TfI (r, s) − TfIcN+1
(r, s) ≤

∫
M〈r〉

log
maxG̃j∈I |F�G̃j |

maxG̃j∈Ic
N+1

|F�G̃j |
σ + O

(
max
1≤j≤q

Tgj (r, s)
)
. (12)

Proof of the claim. Let {Uλ}λ∈Λ be an open covering of M , and let Fλ : Uλ → V and Gj,λ : Uλ → V ∗ be 
the reduced representations of f and gj on Uλ.

Let

FI,λ := FI |Uλ
= (. . . , hI,λFλ�G̃j , . . .)G̃j∈I

be the reduced representation of fI on Uλ, where hI,λ is a holomorphic function on Uλ with μ0
hI,λ

≤∑
G̃j∈I μ

0
〈Gj,λ,v∗

j
〉. Then

Φ(FI,λ) := (. . . , hI,λFλ�G̃j , . . .)G̃j∈Ic
N+1

is a representation of fIc on Uλ. (Φ(FI,λ) may not be a reduced representation.)

N+1
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Since FI,λ : Uλ → C
�I is a reduced representation of fI on Uλ, there exists a holomorphic function 

gλμ : Uλ ∩ Uμ → C \ {0} such that

FI,λ = gλμFI,μ on Uλ ∩ Uμ.

Let LfI be the holomorphic line bundle on M with transition function {gλμ}. Let {Uλ, sλ}λ∈Λ be the 
holomorphic frame such that

sμ = gλμsλ on Uλ ∩ Uμ.

Define F̌I,λ ∈ Γ (Uλ, M×C
�I) by F̌I,λ = (z, FI,λ(z)) for z ∈ Uλ. By F̌I,λ⊗sλ = gλμF̌I,μ⊗sλ = F̌I,μ⊗gλμsλ =

F̌I,μ⊗ sμ on Uλ∩Uμ, we can define a holomorphic section FfI ∈ Γ ((M ×C
�I) ⊗LfI ) by FfI |Uλ

= F̌I,λ⊗ sλ. 
Let � be the standard Hermitian metric along the fibers of the trivial bundle M ×C

�I and ρ be a Hermitian 
metric along the fibers of LfI . Then, by p. 140 of [21], we hold

TfI (r, s) =
r∫

s

dt

t2m−1

∫
M [t]

c1(LfI , ρ) ∧ υm−1 +
∫

M〈r〉

log ‖FfI‖
⊗ρσ −
∫

M〈s〉

log ‖FfI‖
⊗ρσ.

On the other hand, we have

Φ(FI,λ) = gλμΦ(FI,μ) on Uλ ∩ Uμ.

Define Φ̌(FI,λ) ∈ Γ (Uλ, M × C
�Ic

N+1) by Φ̌(FI,λ) = (z, Φ(FI,λ)(z)) for z ∈ Uλ. Since

Φ̌(FI,λ) ⊗ sλ = gλμΦ̌(FI,μ) ⊗ sλ = Φ̌(FI,μ) ⊗ gλμsλ = Φ̌(FI,μ) ⊗ sμ

on Uλ∩Uμ, there exists a holomorphic section FfIcN+1
∈ Γ ((M×C

�Ic
N+1) ⊗LfI ) with FfIcN+1

|Uλ
= Φ̌(FI,λ) ⊗sλ. 

Then, FfIc
N+1

is a representation section of fIc
N+1

because Φ(FI,λ) is a representation of fIc
N+1

. We define a 
divisor

μFfIcN+1
|Uλ

= μΦ̌(FI,λ) = μΦ(FI,λ).

Let 1
hλ

Φ(FI,λ) be the reduced representation of fIc
N+1

on Uλ, where hλ is a holomorphic function. By 
Φ(FI,λ) = gλμΦ(FI,μ) on Uλ ∩ Uμ, we have

1
hλ

Φ(FI,λ) = hμ

hλ
gλμ · 1

hμ
Φ(FI,μ) on Uλ ∩ Uμ.

Since 1
hλ

Φ(FI,λ) and 1
hμ

Φ(FI,μ) are reduced, then hμ

hλ
gλμ is a nowhere zero holomorphic function. Hence, 

hμ

hλ
is also holomorphic without zeros. That means μhμ

= μhλ
on Uλ ∩ Uμ. Thus

μFfIcN+1
|Uλ

= μΦ̌(FI,λ) = μΦ(FI,λ) = μhλ
|Uλ

≥ 0.

By p. 140 of [21], we have

TfIcN+1
(r, s) =

r∫
s

dt

t2m−1

∫
M [t]

c1(LfI , ρ) ∧ υm−1 −NμΦ(FI,λ)(r, s)

+
∫

log ‖FfIcN+1
‖
⊗ρσ −

∫
log ‖FfIcN+1

‖
⊗ρσ.
M〈r〉 M〈s〉
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We also note that, on Uλ,

‖FfI‖
⊗ρ = ‖FI,λ‖ · ‖sλ‖ρ and ‖FfIc
N+1

‖
⊗ρ =
∥∥Φ(FI,λ)

∥∥ · ‖sλ‖ρ,
where ‖FI,λ‖ = maxG̃j∈I |hI,λFλ�G̃j | and ‖Φ(FI,λ)‖ = maxG̃j∈Ic

N+1
|hI,λFλ�G̃j |.

Consequently,

TfI (r, s) − TfIcN+1
(r, s) =

∫
M〈r〉

log ‖FfI‖
⊗ρ

‖FfIcN+1
‖
⊗ρ

σ + NμΦ(FI,λ)(r, s) + O(1)

≤
∫

M〈r〉

log
maxG̃j∈I |Fλ�G̃j |

maxG̃j∈Ic
N+1

|Fλ�G̃j |
σ + O

(
max
1≤j≤q

Tgj (r, s)
)
,

where the last inequality provided by μhλ
≤
∑

G̃j∈IN+1
μ〈Gj,λ,v∗

j
〉, and

maxG̃j∈I |Fλ�G̃j |
maxG̃j∈Ic

N+1
|Fλ�G̃j |

is a global function on M independent to λ. This finishes the proof of the claim. �
Now, it suffices to show

∫
M〈r〉

log
maxG̃j∈IN+1

|cjF�G̃j |
|F�G̃tN |

σ + O
(

max
1≤j≤q

Tgj (r, s)
)
≥
∫

M〈r〉

log
maxG̃j∈I |F�G̃j |

maxG̃j∈Ic
N+1

|F�G̃j |
σ. (13)

Firstly, we have

max
G̃j∈IN+1

|F�G̃j | ≤ max
G̃j∈IN+1

1
|cj |

· max
G̃j∈IN+1

|cjF�G̃j |

or

max
G̃j∈IN+1

|cjF�G̃j | ≥
|1/ctN+1 |

maxG̃j∈IN+1
|1/cj |

· max
G̃j∈IN+1

|F�G̃j | · |ctN+1 |.

Hence,

∫
M〈r〉

log
maxG̃j∈IN+1

|cjF�G̃j |
|F�G̃tN |

σ + O
(

max
1≤j≤q

Tgj (r, s)
)
≥
∫

M〈r〉

log
maxG̃j∈IN+1

|F�G̃j |
|F�G̃tN |

σ. (14)

We estimate the last integration in (14). Set

M1〈r〉 :=
{
z ∈ M〈r〉

∣∣∣ maxG̃j∈I |F�G̃j |
maxG̃j∈Ic

N+1
|F�G̃j |

(z) = 1
}

and M2〈r〉 := M〈r〉 \M1〈r〉. It is easy to see that M1〈r〉 and M2〈r〉 are measurable sets. We see that
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maxG̃j∈I |F�G̃j |
maxG̃j∈Ic

N+1
|F�G̃j |

(z) =
maxG̃j∈IN+1

|F�G̃j |
maxG̃j∈Ic

N+1
|F�G̃j |

(z) for z ∈ M2〈r〉. (15)

On the other hand, by F�G̃tN =
∑

G̃j∈IN+1
cjF�G̃j , we have

|F�G̃tN | = �IN+1 ·
maxtN+1≤j≤tN+1 |cj |

|ctN+1 |
· max
G̃j∈IN+1

|F�G̃j | · |ctN+1 |. (16)

Since G̃tN ∈ IcN+1, we have

|F�G̃tN | ≤ max
G̃j∈Ic

N+1

|F�G̃j |. (17)

Hence, by using (16) for z ∈ M1〈r〉 and (17) for z ∈ M2〈r〉,

∫
M〈r〉

log
maxG̃j∈IN+1

|F�G̃j |
|F�G̃tN |

σ +
∫

M1〈r〉

log
maxtN+1≤j≤tN+1 |cj |

|ctN+1 |
σ +

∫
M1〈r〉

log |ctN+1 |σ

≥
∫

M2〈r〉

log
maxG̃j∈IN+1

|F�G̃j |
maxG̃j∈Ic

N+1
|F�G̃j |

σ + O(1)

=
∫

M〈r〉

log
maxG̃j∈I |F�G̃j |

maxG̃j∈Ic
N+1

|F�G̃j |
σ + O(1), (18)

where the last equation provided by (15). Together with∫
M1〈r〉

log
maxtN+1≤j≤tN+1 |cj |

|ctN+1 |
σ +

∫
M1〈r〉

log |ctN+1 |σ

≤
∫

M〈r〉

log
maxtN+1≤j≤tN+1 |cj |

|ctN+1 |
σ +

∫
M〈r〉

log+ |ctN+1 |σ ≤ O
(

max
1≤j≤q

Tgj (r, s)
)
,

(14) and (18) imply (13). Then (11) is derived from (12) and (13).
Hence, by (10) and (11), we have proved

TfI (r, s) ≤
∑
G̃j∈I

N
(n)
f,gj

(r, s) + O
(

max
1≤j≤q

Tgj (r, s)
)

+ o
(
Tf (r, s)

)
. �

Proof of Theorem 3.1. From Lemma 3.2, we can pick N = u, I =
⋃u

k=1 Ik,

TfI (r, s) .≤.
∑
G̃j∈I

N
(n)
f,gj

(r, s) + O
(

max
1≤j≤q

Tgj (r, s)
)

+ o
(
Tf (r, s)

)
. (19)

We now compare TfI (r, s) and Tf (r, s).
Let F be the reduced representation of f on U and

FI |U = (hIF�G̃1, . . . , hIF�G̃tu)

be the reduced representation of fI .
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By the fact dim(G̃)RG = n +1, there exist n +1 vectors of G̃, then we may assume they are G̃j1 , . . . , G̃jn+1 , 
which are linearly independent. By solving the linear system⎛⎜⎜⎜⎝

〈Gj1 ,v
∗
0 〉

〈Gj1 ,v
∗
j1

〉 · · · 〈Gj1 ,v
∗
n〉

〈Gj1 ,v
∗
j1

〉
...

...
...

〈Gjn+1 ,v
∗
0 〉

〈Gjn+1 ,v
∗
jn+1

〉 · · · 〈Gjn+1 ,v
∗
n〉

〈Gjn+1 ,v
∗
jn+1

〉

⎞⎟⎟⎟⎠
⎛⎜⎝ 〈F, v0〉

...
〈F, vn〉

⎞⎟⎠ =

⎛⎜⎝
F�G̃j1

...
F�G̃jn+1

⎞⎟⎠ ,

we obtain

〈F, vi〉 = ci,j1F�G̃j1 + · · · + ci,jn+1F�G̃jn+1 , 0 ≤ i ≤ n,

where ci,jk ∈ RG . On the other hand, by (b) of Lemma 3.1, we have

(
{F�G̃j}G̃j∈I

)
RG

=
(
{F�G̃j}G̃j∈G̃

)
RG

,

which implies that 〈F, vi〉 =
∑

G̃j∈I c
′
i,jF�G̃j , 0 ≤ i ≤ n, with c′i,j ∈ RG . Hence, we get

max
0≤i≤n

∣∣〈F, vi〉∣∣ ≤ �I ·
max0≤i≤n,G̃j∈I |c′i,j |

|c′0,1|
· max
G̃j∈I

|F�G̃j | ·
∣∣c′0,1∣∣

and

‖f ; g1‖ ≥ ‖fI ;HI,1‖
�I|c′0,1|

·
|〈G1, v

∗
1〉|

max0≤i≤n |〈G1, v∗i 〉|
·

|c′0,1|
max0≤i≤n,G̃j∈I |c′i,j |

,

which means

mf,g1(r) ≤ mfI ,HI,1(r) + O
(

max
1≤j≤q

Tgj (r, s)
)
.

By F�G1 =
∑n

i=0〈G1, v∗i 〉〈F, vi〉 and FI�H̃I,1 = hI

∑n
i=0

〈G1,v
∗
i 〉

〈G1,v∗
1 〉
〈F, vi〉, we have

Nf,g1(r, s) ≤ NfI ,HI,1(r, s) + O
(

max
1≤j≤q

Tgj (r, s)
)
.

Thus,

Tf (r, s) ≤ TfI (r, s) + O
(

max
1≤j≤q

Tgj (r, s)
)
. (20)

From (19) and (20), we derive that

Tf (r, s) .≤.
∑
G̃j∈I

N
(n)
f,gj

(r, s) + O
(

max
1≤j≤q

Tgj (r, s)
)

+ o
(
Tf (r, s)

)

.≤.

q∑
j=1

N
(n)
f,gj

(r, s) + O
(

max
1≤j≤q

Tgj (r, s)
)

+ o
(
Tf (r, s)

)
.

This completes the proof of Theorem 3.1. �
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The G (or G̃ = {G̃1, . . . , G̃q}) are said to be in general position if any n + 1 vectors in G̃ are linearly 
independent over RG. Obviously, if G̃1, . . . , G̃q are located in general position and q ≥ 2n + 1, then G̃ is 
nondegenerate over RG. In this case, we have a stronger result (i.e. Theorem 1.1).

Proof of Theorem 1.1. We can prove (1) by induction on q.
When q = 2n + 1, (1) is just Theorem 3.1.
For q > 2n + 1, we assume that (1) holds for q − 1 and verify (1) for q.
In fact, choose q − 1 moving targets at a time and apply (1). This gives q inequalities as follows.

q − 1
2n + 1Tf (r, s) .≤.

∑
j �=l

N
(n)
f,gj

(r, s) + O
(

max
1≤j≤q

Tgj (r, s)
)

+ o
(
Tf (r, s)

)
for l = 1, . . . , q. Summing up these q inequalities, we have

q(q − 1)
2n + 1 Tf (r, s) .≤. (q − 1)

q∑
j=1

N
(n)
f,gj

(r, s) + O
(

max
1≤j≤q

Tgj (r, s)
)

+ o
(
Tf (r, s)

)
,

which proves (1). �
4. Proof of Theorem 1.2

Assume that f1, . . . , fλ are not in special position. Let Ft : U → V be a reduced representation of ft on 
U for t = 1, . . . , λ. Then F1 ∧ · · · ∧ Fλ : U →

∧
λ V is not identically zero, there exists one and only one 

divisor defined by

μf1∧̇···∧̇fλ |U = μF1∧···∧Fλ
.

Obviously μf1∧̇···∧̇fλ ≥ 0. Also, we can define a meromorphic map f1 ∧ · · · ∧ fλ : M → P(
∧

λ V ) by 
f1 ∧ · · · ∧ fλ = P(F1 ∧ · · · ∧ Fλ) on U .

Set S = suppμf1∧̇···∧̇fλ . Then A ⊆ S. Denote by R(A) and R(S) the sets of regular points of A and S, 
and denote by Σ(A) and Σ(S) the sets of singular points of A and S. Define

I = Σ(S) ∪Σ(A) ∪ I(f1 ∧ · · · ∧ fλ) ∪
(

λ⋃
t=1

I(ft)
)
,

which has at most dimension m − 2.
There exists one and only one divisor νA on M with νA(x) = 1 for all x ∈ R(A) and νA(x) = 0 for all 

x ∈ M −A. We now prove

(λ− l + 1)νA ≤ μf1∧̇···∧̇fλ

at every point x0 ∈ A − I.
By the definition of I, we can find an open, connected neighborhood U of x0 and a holomorphic map

α = (α1, α2, . . . , αm) : U → P ×Q

with α(x0) = 0 such that

(1) U ∪ I = ∅ and U ∩A = U ∩ S = α−1
m (0) = U ∩R(A) = U ∩R(S),
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(2) there exist a reduced representation Ft : U → V of ft for t = 1, . . . , λ and a holomorphic function h on 
U with

μf1∧̇···∧̇fλ |U = μF1∧···∧Fλ
= μ0

h,

where P is a ball centered at 0 ∈ C
m−1 and Q is a disc centered at 0 ∈ C.

Let π1 : P × Q → P and π2 : P × Q → Q be the projections. Then π2 ◦ α = αm, β := π1 ◦ α =
(α1, . . . , αm−1) : U → P . Let ι : U ∩ A → U be the inclusion map. Then γ = β ◦ ι : U ∩ A → P is 
biholomorphic. Let δ = γ−1 : P → U ∩ A be the inverse map. Observe that αm ◦ ι ≡ 0. For t ∈ {1, . . . , λ}, 
the Hartogs series development of Ft on U uniquely defines holomorphic vector functions Wtk : P → V for 
all k ≥ 0 such that

Ft =
∞∑
k=0

(αm)kWtk ◦ β

where the convergence is uniform on every compact subset of U . Then

Ft = Wt + αmUt,

where Wt := Wt0 and Ut :=
∑∞

k=0(αm)kWtk+1 ◦ β. Denote by T [θ, λ] the set of all increasing injective 
maps from {1, 2, . . . , θ} to {1, 2, . . . , λ}. For each η ∈ T [θ, λ], there exists a unique η̂ ∈ T [λ − θ, λ] such that 
(Im η) ∩ (Im η̂) = ∅. Abbreviate εη = sing η. f1, . . . , fλ being in l-special position on A implies that, for any 
η ∈ T [l, λ],

Wη(1) ∧ · · · ∧Wη(l) = 0.

Thus

F1 ∧ · · · ∧ Fλ =
l−1∑
θ=1

(αm)λ−θ
∑

η∈T [θ,λ]

εη

(
θ∧

u=1
Wη(u) ◦ β

)
∧
(

λ−θ∧
v=1

Uη̂(v)

)
+ (αm)λU1 ∧ · · · ∧ Uλ.

The lowest exponent of αm is λ − l + 1 > 0. Hence, (λ − l + 1)νA ≤ μf1∧̇···∧̇fλ .
We have, for every 1 ≤ t ≤ λ,

q∑
j=1

N
(n)
ft,gj

(r, s) ≤ n

λ− l + 1Nμf1∧̇···∧̇fλ
(r, s). (21)

By the first main theorem of the exterior product (cf. (3.28) of [22]),

Nμf1∧̇···∧̇fλ
(r, s) ≤

λ∑
i=1

Tfi(r, s) + O(1). (22)

Combining (21) and (22) yields

q∑
N

(n)
ft,gj

(r, s) ≤ n

λ− l + 1

λ∑
Tfi(r, s) + O(1).
j=1 i=1
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By Theorem 1.1, for 1 ≤ t ≤ λ,

q

2n + 1Tft(r, s) .≤.
n

λ− l + 1

λ∑
i=1

Tfi(r, s) + O
(

max
1≤j≤q

Tgj (r, s)
)

+ o
(
Tft(r, s)

)
.

Thus

q

2n + 1

λ∑
t=1

Tft(r, s) .≤.
nλ

λ− l + 1

λ∑
t=1

Tft(r, s) + o

(
λ∑

t=1
Tft(r, s)

)
,

which gives a contradiction under the assumption that

q >
n(2n + 1)λ
λ− l + 1 .
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