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We study algebraic equalities and their topological consequences in weighted 
Banach, Fréchet, or (LB) spaces of holomorphic-like functions on a locally compact 
and σ-compact Hausdorff space X. Our main results are the following: (1) The 
algebraic equality VA(X) = V0A(X) for (LB)-spaces with O- and o-growth 
conditions given by a weight sequence V = (vn)n always implies that these 
spaces are (DFS). The converse statement is valid under the additional condition 
(CD) which is a weakened version of the typical biduality condition for the steps 
Avn (X) and A(vn)0(X) generating VA(X) and V0A(X), respectively; (2) Under 
the same condition (CD), the algebraic equality AV (X) = AV 0(X) between the 
projective hulls of VA(X) and V0A(X) is equivalent to AV (X) semi-Montel. Thus, 
we completely remove or significantly weaken some stringent conditions used before 
in many papers studying the similar problems (see, e.g., Bierstedt and Bonet, 2006 
[5] and references therein).

© 2014 Published by Elsevier Inc.

1. Introduction

Weighted spaces of continuous and holomorphic functions with O- and o-growth conditions play an im-
portant role in approximation and spectral theories, complex and Fourier analysis, convolution and partial 
differential equations, as well as distribution theory. Also, they are themselves of a great interest for math-
ematical research. For these reasons, they were studied intensively by many authors, especially after the 
seminal paper [8] of Bierstedt, Meise and Summers.

In case of spaces of continuous functions the situation was clarified completely at the end of the 1980s, 
at least what concerns algebraic and topological properties of (LB)-spaces and their projective hulls and 
the projective description problem (in addition to [8] see also Bierstedt and Bonet [3]). The research then 
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concentrated on holomorphic function spaces. But, in spite of more than 30 years of efforts, not so many 
results of complete type have been obtained and several important problems have remained open (see, e.g., 
Bierstedt’s survey [2]). In this connection, one of the most fruitful ideas to get the desired results and 
investigate the open problems is to find out some conditions under which weighted spaces of holomorphic 
functions behave similarly to the corresponding spaces of continuous functions.

In particular, Bierstedt and Bonet [5, Sections 1 and 2] (see also Bierstedt and Bonet [4] and Bierstedt, 
Bonet and Galbis [6]) pointed out that, under some additional assumptions, algebraic equalities between 
spaces of the same type (both (LB) or projective hulls) with O- and o-growth conditions imply some strong 
topological properties of the spaces involved into these equalities.

It should be noted that some of the assumptions used in [5] look rather restrictive. Namely, in Sections 1 
and 2 of [5] it is supposed that all the steps Hvn(G) constituting the (LB)-space VH(G) satisfy the biduality 
condition from [9] and/or the interpolation property (see hypothesis (1) in the beginning of [5, Section 2]).

Starting from Bierstedt and Bonet [5] and using some new ideas, we show that similar as well as much 
stronger results are true without any additional conditions or under conditions which are weaker than in [5]. 
Our technique suits not only to spaces of holomorphic functions Hv(G), VH(G), HV (G), etc. on an open set 
in CN but, as in [8], to more general spaces Av(X), VA(X), AV (X), etc. of functions on a locally compact 
and σ-compact set X.

The present paper is organized as follows. In Section 2 we fix our notation, recall some well-known facts 
on weighted function spaces and establish some simple auxiliary results from functional analysis which play 
an important role in the next Section 3.

Section 3 is divided into two subsections. The first one is devoted to the topological consequences of 
algebraic equalities between weighted spaces of the same type with O- and o-growth conditions. We estab-
lish (Theorem 3.3) that the equality of such a type for Banach, Fréchet, or (LB)-spaces implies that the 
corresponding spaces are always finite dimensional, Montel, or (DFS), respectively. Thus, we remove all 
restrictions used before in the results of such a kind for spaces of holomorphic functions. In addition, in case 
of Fréchet spaces our result is finer than the previous one (see Remark 3.4 below).

Similarly, studying in the second subsection the equivalence between the algebraic equalities for weighted 
(LB)-spaces as well as their projective hulls, we use, instead of the biduality property for the steps as in 
[5, Section 2], weaker condition (CD) and obtain much stronger results. In particular, it is shown (Theo-
rem 3.8) that, whenever (CD) holds, the algebraic equality VA(X) = V0A(X) or AV (X) = AV 0(X) is 
equivalent to VA(X) (DFS) or, respectively, AV (X) semi-Montel. Combining this with [5, Proposition 14], 
we deduce that, provided all the steps Hvn(G) satisfy the biduality property, the space HV 0(G) is semi-
Montel if and only if it is semireflexive. This answers the question posed in [5, p. 759]. In addition, at 
the end of this subsection it is proved (Theorem 3.12) that, for a domain in C whose complement has no 
one-point component or an absolutely convex bounded domain in CN , the condition (CD) can be removed 
and the algebraic equality VH(G) = V0H(G) or HV (G) = HV 0(G) is always equivalent to VH(G) (DFS) 
or HV (G) semi-Montel, respectively.

2. Preliminaries

In this section we collect notation, definitions and preliminary facts which will be used in the sequel.

2.1. Weighted spaces

Let X be a locally compact and σ-compact Hausdorff space and C(X) the space of all continuous 
complex-valued functions on X endowed with the compact–open topology co defined by the system of 
seminorms
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‖f‖K := sup
x∈K

∣∣f(x)
∣∣,

where K runs over all compact sets in X. Let A(X) be some predetermined subspace of C(X) which is 
supposed to be semi-Montel (i.e. each bounded subset of this space is relatively compact). In particular, if 
X is an open set G in CN , we can take A(G) = H(G), the space of all holomorphic functions on G.

A continuous and strictly positive real-valued function v on X will be called a weight. For a weight v
on X, define the following weighted Banach spaces:

Av(X) :=
{
f ∈ A(X) : ‖f‖v := sup

x∈X

|f(x)|
v(x) < ∞

}
,

Av0(X) :=
{
f ∈ A(X) : f(x)

v(x) vanishes at infinity on X

}
,

endowed with the norm ‖ · ‖v. As usual, we say that a function g vanishes at infinity on X if for every ε > 0
there exists a compact subset K of X such that |g(x)| < ε for all x ∈ X \K. Obviously, Av0(X) is a closed 
subspace of Av(X).

Notice that our definition of the weight norm ‖ · ‖v differs slightly from many other papers, where it is 
defined by ‖f‖v := supx∈X v(x)|f(x)|. Certainly, this is not essential but, in our opinion, more convenient 
for some reasons, especially when one uses associated weights (see below Section 2.2). Thus, when we refer 
to papers using another definition of weight norms we often reformulate their results in accordance with 
our notation.

For a decreasing sequence V = (vn)n of weights vn on X, we define

AV (X) :=
⋂
n

Avn(X) and AV0(X) :=
⋂
n

A(vn)0(X)

and equip both of these spaces with the locally convex topology induced by {‖ ·‖vn; n ∈ N}. Clearly, AV (X)
and AV0(X) are both Fréchet spaces and AV0(X) is a closed topological subspace of AV (X).

Given an increasing sequence V of weights vn on X, we consider the following weighted inductive limits:

VA(X) := indn Avn(X) and V0A(X) := indn A(vn)0(X);

that is, we take the increasing union of all Banach spaces Avn(X), respectively, A(vn)0(X), and endow 
it with the strongest locally convex topology for which the injections Avn(X) → VA(X), respectively, 
A(vn)0(X) → V0A(X) become continuous for all n ∈ N. It is clear that V0A(X) is a linear subspace of 
VA(X) (and the inclusion operator is continuous), but it is not known in general whether V0A(X) is also 
a topological subspace of VA(X). Since the unit balls of Avn(X) are closed in VA(X), the inductive limit 
VA(X) = indn Avn(X) is regular, i.e., each its bounded set is contained and bounded in some step Avn(X)
(see Makarov [11]).

In order to describe the inductive limit topology of VA(X) in terms of weighted sup-norms, the following 
family of weights on X, associated with V, was introduced in Bierstedt, Meise and Summers [8]:

V = V (V) :=
{
v weight on X : sup

x∈X

vn(x)
v(x) < ∞, ∀n

}
.

This family generates the corresponding associated weighted spaces

AV (X) :=
{
f ∈ A(X) : ‖f‖v = sup |f(x)|

< ∞, ∀v ∈ V

}

x∈X v(x)
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and

AV 0(X) :=
{
f ∈ A(X) : f(x)

v(x)
vanishes at infinity on X, ∀v ∈ V

}
,

endowed with the Hausdorff locally convex topology defined by the norm system {‖ · ‖v; v ∈ V }. These 
spaces AV (X) and AV 0(X) are called the projective hulls of the inductive limits VA(X) and V0A(X), 
respectively.

It is easy to see that AV 0(X) is a closed topological subspace of AV (X) and both spaces are complete. 
Moreover, there are continuous injections VA(X) → AV (X) and V0A(X) → AV 0(X). By Bierstedt, Meise 
and Summers [8, Theorem 1.13], spaces VA(X) and AV (X) coincide as sets and have the same bounded 
sets, but their topologies can differ one from another. Next, it is not known whether V0A(X) is always a 
topological subspace of AV 0(X). The last two observations lead to the projective description problem (see, 
e.g., Bierstedt [2]).

2.2. Auxiliary facts from functional analysis

We start with two simple results from functional analysis. Perhaps, they are known and stated here for 
the reader’s convenience. Throughout below in this subsection, E, F , and G are some Hausdorff locally 
convex spaces (l.c.s.). For a l.c.s. E, we will denote by τE and OE its topology and a base of absolutely 
convex neighborhoods of the origin, respectively.

Lemma 2.1. Let E ↪→ F and B be an absolutely convex subset of E which is relatively compact in F . 
Consider the following assertions:

(i) B is relatively compact in E.
(ii) τE = τF on B.
(iii) Each net (xλ)λ∈Λ of B converging to 0 in F converges (to 0) in E.

Then (i) ⇒ (ii) ⇔ (iii). If E is complete, then (i) ⇔ (ii) ⇔ (iii).
In case F is metrizable, condition (iii) can be replaced with:

(iii)′ Each sequence (xn)∞n=1 of B converging to 0 in F converges (to 0) in E.

Proof. It is easy to see that, for F metrizable, (iii) ⇔ (iii)′. Always (ii) ⇒ (iii) and, since B is absolutely 
convex, (iii) ⇒ (ii). So (ii) ⇔ (iii).

(i) ⇒ (ii): Suppose by contradiction that B is relatively compact in E but τE is strictly finer than τF on B. 
Then, using that B is absolutely convex, we can find a neighborhood U0 ∈ OE such that V ∩ B � U0 ∩ B

for every V ∈ OF . Taking xV ∈ V ∩B with xV /∈ U0, we get the net (xV )V ∈OF
which converges to 0 in F . 

Since B is relatively compact in E, there exists a subnet (yV )V ∈O′
F

of (xV )V ∈OF
which converges in E. 

Obviously, yV → 0 in E which contradicts to yV /∈ U0 for all V ∈ O′
F .

To finish the proof, it remains to note that (ii) implies that B is precompact in E and, for E complete, 
this is equivalent to B relatively compact in E. �

A linear operator L : E → F between two l.c.s. is said to be compact if there exists a neighborhood 
U ∈ OE such that L(U) is relatively compact in F . Next, L is said to be Montel if it maps bounded sets in 
E into relatively compact sets in F . Obviously, each compact operator is Montel and for a Banach space E
the converse is also true.
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Lemma 2.2. Let E ↪→ F ↪→ G and G be semi-Montel. Consider the following assertions:

(i) The inclusion operator id : E → F is Montel.
(ii) Every bounded net of E which converges to 0 in G is also convergent (to 0) in F .

Always (i) ⇒ (ii) and (i) ⇔ (ii), whenever F is complete.
In case G is metrizable, the last condition can be replaced with:

(ii)′ Each bounded sequence of E which converges to 0 in G is also convergent (to 0) in F .

Proof. (i) ⇒ (ii): Let (xλ)λ∈Λ be a bounded net in E which converges to 0 in G. By (i), the set B := {xλ :
λ ∈ Λ} is relatively compact in F and then the absolutely convex envelope Γ (B) of B is the same. Since 
E ↪→ G, B and Γ (B) are bounded sets in G. Using that G is semi-Montel, it then follows that Γ (B) is 
relatively compact in G. Hence, by Lemma 2.1, τF = τG on Γ (B). Consequently, xλ → 0 in F .

(ii) ⇒ (i), whenever F is complete: If this is not true, then there exists a bounded set B in E which 
is not relatively compact in F . Consequently, the absolutely convex envelope Γ (B) of B is also bounded 
in E and not relatively compact in F . Since G is semi-Montel, Γ (B) is relatively compact in G. Applying 
Lemma 2.1 to F , G and Γ (B), we can find a net (xλ)λ∈Λ of Γ (B) which converges to 0 in G but does not 
converge in F . This contradicts (ii) and completes the proof. �

Applying Lemma 2.2 with G = A(X) we have

Corollary 2.3. Let E ↪→ F ↪→ A(X) and F be complete. The following assertions are equivalent:

(i) The inclusion operator id : E → F is Montel.
(ii) Each bounded sequence of E which converges to 0 in A(X) is also convergent (to 0) in F .

This corollary has evident consequences for weighted spaces defined above. Note that by the closed graph 
theorem, for two spaces E, F of such a type, the inclusion E ⊂ F is always continuous. In particular, we 
have the following characterization of compact embedding for Banach weighted spaces.

Corollary 2.4. The inclusion of Av(X) into Aw(X) (or, Av0(X) into Aw0(X)) is compact if and only if every 
bounded sequence (fk)k ⊂ Av(X) (respectively, Av0(X)) converging to 0 with respect to the co topology, also 
converges to 0 in Aw(X) (respectively, Aw0(X)).

3. The algebraic equalities between weighted spaces with o- and O-growth conditions

In this section we study the algebraic equalities between weighted spaces with o- and O-growth conditions 
of the same type.

Starting with the topological consequences of these equalities for Banach, Fréchet, and (LB)-spaces, we 
establish that they imply that the corresponding spaces are always finite dimensional, Montel, and (DFS), 
respectively (see Theorem 3.3). Thus, we remove all restrictions used before in the results of such a type for 
spaces of holomorphic functions. In addition, in case of Fréchet spaces our result is finer than the previous 
one (in this connection see Remark 3.4 below).

Similarly, studying the converse statements (or the equivalence between algebraic equalities and topo-
logical structures of the corresponding spaces), we remove or weaken the assumptions used in the previous 
papers.
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3.1. Topological consequences of algebraic equalities

For two decreasing sequences V and W we will write that V ≤ W if for every m ∈ N there exist n ∈ N
and C > 0 such that vn ≤ Cwm on X. Clearly, in this case AV (X) ↪→ AW (X).

Proposition 3.1. Suppose that V and W are two decreasing weight sequences and V ≤ W . If AV (X) ⊂
AW0(X), then the inclusion of AV0(X) into AW0(X) is Montel.

Proof. We proceed by contradiction and assume that the inclusion of AV0(X) into AW0(X) is not Montel. 
Using Corollary 2.3 with E = AV0(X) and F = AW0(X), we can find a bounded sequence (fk)∞k=1 in 
AV0(X) satisfying the following conditions:

(a) (fk)∞k=1 converges to 0 with respect to the co topology;
(b) (fk)∞k=1 does not converge to 0 in AW0(X), i.e., there is m ∈ N so that (fk)∞k=1 does not converge to 0

by the norm ‖ · ‖wm
. W.l.o.g., we may assume that, for some c > 0,

‖fk‖wm
≥ c for all k ∈ N.

Since (fk)∞k=1 is bounded in AV0(X),

Mn := sup
k∈N

‖fk‖vn < ∞ for all n ∈ N.

From V ≤ W it follows that, for some n0 ∈ N and M > 1, vn0 ≤ Mwm on X. Hence, vn ≤ Mwm on X for 
all n ≥ n0. W.l.o.g., we may assume that vn ≤ Mwm for all n ∈ N.

Let (Qk)∞k=1 be a fundamental sequence of compact sets of X. We set K1 := Q1 and take b ∈ (0, c). By 
condition (a), there is k1 ∈ N such that

‖fk‖K1 ≤ b

2M inf
x∈K1

v1(x), for all k ≥ k1.

Setting g1 := fk1 and using the condition (b), we can find a point x1 /∈ K1 with |g1(x1)| ≥ bwm(x1).
Suppose that, for some j ∈ N, Ks, gs, xs are already defined for all 1 ≤ s ≤ j and choose Kj+1, gj+1, 

xj+1 in the following way. Take Kj+1 from (Qk)∞k=1 so that:

(i) xj ∈ Kj+1;
(ii) |g1(x)| + |g2(x)| + ... + |gj(x)| ≤ b

2M vj+1(x) for all x /∈ Kj+1.

Next, define gj+1 and xj+1 in just the same way as we already chose the function g1 and point x1:

(iii) By condition (a), there exists kj+1 ∈ N so that

‖fk‖Kj+1 ≤ b

2j+1M
inf

x∈Kj+1
vj+1(x), ∀k ≥ kj+1.

(iv) Setting gj+1 := fkj+1 and using the condition (b), we find a point xj+1 /∈ Kj+1 with |gj+1(xj+1)| ≥
bwm(xj+1).

Put f :=
∑

gj and prove that f ∈ AV (X), but f /∈ AW0(X).
j
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Given a compact set K in X, find j0 ∈ N with K ⊂ Kj0 . Then by condition (iii) we have, for j > j0,

‖gj‖K ≤ b

2jM inf
x∈Kj

vj(x) ≤ b

2jM inf
x∈Kj0

vj0(x).

Hence, the series 
∑

j gj converges absolutely in (A(X), co) and, consequently, f ∈ A(X).
Let n ∈ N. For any x /∈ Kn, there exists j0 ≥ n with x ∈ Kj0+1 \Kj0 . Then from (ii) and (iii) we have

∣∣f(x)
∣∣ ≤ j0−1∑

j=1

∣∣gj(x)
∣∣ +

∣∣gj0(x)
∣∣ +

∞∑
j=j0+1

∣∣gj(x)
∣∣

≤ b

2M vj0(x) + Mnvn(x) +
∞∑

j=j0+1

b

2jM vj(x) ≤ (b + Mn)vn(x).

Thus, f ∈ Avn(X) for every n ∈ N. That is, f ∈ AV (X).
Using (ii), (iii), and (iv), we have, for each s ≥ 2,

∣∣f(xs)
∣∣ ≥ ∣∣gs(xs)

∣∣− s−1∑
j=1

∣∣gj(xs)
∣∣− ∞∑

j=s+1

∣∣gj(xs)
∣∣

≥ bwm(xs) −
b

2M vs(xs) −
∞∑

j=s+1

b

2jM vj(xs) ≥
b

4wm(xs).

Consequently, f(x)/wm(x) does not vanish at infinity on X and f /∈ AW0(X). This completes the proof. �
Corollary 3.2. (Cf. [5, Proposition 3].) Suppose that v and w are two weights on X such that, for some 
C > 0, v ≤ Cw on X. If Av(X) ⊂ Aw0(X), then the inclusion of Av0(X) into Aw0(X) is compact.

The main result of this subsection is as follows.

Theorem 3.3. The following statements are true:

(1) The algebraic (or, topological) equality Av(X) = Av0(X) implies that Av(X) and Av0(X) are finite-
dimensional spaces.

(2) The algebraic (or, topological) equality AV (X) = AV0(X) implies that AV (X) and AV0(X) are Montel 
spaces.

(3) The algebraic equality VA(X) = V0A(X) implies that VA(X) and V0A(X) are (DFS)-spaces.

Proof. Statements (1) and (2) are immediate consequences of Corollary 3.2 and Proposition 3.1. To see this, 
it is enough to consider w = v and W = V , respectively.

Let us prove (3). Always V0A(X) ↪→ VA(X). Then, by the open mapping theorem, the algebraic equality 
VA(X) = V0A(X) implies that these two spaces coincide topologically. Thus, it is sufficient to check that 
V0A(X) is (DFS).

The equality VA(X) = V0A(X) and Grothendieck’s factorization theorem (see [12, Theorem 24.33]) 
imply that for each n ∈ N there is m > n with Avn(X) ⊂ A(vm)0(X). Then, by Corollary 3.2, we have that 
the inclusion of A(vn)0(X) into A(vm)0(X) is compact. That is, V0A(X) is a (DFS)-space. �
Remark 3.4. (1) In many papers (see, e.g., [4,6,9]) several results on the canonical equalities between weighted 
spaces of holomorphic functions with O-growth conditions and the biduals of spaces with o-growth conditions 
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of the same type were obtained. In case when weighted spaces with O- and o-growth conditions coincide, 
one can deduce from them that these spaces have some topological properties (concerning mainly their 
reflexivity).

In particular, Bierstedt and Summers [9, Corollary 1.2] proved that Hv(G) is isometrically isomorphic to 
the bidual Hv0(G)′′ provided the biduality condition holds (that is, the co-closure of the unit ball Bv0(G)
coincides with the unit ball Bv(G)). Combining this with Bonet and Wolf [10, Corollary 2], it then follows 
that Hv(G) and Hv0(G) are finite-dimensional whenever Hv(G) = Hv0(G) algebraically and the biduality 
condition holds. Our statement (1) in Theorem 3.3 shows that the biduality condition is superfluous here.

Next, from Bierstedt and Bonet [4, Section 3.A] and Bierstedt, Bonet and Galbis [6, Theorem 1.5(d)]
it follows that, for balanced domains and rapidly varying radial weights, the equality HV (G) = HV0(G)
implies that HV (G), as well as HV0(G), is reflexive. Recall that a domain G is called balanced if λz ∈ G

for every z ∈ G and all |λ| = 1, while a weight v on a balanced domain G is called radial if v(λz) = v(z)
for all z ∈ G and |λ| = 1. Theorem 3.3(2) establishes that the equality HV (G) = HV0(G) guarantees that 
HV (G) and HV0(G) are Montel (consequently, reflexive) without any restrictions on domains and weights.

(2) Assuming that V consists of radial weights on a balanced domain G and H(v1)0(G) contains all the 
polynomials, Bierstedt and Bonet [4, Section 3.B] and Bierstedt, Bonet and Galbis [6, Theorem 1.6(d)]
proved that the algebraic equality VH(G) = V0H(G) implies that V0H(G) is reflexive. Later, Bierstedt and 
Bonet [5] established the following much stronger consequence of this equality provided the interpolation 
property holds for each step Hvn(G). Recall that a sequence (zj)j ⊂ G is said to be interpolating for Hv(G)
if the restriction operator R : f ∈ Hv(G) 
→ (f(zj))j maps Hv(G) onto

	∞(v) :=
{

(cj)j ∈ CN : sup |cj |
v(zj)

< ∞
}
.

By [5, Theorem 4(a)], if for each n ∈ N every discrete sequence in G contains an interpolating subsequence 
for Hvn(G), then the equality VH(G) = V0H(G) implies that VH(G) and V0H(G) are (DFS)-spaces. We 
showed that this result (see Theorem 3.3(3)) is valid without additional assumptions.

3.2. Equivalence between algebraic equalities and topological structures

Let V = (vn) be an increasing weight sequence. In the previous subsection we have shown that the 
algebraic equality VA(X) = V0A(X) implies that VA(X) is a (DFS) space. In [5] Bierstedt and Bonet studied 
also when the converse statements are true for spaces of holomorphic functions. Assuming that the step 
spaces Hvn(G) satisfy the biduality condition and interpolation property, they proved (see [5, Theorem 4(c)]) 
that the algebraic equalities VH(G) = V0H(G) and HV (G) = HV 0(G) hold if and only if VH(G) is (DFS) 
and HV (G) is semi-Montel, respectively.

In this subsection we consider weighted function spaces on a locally compact and σ-compact space X
and show that in assertions of such a type the condition on the interpolating property is superfluous and 
the biduality condition can be replaced with the following weaker one:

(CD) for each n ∈ N there are m ≥ n and M ≥ 1 such that the unit ball Bvn(X) of Avn(X) is contained 
in MBvm0(X)co, the co-closure of M times the unit ball Bvm0(X) of A(vm)0(X).

Remark 3.5. 1. Let vn(z) = (1 + |z|)neRe z, z ∈ C, n ∈ N. Then every space Hvn(C) is (n + 1)-dimensional
and coincides with Span{zkez : 0 ≤ k ≤ n} (see, e.g., [1, Theorem 2.7]). Evidently, Hvn0(C) = Hvn−1(C)
and Bvn(C) ⊂ Bvn+10(C). Consequently, none of the steps satisfy the biduality property, while VH(G)
satisfies (CD).
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2. Note also that by Bierstedt and Bonet [4, Proposition 13], in case of holomorphic functions, (CD) is 
also the biduality condition of a special kind, but for the (LB)-spaces VH(G) and V0H(G) instead of their 
steps.

To continue, we need some preparation.
Following Bierstedt, Bonet and Taskinen [7, Definition 1.1], the functions

ṽ(x) := sup
{∣∣f(x)

∣∣ : f ∈ Bv(X)
}
,

ṽ0(x) := sup
{∣∣f(x)

∣∣ : f ∈ Bv0(X)
}
, x ∈ X,

are called the associated weights (with v). Similarly to the case of holomorphic functions the next assertions 
hold.

Lemma 3.6. Associated weights have the following properties:

(a) ṽ0 ≤ ṽ ≤ v on X;
(b) Av(X) = Aṽ(X) isometrically;
(c) for each x ∈ X there is f = fx ∈ Bv(X) with |f(x)| = ṽ(x);
(d) if Bv(X) ⊂ MBw0(X)co, then ṽ ≤ Mw̃0 on X;
(e) if ṽ/w vanishes at infinity on X, then the canonical injection Av(X) → Aw(X) is compact;
(f) if the canonical injection Av0(X) → Aw0(X) is compact, then ṽ0/w vanishes at infinity on X.

Using some ideas in the proof of Theorem 4(b) from Bierstedt and Bonet [5], we have the following 
characterization for the space AV (X) to be semi-Montel.

Lemma 3.7. The space AV (X) is semi-Montel if and only if the inclusion of Avn(X) into Av(X) is compact 
for all n ∈ N and v ∈ V .

Proof. Since AV (X) and VA(X) have the same bounded subsets and VA(X) is regular, AV (X) is semi-
Montel if and only if the unit balls Bvn(X) are all relatively compact in AV (X), or, using that AV (X)
is complete, precompact in AV (X). Clearly, the ball Bvn(X) is precompact in AV (X) if and only if it is 
precompact (or relatively compact) in Av(X) for all v ∈ V . Thus, AV (X) is semi-Montel if and only if the 
unit ball Bvn(X) is relatively compact in Av(X) for all n ∈ N and v ∈ V which gives the proof. �
Theorem 3.8. Suppose that VA(X) satisfies (CD). The following statements are true:

(1) The algebraic equality VA(X) = V0A(X) is equivalent to VA(X) (DFS).
(2) The algebraic equality AV (X) = AV 0(X) is equivalent to AV (X) semi-Montel.

Proof. (1) The direct statement was proved in Theorem 3.3(3).
Now we suppose that VA(X) is a (DFS)-space. Fix some function f ∈ VA(X). Then f ∈ Avn(X) for 

some n ∈ N and, without loss of generality, we may assume that f ∈ Bvn(X). Condition (CD) implies that 
there exist numbers m ≥ n and M > 1 and a sequence (fk)k in MB(vm)0(X) which converges to f in the 
co topology.

Since VA(X) is a (DFS)-space, the inclusion of Avm(X) into Avp(X) is compact for some p ≥ m. By 
Corollary 2.4, it then follows that the sequence (fk)k converges to f in Avp(X). Hence, f ∈ A(vp)0(X) and 
consequently f ∈ V0A(X). Thus, VA(X) = V0A(X).

(2) Suppose that AV (X) = AV 0(X) holds algebraically and fix some n ∈ N and v ∈ V . Using (CD), find 
m ≥ n and M > 1 so that Bvn(X) ⊂ MB(vm)0(X)co. Then ṽn ≤ Mṽm0 on X.
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The hypothesis implies that Avm(X) ⊂ Av0(X). Hence, by Corollary 3.2, the inclusion A(vm)0(X) →
Av0(X) is compact. By Lemma 3.6(f), this yields that the quotient ṽm0/v vanishes at infinity on X. Con-
sequently, so does the quotient ṽn/v which implies that the inclusion of Avn(X) into Av(X) is compact. 
Thus, by Lemma 3.7, the space AV (X) is semi-Montel.

To prove the converse, let AV (X) be semi-Montel. Given f in AV (X), find n ∈ N so that f ∈ Avn(X). 
W.l.o.g. we can assume that f ∈ Bvn(X). Again using (CD), choose m ≥ n and M ≥ 1 so that Bvn(X) ⊂
MB(vm)0(X)co. Then there exists a sequence (fk)k ⊂ MB(vm)0(X) which converges to f in the co topology.

Since AV (X) is semi-Montel, by Lemma 3.7 the inclusion of Avm(X) into Av(X) is compact for every 
v ∈ V . Then, by Corollary 2.4, fk → f as k → ∞ in Av(X). Therefore, f ∈ Av0(X) because of fk ∈ Av0(X)
for all k. Consequently, f ∈ AV 0(X) and then AV (X) = AV 0(X). �

Comparing Proposition 14 and Theorem 4 in [5, p. 759], Bierstedt and Bonet noted that, in case all the 
steps Hvn(G) satisfy the interpolation property and biduality condition, the space HV 0(G) is semi-Montel 
if and only if it is semireflexive. They also asked whether this equivalence is true without the interpolation 
property. Obviously, Theorem 3.8 and [5, Proposition 14] give the following answer to this question.

Corollary 3.9. Let V = (vn)n consist of weights on an open set G ⊂ CN such that all the steps Hvn(G)
satisfy the biduality condition. The following assertions are equivalent:

(1) The algebraic equality HV (G) = HV 0(G) holds.
(2) HV 0(G) is semi-Montel.
(3) HV 0(G) is semireflexive.

Remark 3.10. Corollary 3.9 is also true in the general case, for spaces AV (X) and AV 0(X). Indeed, (1) ⇒ (2) 
by Theorem 3.8 while (2) always implies (3). To see that in this case (3) ⇒ (1), it is sufficient to repeat 
arguments of the proof in [5, Proposition 14(a)].

Under some additional assumptions the case of holomorphic functions admits further refinements given 
below.

From Bierstedt, Bonet and Galbis [6, Theorem 1.5(d)] it follows easily that the condition (CD) holds 
(even, Bvn(G) = B(vn)0(G)co for all n) when V = (vn)n is an increasing sequence of radial weights on a 
balanced domain G ⊂ CN such that Hv10(G) contains all the polynomials. If G is bounded, the last condition 
means that the weight v1 can be extended continuously up to G with v1|∂G ≡ ∞, while for G = CN it 
means that v1 is rapidly increasing at infinity, i.e., log |z| = o(log v1(z)) as z → ∞.

For some classes of domains, results like Theorem 3.8 are true without condition (CD). Namely, we 
suppose that G is either a domain in C whose complement has no one-point component or an absolutely 
convex bounded domain in CN . In Bierstedt and Bonet [5, Propositions 3, 7 and 12] it was proved that for 
domains of such a type the inclusion of Hv(G) into Hw0(G) is always compact. In this case we have also 
the following criteria for VH(G) and HV (G) to be (DFS) and semi-Montel, respectively.

Proposition 3.11. Suppose that G is either a domain in C whose complement has no one-point component 
or an absolutely convex open bounded domain in CN . The following criteria are valid:

(1) The space VH(G) is (DFS) if and only if for each n ∈ N there exists m > n such that ṽn/vm vanishes 
at infinity on G.

(2) The space HV (G) is semi-Montel if and only if ṽn/v vanishes at infinity on G for all n ∈ N and v ∈ V .

Proof. For a domain G in C with the complement having no one-point component it was proved in 
[1, Theorems 4.3 and 4.5].
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Furthermore, using [5, Lemma 11] and an evident modification of the proofs of [1, Theorems 3.13, 4.3 
and 4.5] we get the same criteria in the case of an absolutely convex bounded domain G ⊂ CN . �

As an immediate consequence, we get the following sharpening of Theorem 3.8.

Theorem 3.12. Suppose that G is either a domain in C whose complement has no one-point component or 
an absolutely convex bounded domain in CN . Then the algebraic equalities VH(G) = V0H(G) and HV (G) =
HV 0(G) are equivalent to VH(G) (DFS) and HV (G) semi-Montel, respectively.
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