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Abstract

This work considers an inverse boundary value problem for a 3D nonlinear elliptic partial differential
equation in a bounded domain. In general, the problem is severely ill-posed. The formal solution can be
written as a hyperbolic cosine function in terms of the 2D elliptic operator via its eigenfunction expan-
sion, and it is shown that the solution is stabilized or regularized if the large eigenvalues are cut off. In
a theoretical framework, a truncation approach is developed to approximate the solution of the ill-posed
problem in a regularization manner. Under some assumptions on regularity of the exact solution, we
obtain several explicit error estimates including an error estimate of Holder type. A local Lipschitz case
of source term for this nonlinear problem is obtained. For numerical illustration, two examples on the
elliptic sine-Gordon and elliptic Allen-Cahn equations are constructed to demonstrate the feasibility and
efficiency of the proposed methods.

Keywords and phrases: Nonlinear elliptic equation, Ill-posed problem, Regularization, Truncation
method.
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1. Introduction

In this paper, we consider the problem of reconstructing the temperature of a body from interior
measurements. In fact, in many engineering contexts (see, e.g., [4]), we cannot attach a temperature
sensor at the surface of a body (e.g., the skin of a missile). Hence, to get the temperature distribution on
the surface, we have to use the temperature measured inside the body. Let L be a positive real number
and Q = (0, 1) x (0, ). We are interested in the following inverse boundary value problem: Find u(x, y, 0)
for (x,y) € Q where u(x, y, 7) satisfies the following nonlinear elliptic equation:

Au=F(x,y,z,u(x,y,2)), (x,9,2) €QxX(0,+00), (1.1)
subject to the conditions
u(x,y,z) =0, (x,y,2) € 0Q % (0, +00),
ulx,y, L) = ¢(x,y), (x,y) € Q, 1.2)
u(x,y,L) =0, (x,y) € Q.

Here Au = 0%u/dx> + 8*u/dy* + 6>u/dz>, the function ¢ € L*(Q) is known, and F is called the source
function to be defined later. Having found u(x, y, 0) a forward problem can be solved to find u(x, y, z) for
all (x,y,z) € Qx (0, L).
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It is widely recognized nowadays that Cauchy problems for the Poisson equation, and more gener-
ally for elliptic equations, has a central position in all inverse boundary value problems which are en-
countered in many practical applications such as electrocardiography [25], astrophysics [9] and plasma
physics [3, 21]. These problems are also closely related to inverse source problems arising from, e.g.,
electroencephalography and magnetoencephalography [26]. The continued interest in this kind of prob-
lems is evidenced by the number of publications on this topic. We refer to the monograph [25] for further
reading on Cauchy problems for elliptic equations.

It is well-known that inverse boundary value problems are exponentially ill-posed in the sense of
Hadamard. Existence of solutions and their stability with respect to given data do not hold even if the
data are very smooth. In fact, the problems are extremely sensitive to measurement errors; hence, even in
the case of existence, a solution does not depend continuously on the given data. This, of course, implies
that a properly designed numerical treatment is required.

Inverse boundary problems for linear elliptic equations have been studied extensively, see, e.g., [1, 3].
Indeed, in the case F' = 0 in (1.1) with the following conditions

u(x,y,z) =0, (x,y,2) € 0Q X (0, +00),

u(x,y, L) = p(x,y), (x,y) €L, (1.3)
lim u,(x,y,L) =0, (x,y)€Q,

Z—00

the problem is studied in [10, 26, 33]. In these studies, the algebraic invertibility of the inverse problem is
established. However, regularization is not investigated. In [24], the authors apply the nonlocal boundary
value method to solve an abstract Cauchy problem for the homogeneous elliptic equation. Eldén et al
develope useful numerical methods to solve the homogeneous problem; see for example [14, 15, 16, 17].
Level set type methods are also proposed [32] for Cauchy problems for linear elliptic equations.

Although there are many works on Cauchy problems for linear elliptic equations, to the best of
our knowledge the literature on the nonlinear case is very few. In the abstract framework of operators
on Hilbert spaces, regularization techniques are developed by B. Kaltenbacher and her coauthors in
[2, 27, 28, 29]. The present paper serves to develop necessary theoretical bases for a regularization of
problem (1.1)—(1.2).

Our approach can be summarized as follows. Let ¢ and ¢ be the exact and measured data at z = L,
respectively, which satisfy [l¢ — ¢€ll;2(q) < €. Assume that problem (1.1)-(1.2) has a unique solution
u(x,y, z). By using the method of separation of variables, one can show that

L sinh ((T -2)Vm? + n2)
Gmn + f Fun(u)(0)dT | pun(x, y)(1.4)

u(x,y,z) = ii cosh((L—z) \/m2+n2) —
Vvm< +n

m=1 n=1

o0 o0

Indeed, let u(x,y,z) = Y. Y, un(2)dmn(x, y) be the Fourier series in L*(Q) with Dun(x,y) = % sin(mx) sin(ny).
1n=1

m=1n=
From (1.1)—(1.2) , we can obtain the following ordinary differential equation with given data at z = L

d2

E”mm(z) = N2 + P2un(2) = Frn()(2), 2 € (0, +00),

Umn(L) = @mn, (1.5)
dizumn(L) =0,

where Fun(u)2) = [, F(x, Y, 2, u(x, Y, 2))bumn(x, y)dxdy.
It is easy to see that the solution of problem (1.5) is given by

tnn(2) = cosh (L = 2) Vi + 1) oy + f sinh \/% - )an(u)(‘r)d‘r. (1.6)
z m-+n
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Then the solution of (1.1)—(1.2) satisfies the integral equation (1.4). Since z < L, we know from (1.4)

that, when m, n become large, the terms
sinh ((T -2 Vm? + n2)
cosh ((L —2)Vm? + n2) and
Vm? + n?

increase rather quickly. Thus, these terms are the cause for instability. In order to regularize problem
(1.1)—(1.2) , we stabilize problem (1.4) by filtering the high frequencies with a suitable method. The
essence of our regularization method is to eliminate all high frequencies from the solution, and consider
(1.4) only for m, n satisfying Vm? + n*> < C.. Here C, is a constant which will be selected appropriately
as a regularization parameter which satisfies lime_,0 Ce = oo. Such a method is the called Fourier
truncated method. We shall use the following well-posed problem

Auf = Pc F(x,y,z,u¢(x,Y,2)), (x,y,2) € QX (0, +00),
u¢(x,y,z) =0, (x,y,2) € 0Q X (0, +00), 1.7)
u(x,y, L) = ¢°(x,y),  u(x,y,L)=0, (x,y)€Q,

where Pc_ is the orthogonal projection from L*(Q) onto the eigenspace span{@,,(x, y)| Vm2 + n2 < C.},
i.e.
Pew = Z (W, @) G for all w € LA(Q).

mn=1

Vim2+n2<Ce
The Fourier truncation method is useful and convenient for dealing with ill-posed problems. The method
is effective for linear backward problems; see e.g. [19, 36]. It has also been successfully applied to some
other ill-posed problems [15, 39]. In the present paper, by using the truncation regularization method,
we show that the approximate solution u€ of problem (1.7) satisfies the following integral equation

u(x,y,z) =
L sinh ((7 — z) Vm? + n?
Z lcosh ((L —)Vm? + n2)<pf,m + f ( Npeas; )an(us)(T)dT] Gmn(x,y)  (1.8)
mn>1 zZ m-+n
Vm2+n2SCg
where

Pon = fg @ (%, ) mn(x, y)dxdy and  Fpun(u) (1) = fg F(x, 3,7, u (X, Y, D)) Pmn(x, y)dxdy.

We then prove that under some suitable conditions of the exact solution u, the approximate solution u¢
converges to u as € — 0. To the best of our knowledge, this is the first result on convergence rate when a
regularization method is used to solve inverse boundary value problems for elliptic equations with locally
Lipschitz source terms. Moreover, error estimates in higher Sobolev space is presented for the first time
in this paper. In particular, in this paper we will present regularized solutions for two cases of the source
function F:

Case 1. F is a global Lipschitz function.

Case 2. F is a locally Lipschitz function.
Our method is in principle not restricted to the Poisson equation on a rectangular domain. In fact,
the method works for more general operators defined on any bounded Euclidean domain. Indeed, the
analysis presented in this paper will be particularly derived from a general abstract problem in a Hilbert
space H
{uzz =Au+ F(z,u(z)), z¢€(0,+c0), (19)
u(l) =, u(l)=0,
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where u is a mapping from [0, +c0) to H and A : D(A) — H is a positive self-adjoint unbounded operator.

The paper is organized as follows. In Section 2, we present the main results on regularization theory
for both cases: global and local Lipschitz source functions. Section 3 is devoted to numerical experiments
which show the efficacy of the proposed methods. We finish the paper with some concluding remarks in
Section 4.

2. The main results

Definition 2.1 (Gevrey-type space (see [7, 35])). The Gevrey class of functions of order s > 0 and index

o > 0 is denoted by G;YT/ 2 and is defined as

Gl ={fe X @: i i(mz + )t exp (20 Vi +n2) [(f. dundl? < oo).

m=1 n=1

It is a Hilbert space equipped with the norm

Hﬂbf::J§;§]W2+n%5wpcavmz+#)Kﬁ¢mmz<w}
m=1 n=1

For a Hilbert space B, we denote

L2(0.L:B) = £ : [0.L] - B‘ ess sup /()5 < oo
0<z<L
and
1Az (0,2:8) = ess sup |l f(2)llp.

0<z<L

First, we consider some assumptions on the exact solution

€ss sup Z Z exp (22 Vm? + nz)u,z,m(z) <I, (2.10)
0<z<L m=1 n=1

€ss sup Z z:(m2 + n2)8 exp (21 Vm? + nz)u,z,m(z) <h (2.11)
0<z<L =1 n=1

ess sup Z Z exp (22 + @) Vm? + 2 )2, (2) < I, (2.12)
0<z<L m=1 n=1

il o010, = €58 sup [[u(2)llgo = ess sup Z Z exp (2L Vm?® + n)u2,(2) < I, (2.13)

TR 0=esL Lot \iT S

for all z € [0, L], where «, 3, I, I, I3, I are positive constants and u,,,(z) = fQ u(x, v, 2)Pmn(x, y)dxdy.
The following lemma will be useful in the subsequent analysis.

Lemma 2.1. For any w € G we have following inequality

-k —oC,
w = Pe,wliza) < C2e™ e lwlgs



Proof. Forw € G’;, we have

[lw — Pcewlliz(g) = Z (m® + n*)*exp ( —20Vm? + 112)(1712 + ) exp (20' Vm? + n2)|<w, ¢mn> ?
< CE_Zke_Z‘TCE Z (m® + n>) exp (20' \/nm)Kw, ¢>mn> ?

mn=1

Vm2+nz£C€

—2k ,—20C 2
< e

This completes the proof. O

2.1. Results for global Lipschitz source functions

Assume in this section that F is a global Lipschitz function, i.e. F € L™ ([0, nr] x [0, ] X [0, L] X R),
satisfying the following condition

|F(X’Y»Z,W)_F(X,Y’Z,V)|SKF|W_V| Vx,yaz,W,Vv (214)

for some Kr > 0 independent of x,y,z, w, v.
In this paper, we shall write u(z) = u(:,-,z) for short. The following theorem provides an error
estimate in the L2-norm when the exact solution belongs to the Gevrey space.

Theorem 2.1. Let € > 0 and let F satisfy (2.14). Then the problem (1.7) has a unique solution u €
C([0, L1; LA ().

1. Assume that u satisfies (2.10). If Cc > 0 is chosen such that ee*C< is bounded, then we obtain

2 L2y —
u€(2) — u@ll2q) < 217 + 422LCe?KpLUL=0) p=2C

Moreover, for € sufficiently small, there exists z¢ € [0, L] such that lim¢_,o ze = 0 and

- In(Co)
e (ze) = u(O)ln < [ 21} + 4220 FHED el 2 | =
€

As a consequence, if we choose C¢ = % ln(é) then

llu(2) — u(2)ll 2 < JZI% + 462K12’L261%, for 7€ (0,L]

) s Lln (% ln(é) (2.15)
||ME(Ze) - M(O)”LZ(Q) < \/2112 + 4€2KFL +1; —
11’1(;)
2. Assume that u satisfies (2.11). If C¢ is chosen such that lim¢_, ; €elCe = 0, then we have

et (2) — u(@)ll 2 < \/ZCEZﬁlg + 4€22LCe 2K LL=2) =2Cc

L

3. Assume that u satisfies (2.12). If C is chosen such that lime_, o €e"Cc = 0, then we have

2 (L) —
lu(2) — u(@)ll 2y < \/26*2“@1% + 4€2e2LCe 2K L=0) =2Cc

Remark 2.1. 1. In part 1, Theorem 2.1, if we choose C, = % ln(é) then the error is of order €t. This
error gives no information on the continuous dependence of the solution on the data at 7 = 0. To
improve this, we need a stronger condition of u as in Part 2, Part 3.



2. In part 2, Theorem 2.1, if we choose C, = %ln (%), 0 < y < 1, then the error is of logarithmic
order [ ln(%)]_ﬁ

3. In part 3, Theorem 2.1, if we choose Ce = Lm ln( ) then the error is of Holder order €Ta,
Before proving Theorem 2.1, we prove the following lemmas.

Lemma 2.2. The problem (1.8) has unique a weak solution uc(x,y,z) which is in C([0,L]; L*(Q) N
L0, L; H () N C'(0, L; H) ().

Proof. Put
. L sinh ((T -2 Vm? + n2) g
Hu)(x,y,2) = ¥(x,,2) + Z f T PO b,
Vm2+n25C5
where
Y(x,y,2) = Z cosh ((L —z2)Vm? + nz)gosmqun(x, ).
Ve,
We claim that

P
(K},L exp(2LC,) max{L, 1})

709 - H )2 e = well, (2.16)

e S p!

for p > 1, where |||.]|| is the sup norm in C([0, L]; L*(Q2)). We shall prove the above inequality by
induction.
For p = 1, using the inequality

L 2
inh ( _ )1/ 2 452 L
flsm (@ mzz +:2 ! )} dr < j; exp (2 Vm? +n2(z — 2))dr < exp2 Vm? + L)L,

and the Lipschitz property of F, we have

Z

L smh (T -2) m)
||H(V )(Z) H(W )(Z) Lz(Q) Z f

2
2 (an(ve)(T) - an(WE)(T))dT‘
+ n

+n2 <Ce

Z f[smh (t- z)m

dr f [Fun V) = Fon) )

] Vm? + n2
mz+n2<C5
y o
< exp2LCOL f [Fun (V@) ~ Fu | |de
A=
L [S e
2
< exp(LCAL f D3 @) = Fan)(@)| ]dr
Lm=1 m=1

Z

= exp(2LCe)Lf”F(x v, T,V (X, y, 7)) — F(x,y, T, u(x, y, T))” dr

< max{L, 1}K> exp(2LCe)L2|||v welll%.
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Thus (2.16) holds for p = 1. Suppose that (2.16) holds for p = j. We prove that (2.16) holds for p = j+1.
We have

[+ 0@ - Bt oo

LX(Q)
L smh (T -2 Vm? + n2) ) . \
= > f e (FanHI0)(@) = Foun(H(w))(D))d
mn=1 + n
Vim2n2<Ce
L
. . 2
< exp2LCOL f D PN - Fun(H v )@ |de
L 2
< exp(2LCL f ’F(T,Hf(vf)(r))—F(T,Hf(wf)(r)) dr

Z

< exp(2LC)LK% f |H (V) () = H (W) (0)|Pdr

L .
. L—=1) i
< exp(2LCLK 2K} exp(2L jcf)( &-n d‘r)(max{A, 1})’|||vf —woII?
Z
2(j+1) . (L= z)/*! Jj+l 2
< K™ exp LG + DCO = (ma(L 1)1V = wellP.

Therefore, we get

P
(K};L exp(2LC,) max{L, 1 })

|7 09@) - B )@

€ __ €

for all v, w€ € C([0, L]; L*(Q)). Now we consider H : C([0, L]; L*(Q)) — C([0, L]; L*(Q)).
It can be shown that

P
(K%LeZLCE max{L, 1})

lim =0.
p—oo p!

As a consequence, there exists a positive integer number pg such that H?° is a contraction. It follows that
the equation H”°(1) = u has a unique solution u¢ € C([0, L]; L%(Q)) We claim that H(u€) = u€. In fact,
one has H(GP(uf)) = H(u®). Hence H?°(H(u®)) = H(u®). By the uniqueness of the fixed point of H"?,
one has H(u€) = u€, i.e., the equation H(u€) = u€ has a unique solution u¢ € C([0, L]; L>(Q)). ]

Lemma 2.3. Let u be an exact solution to problem (1.1) and let u€ be as (1.8). Then we have the following
estimate

14(2) = Pe,u(@)ll320, < 2exp (2(L = C)lIge = ¢ll7 g,

+2K3(L—2) f exp (2(r = DCU (@) = w72 0 A7



Proof. By using the Lipschitz property of F, we obtain

2
cosh ((L - Z) sz + ”2) (‘prgnn - ‘pmn)

2
€ = Peully, <2 )

m,n=1

mwf
L sinh ((r - 2) \/m) ) 3
> [ e Pt - Fr )|
\/T"lz<C5
<2 Z exXp (L Z) m) (‘pmn ‘pmn)
L 2
+2 Z [f exp ((T —z)Vm? + nZ)(an(uf)(T) — an(u)(T))d-r}

< 2exp (2L - C)lg* — ¢l 0,

+2Kp(L~2) f exp (2(r = DCu(T) = (D)l

This completes the proof of lemma. 0
We now prove Theorem 2.1.
Proof. Proof of Part 1: Since u € G?, Lemma 2.1 gives

llu(2) = Peu(@ll}z ) < € lu@lig,-

Lemma 2.2 and the triangle inequality yield

A

4@ = u@llFr g, < 2Mu@) = Peu@laq, + 2Mu@) = Peu@l}q,
267 ()% + 4 exp (2L — 2)Ce gt

IA

- ‘p”%‘Z(Q)
+4K%(L - 7) fexp (2(7’ —2)C)lu(r) - u(‘r)lliz(g)d‘r

This implies that
L
e*Ce|u(z) — u(z)||iz(m <2 sup u@@)I}, +4e* € + 4KGL f ¥ u (1) — u(T)l|i2(Q)dT.
0<z<L <
z

Applying Gronwall’s inequality, we obtain

2 1(L—
@) ~ w0y < [2 sup [lu(2)lge 4P| D),

Therefore

14€(2) = u(@)ll o) < 21 + 4e2e2LCePKil =0 g=2Cc, 2.18)



If € is sufficiently small then C, > eL Consider the following equation

e =2,

The solution to this equation satisfies another equation 4(z) = 0 where h(z) = In(z) + zC.. The function
h is strictly increasing. Moreover, lim,_,o+ 4(z) = —oo and

In(Cy)
h(_c: ) =1In (IH(CE)) —In(C,) + In(C,) = 1n(ln(CE)) >0
for € small enough. Thus the equation /(z) = 0 has a unique solution z. > 0 which satisfies
Z < ln(Ce).
Ce

The continuity of u, gives, for sufficiently small €,

e
lutze) - uO)lz(o, = | f w@de] , <z sup @l (2.19)
0 LX(Q) 0<z<L
Combining (2.18) and (2.19) and noting that e=%Ce = 7z, ln(cf) , we obtain

lu(ze) — uO)ll 2 < u(ze) — uzell2(q) + llu(ze) — u(0)l 20

2KZL(L-7) ,~z:Ce
\/2 sup IILt(z)II2 + 4€2e2Ce?Killl2) p=2eCe 4 7 sup (D2
0<z<L 0<z<L

270 In(C¢)
[,/2]% + 4€2e2LCe 2K UL | ezl o0, :12(02)) C =.
€

Proof of Part 2: Since u € Gf Lemma 2.1 gives

IA

-2 _
lu(2) = Peu(@}o gy < C ¥ u)I,.

Lemma 2.2 and triangle inequality lead to

”uE(Z) - M(Z)”iZ(Q) S 2’”“ PC u”LZ(Q) + 2”” PC u”LZ(Q)
< 28I, + 4exp (2L - DClef = ¢l g,
+4K%(L - 7) f exp (2(r = )Ce)llu() = w2 .
This implies that
L
(@) = Uz gy <26 sup WG, + 4 + 4K L f @) = ulz gy
<z<L

Z

Applying Gronwall’s inequality, we obtain

-28 2 1(L—
(@) — ufy gy < [2C7 sup llu@)l} + 4e? e eHFAHE,

0<z<L
Therefore
|t (2) — u(2)l 2 < \/ZCE_Zﬁlg + 4€2e2LCeAKFLLD) g=2Ce
Part 3 can be proved by using the same technique. The proof of which is omitted. 0
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Corresponding results to Theorem 2.1 in two dimensions can be summarized in following corollary.

Corollary 2.1. Let u satisfy the 2-D nonlinear problem

2 2
% + ZTI; = F(x,y,u(x,y), (x,¥)€Qx(0,+00),
u(x,y) =0, (x,y) € 9Q % (0, +00),
x,0) = h(x), xeQ,

where Q = (0, ) and h is the unknown boundary condition determined from given interior data

u(x, L) = ¢(x), xe€Q,
uy(x,L) =0, x € Q.

If F € L™ ([0, ] x [0, L] X R) satisfies the condition
|F(x,y,w) = F(x,y,v)| < Kplw—=v| Vx,y,w,v,
for some K > 0 independent of x,y, w, v, then the following well-posed problem

Au® = Pc F(x,y,u(x,y)), (x,y) € QX (0, +00),
u(x,y) =0, (x,y) € 0Q X (0, +00),
u(x, L) = ¢°(x),  wuy(x, L) =0, x€Q,

has a unique solution u® € C([0, L]; L*(0,7)). Here Pc_ is the orthogonal projection from L*(Q) onto the
eigenspace span{g,,(x) |m < C¢}, i.e.

lc]
Pcw= Z <w, ¢m>¢m Yw e Lz(Q).

m=1

1. Assume that u satisfies

sup J i exp (2my)u,%1(y) <Jp.

0<y<L \, =1

If Ce > 0 is chosen such that eetCe is bounded, then we obtain

2
) = ullz2q) < +[2T7 + 4€22LCee?KrL e Ce,

Moreover; for € sufficiently small, there exists y¢ € [0, L] such that lim¢_,gye = 0 and

Ly In(Co)
e = Oz < [ 277 + 4€22Ce P oo a2 | =5
€

2. Assume that u satisfies

sup J i m2F exp (Zym)u%n(y) < Jh.

0<y<L \,=1

L

If C¢ is chosen such that lime_, ;o €€ Ce = 0, then we have

2 ) . —
) — Uy < KT (20 12 1 42e21Cce e,

10



3. Assume that u satisfies

sup J exp (2(z + a)m)u,z,,(y) < J3.

O<sy<L \, =

L

If C¢ is chosen such that lime_, ;o €€ Ce = 0, then we have

2
€ (y) = u)llz2 ) < \/26‘2"C6132 + 4€2e2LCe K UL=y) g=YCe
In the next theorem, we establish the Holder estimate.

Theorem 2.2. Let € > 0 and let F be the function defined in (2.14). If u satisfies (2.13) then by choosing
C. such that lime_ 4o €¢7C< = 0, we can construct a regularized solution U€ such that

R (z, u)e e, Z€ [%, L],

e 1. 2.20
Ry(zwe >e™i°,  zel0, D, 220

NU(2) — u(@)ll 12 < {

where

_ 2 2 ,2LC, ,2K2L(L—7)
Ri(z,u) \/2||M”L°°(0,L;G‘L’) + 4ece e

_ 2 2,2LC, ,22K%L(L~hL) 2 _
Ro(z,u) =2 \/2||u||Lm(O,L;Gg) + 4€2¢2LCe K exp (KZhL(hL - )
+ 2l 0 10, X (KFRL(L = 2)).
Proof. We define a new regularized solution as follows

y sV Q hLaL )
US(x’y,Z) & u (x,y,Z), (-x y Z) € X [ ] (221)
wé(x,y,2), (x,y,2) € Qx[0,hL),

where
u(x,y,z) =
L sinh ((T -2)Vm? + nz)
cosh ((L — z) Vm? + n? f,m+f Fon @At | dn(x,
Z [ (-2 )e Z — W(UNDAT| G, )
Vm2+n2<Ce
and
we(x,y,2) =
AL sinh ((T -2)Vm? + n2)
cosh ((hL — z) Vm? + n?u,,,(hL) + f FpnW)@)AT | fmn(X, ).
,;Z. [ ( ) z Vm? + n? ¢ g
Vm2+n2<Ce

The proof is divided into two steps.
Step 1. Estimate of [[u€ — ul|;2(q) for AL < z < L.
Using Lemma 2.1, we have

< exp(-2LCAu()lgy-

Ju@ - e,

11



Lemma 2.3 and triangle inequality lead to

”uf(z) - M(Z)”iZ(Q) S 2”“ PC u”LZ(Q) + 2”” PC u”LZ(Q)
—2LC, 2 2
< 27Ny +4exp (AL - DC)e — itz
+4Kp(L - 2) f exp (2t = DCI(T) = u(DlI} 2 dT

This implies that

L

N @) = U@l g, < 267 sup ||u(z)||2 +4e* e + 4KFL f 2N (T) = u(lI7 )47
<z<L
Z

Applying Gronwall’s inequality, we obtain

2 _
eZZCg”uE(Z) M(Z)”LZ(Q) [2 Sup ”M(Z)” +4€2LC562]E4KFL(L Z)‘

Therefore for all z € [AL, L]

2 _
llu(2) = u@ll 2 < \/2 sup u()|2, +4e2e2Cee?kit =720 = Ry (z, upe ™.
0<z<L L

Step 2. Estimate of |[w(z) — u(2)||;2(q) for 0 < z < AL.

Define W€ by
We(x,y,z) =
iL sinh ((r = 2) Vim? + n2)
—Vm? +n .
”Zn;l cosh (hL D Nm? +n )umn(hL)"l‘f N Fon(WE(D)AT| dpun(x, ¥).
V2 e <Ce

(2.22)

First, we estimate [[w*(z) — W(2)||;2(q)- By using the Lipschitz property of F', we obtain

cosh ((hL = 2) Vm? + n?) (s, (hL) -

W) = W@l <2

mn=1

V2 en2sCef2
hL sinh ((T -2) \/nm) . ) 5
. "’Zz' [L Vm? + n? (Fin (@) = Fyn(W )(T))dT]
m<c5/2
< 2exp(hL = CAu(hL) - w(hL);

LX)
hL

+ 2KI27(hL Z) fexp((‘r - Z)CE)”W (T) - WE(T)”LZ(Q)

Hence

expECAIW @) = W@ < 2exp(hLCON(AL) = u(hL)R, g

hL
ZK%thexp(TCe)llw (™ - WG(T)”LZ(Q)

Z

12
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Using Gronwall’s inequality we have

expECAIW (@) — W IR, < 2exp (2KFAL(ML - 2)) exp(hLCOIlu (L) = (AL g

This implies that

€ € hL — Z C‘6 €
W) ~ Wl < 2exp (KEALL - ) exp(E 2L ~ uth 2
—hL — .
<2 \/2 sup [lu()I2, + 4€2e2LCePKFULAL) oy (KZhL(hL - z)) exp(M),
0<z<L L 2
(2.23)

for all z € [0, AL].
Next we estimate estimate the error between u and W€ in the L? norm. Combining (1.4) and (2.22),
we get

u(z) = W) =
hL sinh ((T —2) \/m)
— V2 +n?
Z {cosh ((hL HNm? +n )umn(L) + L = an(u)(T)dT\ Bn(x, y)
Vo2 +n2>Ce /2
hL smh (T -2) \/m)
f N (Fun@)(@) = Fpn(WD))dT | (. ). (2.24)
m, n>1 + n
Vin2en2<Ce)2
Putting

[ hL sinh ((7 — z) Vm? + n?)
Ay = Z cosh ((hL -2)Vm? + nz)umn(L) + f o ((T Dy mn(“)(‘r)d‘r\ Gmn(X,y),

mn=1 4 vim + n
Vm2+n2>Cf/2 )
(2.25)
nL sinh ((T —2)Vm? + n2) .
B, = Z f T (Fan(0)(@) = Fpn(WD))d | $in(x, 3)- (2.26)
Vn12+112SC€/2 )
We have
2
L sinh ((‘r - 2) Vm? + nz)
- 22
a2 ) = Z {cosh (AL = ) Vm? + n2un(L) + f T P
Vm2+n2>Cg/2
< Z exp( —2LNm? + n2) exp (2L m? + nz)u,zm(z)
m,n=1
VmZ+n2>Ce /2
< exp(=2LCe) sup ||M(Z)||Go-

0<z<L

13



We deduce by using the Lipschitz property of F

hL smh (T— ) Vm? +n )
IBalley = D f W (Fan()(@) = Foun(W(@))dr
> + n
Vm? +n2<lcg/2
smh (‘r—z)\/ +n) % 2
< ¥ f s [ |FunW0) = Frnti0(e) de
mn=>1 m2 + n2
Vm +n2<C€/2 :
hL
< ) exp(r-9CIhL-2) f Fun(W)(@) = Fpn(u)(@)| d
Vm;-:ZZZSICdZ z
hL

< K2(hL — z) exp ((T —7)Ce f“WE(T) - M(T) L2<Q)

It follows from (2.24) that

”M(Z) WE(Z)”LZ(Q) < 2(”A2“L2(Q) + ”BZHLZ(Q))

2
<2<l L (Q)

hL
< 2exp(-LCe) sup [lu(z)l%, +2K§theXp((T—Z)Ce)I|u(T)— We@Il7

Therefore, we get

exp(zColllu(z) - We@)II7 2 < 2exp((z = L)Ce) sup IIM(Z)II

0<z<L
hL

+2K127theXp(TCe)”u(T) WG(T)”LZ(Q)
Zz

< 2exp((hL — L)C¢) sup ||M(Z)||é(L)

0<z<L
hL

+2K7hL f exp(rCo)llu(t) — WE()|[?

Z

L2 (Q)

Applying Gronwall’s inequality, we have

€ hLCE - LC. —zC¢
lu(2) = W@l < 2 sup lu()llgo exp (KFhL(L = 2)) exp ( 5 ). (2.27)
0<z<L
Combining (2.23) and (2.27), we obtain for 0 < z < hL
llu(z) = w2 () < Nlu(z) = W2 + IW(2) = W@l 12
—hL - 2)C,
<2 \/2 sup ||M(Z)||2 + 4€2¢2LCe PKFLL=hL) exp (K2 hL(hL — z)) exp(%)
0<z<L

hLC. - LC - zC
+2 sup [u(2)lgo exp (KFAL(L - 2)) exp (———5— z ‘).
0<z<L 2

For € fixed, it is easy to see that

max
hel0,1]

—hLCe _ (1-h)LCe —LCe
{e T e 2 }:e i,

14



This leads to

—2Ce —LCe
lu(z) = w@ll2q) < Ra(z, u)e™> e 3.

O

Remark 2.2. 1. If the same technique as in Theorem 2.1 is used, the order of convergence will be
e %Ce. In particular, when z = 0 there is no convergence.
2. IfCe = %, then (2.20) becomes

Ri(z, u)et, z€ [%,L],

(2.28)
Rozuweiet,  ze[0,%).

1U(2) - u(@llr2q) < {

It is obvious that (2.28) is sharp and this error may be better than the previous one in Theorem 2.1.

The next theorem provides an error estimate in the Sobolev space H” () which is equipped with a
norm defined by

2 N 2, 2\ }

gy = > > (> + %) (s bor)] -

m=1 n=1

Theorem 2.3. 1. Ifu satisfies (2.12), then with Cc = 7= 1In (L) we have

L+a
4 (2) = u@llanc@y < [Ra(e)e™Ce +2KFHI=D el Ce|Cle™Ce, 2 € [0, L],
where \
Ry(z) = V25793,

2. If u satisfies (2.13), then we can construct a regularized solution U€ satisfying

—2C. ~LC. L
Rl(Z9 M)Cge <« + ”u”L‘X’(O,L;Gg)Cge ¢ ’ Z€ [E’L]’

p =Le -LCe P _~LC L
Ry(z,u)Cee ™2 e 3 +||u||Lw(0’L;G(L>)CEe €, z€[0,3).

U (2) — u@lllar@) < {
Proof. Proof of Part 1: First, we have

@) = Peu@Ipgy = (mz+nz)”|(uf(z)—u(z>,<z>mn(x,y>)|2

mn=>1

V2 in2<Ce
e 3 foio-u i

mn=1

Vm2+n2<Ce

2
< CPllu(2) = u @2 -

It follows from Theorem 2.1 that

2
lu€(z) — Pe,u()llprq) < e*KrHE \/2e2acf sup [lu2)

+ 4€22LCCP e™Ce (2.29)
0<z<L @

2
a.
On the other hand, consider the function

G =¢&re™, D>o.

—p(L+a)

Since G'(¢) = &P~ e Pé(p — DE), it follows that G is strictly decreasing when & > p. Thus if € < e~ 2
i.e, 2(z + @)Ce¢ > p, then for m?> + n*> > Cg

(mz 4 nz)l’ exp ( “2z+a) Vm2 + n2) < Cgpe—Z(zm)Cf,
15




and

l11(2) = Pe,u(@lzp

= Z (m2 + nz)l’ exp( —2(z+ @) Vm? + nz) exp (2(Z +a)Vm? + nz)Ku(Z), Gn(X, y)>'2

mnz1

m>ce
2
< Cexp(-2+@)C) Y. exp(2e+ ) Vm? +n2)|(u(@), punx, )|
‘/r%nnzzlcg

< sup ||u(z)||é0 O 2era)Ce,

0<z<L +a

Therefore
lu(z) = Pc,u@llar@) < sup llu@)l Gg+{ycé’e*(z+ar)cf' 030

0<z<L

Combining (2.29) and (2.30), we get

lu(2) = u@llur@) < lu(2) = Peu@llur@ + 1uz) = Peu(@)llar@

2 r_ _ -
< [EZKFL(L 2 [pe—2aC. sup ||M(Z)||20 + 4e262LCe 4 sup ||M(Z)||G0 o~ Ce Cé’e 2Ce
0<z<L Crra 0<z<L e

The inequality Va? + b2 < a+b for a,b > 0 leads to
€ (z) — u@)llpr@) < [Rg(z)e_acf + 2eK12’L(L_Z)EeLCf]C§ e e,
Proof of Part 2: If e < e 7 i.e, 2LC, > p, then for m* + n? > C,
(m2 + nz)l’ exp( —2LVm? + nz) < CPe2tCe
and

llu(2) = Peu(@)nay

= Z (m2 + n2)p exp ( -2LNm?* + n2) exp <2L m? + nz)Ku(., 2), G (X, y)>|2

Vm";f:zLCE
2
< Clexp(-2LC) ) exp (2L +22)[(u@), ()
e,
< sup U@, C2e .
0<z<L L
Therefore, we obtain
lu(2) = Peu@llmmey < sup lu@llgoCle™ . (2.31)

0<z<L

Combining (2.29) and (2.31), we claim that

1U€(2) = u@lar@) < 1U(2) = Pe u(@llar@) + lu(z) — P u(@)llHr @)

< Cllluz) = U@z + sup lu(@lgoCee .
0<z<L

It follows from
Ri(z, u)e™C, zel4L],

—zC, —LC,
Ro(zywe 2 e a,  ze[0,D),

16
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that
— - L
Ri(z,u)Cle™C + ||M||Lw(o,L;G2)C€e ke, z €[5, L],

“iCe -LCe _ L
Ro(z, u)Cfe 2e 4 +||u||Lm(0’L;G2)Cfe Le., z€[0,3).

1U(2) = u@lllr@) < {

2.2. Results for locally Lipschitz source functions

In this subsection, we assume that the function F : [0, 7] X [0,7] X [0, L] X R — R, F = F(x,y,z, u)
satisfies: for each M > 0 and for any u, v satisfying |ul, |[v| < M, there holds

|F(X,y’2,u)_F(X,y5Z,V)|SKF(M)|M_V|7 (232)
where (x,y,z) € [0,7] X [0, 7] X [0, L] and

F(x,y,z,u) = F(x,y,2,V)
u-—-—v

Kr(M) := sup{' Clul, vl £ Myu # v, (x,y,2) € [0, 7] X [0, 7] X [0, L]} < 4o00.

We note that Kp(M) is increasing and Mlim Kr(M) = +co. Now, we outline our ideas to construct a
—+00

regularization for problem (1.1)—(1.2).
For all M > 0, we approximate F by F'), defined by

F(x,y,z, M), u(x,y,z) > M,
Fy (x,y,z,u(x,y,2)) = {F(x,y,z, u(x, y,2)), -M < u(x,y,z) < M,
F(X,y,Z,—M), M(st»Z)<_M-

For each € > 0, we consider a parameter M, — +oco as € — 0. Let u, 4 be a solution of the following
problem

Av = Pc Fy (x,y,2,v(x,y,2)), (x,,2) € Q% (0, +00),
v(x,y,2) =0, (x,y,2) € 0Q X (0, +00), (2.33)
v(x,y, L) = ¢(x,y), v(x,y,L)=0, (x,y) € Q.

The following theorem provides some error estimates in the L?-norm when the exact solution belongs to
the Gevrey space.

Theorem 2.4. Let € > 0 and let F be the function defined in (2.32). Then the problem (2.33) has a
unique solution uege € C([0, L]; L*(Q)).

1. Assume that u satisfies (2.10). If C. and M, are chosen such that ee"C is bounded and

lime_, exp (2K§(ME)L2)% =0,
lim¢_,0 exp (ZKI%(ME)LZ)e‘ZCE =0, z>0,

then we obtain

lite e (2) — u(Dll20ry < 212 + 4€2e2LCe exp (2KE(MOL? e, (2.34)

Moreover, for € sufficiently small, there exists ze < min {L, “‘(Cﬁ} such that

In(Cy)
lhtege (ze) = uO)l 2 < [ Y217 + 422 exp (2KFMAL?) + lull o iz | = (235
€

17



2. Assume that u satisfies (2.11). If C. and M, are chosen such that lim._, .., €ee"“c = 0 and

lim exp (2KE(M)L?)CZP = lim exp (2KF(M)L? )ee™“ = 0,
e—0 e—0

then we have

e ge (2) = u@ll 2 () < \/20;2513 + 4€2¢2LCe exp (2KE(Mo)L? )e <. (2.36)
3. Assume that u satisfies (2.12). If C. and M. are chosen such that lim._, ., €e"“c = 0 and
lim exp (2K7(M)L?)e™ ¢ = lim exp (2K3(M()L?)ee"“ = 0,
e—0 e—0

then we have

lltepe(2) — u(@ll 20 < \/2(200515 +4€2e2LCe exp (2KE(M)L? )e <.
Before proving the theorem, we show the following lemmas.
Lemma 2.4. For u;(x,y,2), uy(x,y, z), we have
[Py 2,206, 3,20) = Fare, v, 21 (3,20 € KM, 3,2) = wn (3, )
Proof. 1f uy(x,y,z) < =M and us(x,y,z) < —M then
'F m(X, Y, 2, u2(x, Y, 2)) = Fp(x, y, 2, u1 (X, y, z))‘ =0.

Ifui(x,y,2) < —M < up(x,y,7) < M then

Fu,5,2,006,,2) = Fu(ey 2 (5 5,2)| = [Fuey, 2 u(6,5,2) = Fu(x, v 2,-M)

IA

Kr(WD|M + (. y,2)|

IA

Kr(M)|ia(x,y,2) = w1 (x5, 2)]

Ifu(x,y,2) < —-M < M < ux(x,y, z) then

[P, v,z M) = Fagx, v, 2, =)
2MKrp(M)
Ke(WDJua(x,5,2) = 1 (3,2

Fi(5,3,2 1(5,3, ) = Fy(5, 3,2, 1,3, )

IA

IA

If-M < Ml(x’ys Z), Mz(x,y, Z) < M then

’F(x, ¥, 2, ua(x,y,2) — F(x,y,z,u1(x,, z))|

KF(M)|M2(X’ Y, Z) — U (-x»y’ Z)|

Fu(x,y,z,u2(x,5,2)) — Fp(x,y, 2, u1(x, y, z))’

IA

This completes the proof.

Lemma 2.5. Let u be exact solution to problem (1.1)—(1.2). Then we have the following estimate

litege (2) = P, (D)2 0, < 2exp (2L - Celp - Pl g,
L
+2Ki (ML - 2) f exp (27 = 2)Co)ltte e (1) - (D207
4
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Proof. From the definitions of u, 4 and u, we obtain
lite,pe (2) = P (@2,

<2 Z cosh (L - 2) Vm? + n2) (¢, - ¢mn)

L sinh (7 - 2) Vim? + 1?) )
2 L[ Vil + 12 «“@M%wm—ﬂmmﬂm]
m,n=1 m n
W<C5
<2 Z €xp (L -2) \/m) (<pmn Somn)
2
+2 Z [ f exp (T -2) \/m)((FM Vmn(Ue <p)(T) mn(u)(T))dT}

< 2exp (2L - Ce)ll¢" ~ ¢l g

L
+2(L-72) f exp (2t = 2)Co)||Far, (%, 3, T, tee (1) = F(x.y. 7, (2.37)

Since lim Me = +oo, for a sufficiently small € > 0, there is an M, such that Me > [lullpj0,2),22(c))- For

—0*
this Value of M we have Fy (x,y,z,u(x,y,z)) = F(x,y,z, u(x,y,z)). Using the Lipschitz property of Fy
as in Lemma 2.4, we get
KF(MG)

Ue pe(T) — u(T)) (2.38)

“FM )C v, T, Ue o (T)) F(-x v, T, M(T)) LZ(Q)‘

IZON
Combining (2.37) and (2.38), we complete the proof of Lemma 2.5. O
We now prove Theorem 2.4.

Proof. Proof of Part 1: Since u € Gg then using Lemma 2.1, we get
l4(2) = Peu(@ll72 0, < € lu@lige.

Lemma 2.3 and the triangle inequality lead to

< e ge(2) = Pe (@I} g, + 2lu(2) = Peu@l}2

< 267Gy +4exp (2L = DCIeE =~ ¢l g,
L

+4KF(M)(L - 2) f exp (2(r - 2)Co)

Z

”E,¢5(Z) ”(Z) 2@ =

Ue pe(T) — u(T)) 2 Q)

This implies that

Uepe(T) — u(t ))

L
o22Ce 2 20C, 2 2 27C,
“lote,pe(2) = M(Z)IILQ(Q><2 SUP Ilu(Z)II o +4e” e + 2K (Me)Lfe LZ(Q)

Zz
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Applying Gronwall’s inequality, we obtain

0 U ye(z) — M(Z)”iz(g) < [2 OsupL ||u(z)||é9 + 462LC562] exp (4K%(ME)L(L _ Z))’
<z< -

which leads to the desired result

z<L

lte.pe(@) = u@lr2 ) < \/2 sup Ilu(z)ll2 + 4€2e2LCe exp (ZKZ(M )L2) ~2Ce

Part 2 and Part 3 can be proved by using the same technique. The proof of which is omitted.

Remark 2.3. 1. In part 1, Theorem 2.4, let us choose C¢ = % ln(é). We can find M¢ such that

1 1.1
Kr(Mo) = 57 ln(zln(;)>. (2.39)

Then (2.34) becomes

1 1 1. :
litege (2) = u@ll2@) < 57 [4+2 sup [u@I7, 0 7 In(D)er (2.40)
2 0<Z<L L €

and (2.35) becomes

In (7 In(})

lte.ge (26) — 1Ol 20 < \/2 sup [lu(2)IR, +4 + sup (@2

0<z<L ’_ ln(é) 0<z<L

If F(u) = u — u?, equation (1.1) becomes the elliptic Allen-Cahn type equation which models
phase transitions. The elliptic Allen-Cahn equation appears in the study of differential geometry
related to, for example, interface area, interface curvature and minimal hypersurface. A simple
computation reveals

Ll
m.(z.m

KF(ME)

. ’F(u)—F(v)
P u—v

sup {

1+ 3M?

: |u|’|vl S ME?” i V,}

u—v—u+13

: |u| ,|V| S Mé’u ‘I+— Vs}

and togeter with (2.39)

1 1.1
_ 2 _ _ _
Kr(Mo)=1+3M = ln(L ln(E)).

. J In(# In()) - 1

This implies

6
2. In part 2, Theorem 2.4, let us choose C¢ = % ln(é), fory € (0,1). We can take M, such that

1 1 v, 1
Kp(M,) = o7 \/ﬁ lﬂ(z lﬂ(z)),
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forr e (0,B). Then (2.36) becomes

wwAm—mmmmpsJﬂzmswnmm@ﬁwé%wmeMﬁMaﬁkﬂﬂ
0<z<L z

0<z<L

1wy, 147+ o
_ 2 22X 1P [Y Inc=
= \/2 sup U7, + 4e Y[Lln(e)] [Lln(e)] et

3. In part 3, Theorem 2.4, let us choose C, = ﬁ ln(%). We can take M such that

1 r—a 1
KF(ME)zZ”L+a/ln(E)’ O<r<a

IMMAW@M@SJ%WWWW T et

L+a
<z<L C:

Then

Remark 2.4. Similar techniques as in Theorem 2.4 can be used to derive an error estimate in the Sobolev
space HP (Q).

3. Numerical examples

In this section, we present two examples in order to illustrate the efficiency of the proposed methods.

3.1. Example 1: Elliptic sine-Gordon equation

One of the examples of nonlinear equations we are interested in is the elliptic sine-Gordon equation.
This equation comes from several areas of mathematical physics including the theory of Josephson ef-
fects, superconductors and spin waves in ferromagnets; see e.g. [11]. The equation has recently been
studied by, for example G. Chen et al [12] and A.S. Fokas et al [18]. The elliptic sine-Gordon equation
originates from the static case of the hyperbolic sine-Gordon equation modelling the Josephson junction

in superconductivity. In this example, we choose the regularization parameter C. = In (m) which
implies L = 1 and r = 2. We observe that € = ¢10™" where ¢ > 0 and r € N. To define the measured
data ¢, we take a perturbation of the size erand in the exact data ¢, where the random generator takes

values in [—1, 1]. More precisely, we define
€ - rand
¢°(x, ) = ¢(x,) (1 + —)
llellz2 )

The approximate solutions are expected to converge to the exact under proper discretizations. The
l>-norm errors and the relative root mean square errors are computed. We take

F(x,y,zu(x,y,2) =sinu+G(x,2, ¢y =xyx-n@-y?,
where
G (x,y,z) = sin (xzy (x =) (7 — y)* cos (nz))

+ [2 (r=3x)y(r— y)2 +2x° (mr—x)(By —2n) + 7r2x2y (x—m)(mr— y)z] cos (7z7) .

Then the exact solution is u (x, y,z) = x%y (7 — x) (r — y)? cos (1z). By putting @ (m,n) = Vm? + n2, the
approximate solution is given by

u® (x,y,2) = Z [COSh (A =2)a(m,n)) ¢,

m,n=1

Vm2+n2SC5
1o _
. f sinh ((t — 2) @ (m, n)) Fon () (7) d‘r] sin (mx) sin ().
z a(m,n)
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where

. 4 (1+e-rand
Fn = 2 el

Due to the presence of the function G in the nonlinear term, we compute F,,(u¢) as

) f ' f ’ @ (x, y) sin (mx) sin (ny) dxdy.
0 Jo

4 T T
Fon () (1) = = f f sin (u€ (x,y, 7)) sin (mx) sin (ny) dxdy + Hyy, () + c08 (T) Ly,
= Jo Jo
where
4 T T . 2 ) . .
H,, () = ) sin (x y(x —m) (mr—y)" cos (7TT)) sin (mx) sin (ny) dxdy
™ Jo Jo
and
8 T T
L, = — (r-3x)y(r— y)2 sin (mx) sin (ny) dxdy
2 Jo Jo
+§2 f f X (r — x) 3y — 2n) sin (mx) sin (ny) dxdy
™ Jo Jo

+4 f i f i x2y (x — 1) (7w = y)? sin (mx) sin (ny) dxdy.
0 0

1 — .
We choose “Z (x,¥) = ¢ (x,y) for the partition z; = iAz where Az = L—,i = 0,L;. The following
1
iterative scheme deals with the nonlinear term. Fori =0,...,L; — 1, we get

ut (x,y,z) = Z (Run (€,2i) + Wi (€, 7)) + Py (z7)) sin (mx) sin (ny) ,
m,n=>1

Vm2+n2<C €
where

€ - rand (m, n)

Run (€,21) = m13_i3 (1 + 105 )cosh (1-z)a@mn)(1+2(=D") 2+ (=D"),

e
Ly 1 . T U
4 h h — < s . . .
Wi (612 = = Z f sinh ((t — z;) @ (m, n)) dr f f sin (uz (x, y)) sin (mx) sin (ny) dxdy,
T = i @ (m, n) 0o

1 .
Pon (zi) = f Sinh ((r =) @ m. 1) 7 ) + cos (rt) Fy) i
2 a(m,n)

These integrals are computed by Gauss-Legendre quadratures. Particularly, we shall approximate the
following integrations.

Ji(h) = fﬂ fﬂ sin (”Z (x, y)) sin (mx) sin (ny) dxdy,
0o Jo

1
J () = f sinh ((t — z;) @ (m, n)) H,,,, (1) dr.

Given (jo, lo, po) € N3, we approximate these integrations b
pp g y

Jo o

J1(h) = Z Z wjwy sin (u; (xj, yl)) sin (mxj) sin (ny;),

=0 1=0
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€ 1.0E-03 1.0E-05 1.0E-07 1.0E-09
Eq | 1.32766286E+00 | 9.23534307E-02 | 2.98111525E-02 | 1.43603493E-02
E; | 1.47903472E-01 | 1.02882994E-02 | 3.32100347E-03 | 1.59976270E-03

Table 1: Error (3.42)-(3.43) between regularized solution and exact solution in Example 1 at z = 0.9998 in the meshsize
Az = 1/5000.

and

P0
L) =~ % > wpsinh ((z, - z;) a (m, )
p=0

Jo o

X Z Z w;w; sin (x?yl (xj — 7r) (m— yl)2 cos (nzp)) sin (mxj) sin (ny;) ,

j=0 1=0
where x;,y; and z,, are abscissae in [0, ] and [z;, 1], and w;, w; and w), are corresponding weights.

Remark 3.1. In general, the whole process of computation is performed in four steps.
Step 1. Choose L1, L, and L3 € Z* and define, fori =0,Ly, j =0,L,, 1 =0, L3,

) 1 ) bis
zi=iAz, Az= 7% xj=jAx, Ax= o yi=IAy, Ay= o

Step 2. Put us (x,y) = u® (x,y,z),i = 0, Ly and set uzl (x,y) = ¢ (x,y). Then, we compute a vector
of components u;(x,y)

T
US(ey) = [uf (ey) u§ (xy) oo uf (xy)| e RAFL

Step 3. Fori = 0,Ly, j = 0,0y, 1 =0, L3, put u; (xj,yl) = uf,j’l and u(xj,yl,zi) = u ;i = 0,L.
Construct the following matrices of size Ri+1 x REs+1

€ € €
Uioo U0 Ui 0.5 ui00  Ui0,1 Ui 0Ly
€ € €
u: u: u: ui1.0 Uil Ui 1,L
i,1,0 il,1 i,1,L3 L1, L1, 1,03
U=\ " ) and U; =
€ € € . . .
Uir,o Yiry1 Uir, 1, Ui1,,0 Uil Uily,Ls

Step 4. Fori =0, Ly, the errors are computed by

E ! S0Y < ’ 3.42
1(z) = m;;‘ui,ﬂ_”i,ﬂ' ; (3.42)
(3.43)

In this computation, we compute the numerical solution at z very near L = 1, namely, z = 0.9998
in the meshsize Az = 1/5000 by choosing L; = 5000, L, = L3 = 50. We also take the constants
po=jo=1lp=9.

In Table 1, we show the errors E; and E, (defined in (3.42)-(3.43)) between the exact solution
and regularized solution. It is observed that the computed errors agree with our theoretical results. In
Figure 1, we plot the exact and regularized solutions against the x-variable, when € = 1073 and € = 107>,
Convergence is also observed. Furthermore, in order to give a global visual comparison, in Figure 2 we
plot the 3-D graphs of the exact and regularized solutions for € = 107.
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The regularized solution and exact solution The regularized solution and exact solution
T

i T T T — O T T : e
: —S—regularized —=—reqularized
Db R | —#—exact H

et
20 i I i i I i i I i
0s 1 1.5 2 25 3 35 a . . 34
X X
(@) e=1073 (b) e =107

Figure 1: Regularized solution and exact solution of Example 1 aty = g 7 =0.9998 with € = 1073 and 107>.

The exact solution The regularized solution

(a) Exact solution (b) Regularized solution

Figure 2: 3-D graphs of exact solution at y = g 7 =0.9998 and its regularized solution for € = 10~> in Example 1.
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€ 1.0E-02 1.0E-03 1.0E-04 1.0E-05
Ey | 2.72033670E-02 | 2.16776832E-02 | 1.49835328E-02 | 9.06238139E-03
E; | 7.80256493E-03 | 6.89209117E-03 | 3.11245256E-03 | 8.23713802E-04

Table 2: Errors (3.42)—(3.43) between regularized solution in recursive step ¢ = 10 and exact solution in Example 2 at z = 0.98
in the meshsize Az = 1/50.

.

The regularized solution and exact solution
T T

T —
—S—regularized
—+—exact H

Figure 3: Regularized solution and exact solution of Example 2 aty =

35

3.2. Example 2: Elliptic Allen-Cahn equation

For this example, we take

F(X,va’M(X,y,Z)) < u_u3 +G(x,)772)

where

G (x,y,2) = ugx + 3e

4-27

The regularized solution and exact solution

&

0 T T T T

T —F
—=—reqularized
—#—exact H

(b)e=10"°

,z = 0.98 with e = 1073 and 107°.

SRR

2

and ¢ (x,y) = —e“sinxsiny,

sin x sin y.

The exact solution is then u,, (x,y,z) = € (el‘zz - 26‘1) sin x sin y.
As in Example 1, we compute the approximate solution and choose the regularization parameter

1
Ce=1In (—) We compute
€

Ue e (x,y,2)

where

a(mn)<[Ce]

m,n=1

Z [cosh (1 = 2) @ (m, n)) ¢,

fl sinh ((t — 2) a (m, n))
+

Fon (M) (1),
Foun (ue«p‘) (r) = Foun <ue,905) (1), Ueye € [-Mc, Mc],
an (_Ms) (T) s

a (m,n)

25

Uepe > M.,

Fon (uwe) (1) dr} sin (mx) sin (ny) ,

M_\/\/ln(—ln(e))—l
TN 3

uE,(pf < —ME,
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The exact solution The regularized solution

(a) Exact solution (b) Regularized solution

Figure 4: 3-D graphs of exact solution aty = g z=0.98 and its regularized solution for € = 10~ in Example 2.

The term ¢, can be directly calculated. For each g € N, we define the sequence {“Z 90€}q> 0 by recurrence,
starting with ”(e),sof = —exp(2) sin xsiny. The sequence satisfies

a(mm<[Ce]

Wiitoy) = Y [eosh (1= a(mm)es,
mn=1
1 .
h Y > . .
+ f sinh ((z — 2) a(m, m)) Foun (”Z e) (1) d | sin (mx) sin (ny) .
2 @ (m,n) ¥

Similarly to Example 1, we present the numerical results in Table 2 and Figure 3 for the case L; =
L, = L3 = 50. The 3D graphs of the solutions are presented in Figure 4.

In comparison with the Example 1, it can be predicted that the smoother the function, the better
the convergence rate. However, sufficient recurrence steps (e.g. g = 10) are required to obtain fast
convergence. In the case € = 107 and g = 2 the errors are E1 = 2.4461E — 02 and E> = 7.0160E — 03.
Of course, a larger value for ¢ incurs high computational costs. Moreover, the numerical results of points
far from the point z = L may be obtained when the meshsizes and € are sufficiently small. A better
approximation is required, and this is a topic for future research.

4. Conclusion

In this paper, we propose a regularization method based on the cut-off method for solving inverse
boundary value problems of nonlinear elliptic equations. Error estimates are provided. Numerical ex-
periments with the elliptic sine-Gordon equation and elliptic Allen-Cahn equation are carried out to
corroborate the efficiency of the method.
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