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The problem of existence and uniqueness of absolutely continuous invariant 
measures for a class of piecewise deterministic Markov processes is investigated 
using the theory of substochastic semigroups obtained through the Kato–Voigt 
perturbation theorem on the L1-space. We provide a new criterion for the existence 
of a strictly positive and unique invariant density for such processes. The long 
time qualitative behavior of the corresponding semigroups is also considered. To 
illustrate our general results we give a detailed study of a two dimensional model 
of gene expression with bursting.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We study a class of piecewise-deterministic Markov processes (PDMPs) which we call semiflows with 
jumps. As defined in [10,11] a PDMP without active boundaries is determined by three local characteristics 
(π, ϕ, P), where π is a semiflow describing the deterministic parts of the process, ϕ(x) is the intensity of a 
jump from x, and P(x, ·) is the distribution of the state reached by that jump. The problem of existence of 
invariant measures for Markov processes is of fundamental importance in many applications of stochastic 
processes [11,18,24].

We consider semiflows that arise as solutions of ordinary differential equations

x′(t) = g(x(t)), (1.1)

where g: Rd → R
d is a (locally) Lipschitz continuous mapping. We assume that E is a Borel subset of Rd

such that for each x0 ∈ E the solution x(t) of (1.1) with initial condition x(0) = x0 exists and that x(t) ∈ E

for all t ≥ 0. We denote this solution by πtx0. Then the mapping (t, x0) �→ πtx0 is Borel measurable 
and satisfies π0x = x, πt+sx = πt(πsx) for x ∈ E, s, t ∈ R+. As concerns jumps we consider a family of 
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measurable transformations Tθ: E → E, θ ∈ Θ, where Θ is a metric space which carries a Borel measure ν, 
and a family of measurable functions pθ: E → [0, ∞), θ ∈ Θ, satisfying∫

Θ

pθ(x)ν(dθ) = 1, x ∈ E,

so that the stochastic kernel P is of the form

P(x,B) =
∫
Θ

1B(Tθ(x))pθ(x)ν(dθ), x ∈ E, (1.2)

for B ∈ B(E), where B(E) is the Borel σ-algebra of subsets of E. This roughly means that if the value of 
the process is x then we jump to the point Tθ(x) with probability pθ(x).

The following standing assumptions will be made. The intensity function ϕ is continuous and

lim
t→∞

t∫
0

ϕ(πsx)ds = +∞ for all x ∈ E. (1.3)

The mappings (θ, x) �→ Tθ(x) and (θ, x) �→ pθ(x) are measurable so that the stochastic kernel in (1.2) is well 
defined. We assume also that each mapping πt: E → E as well as each Tθ: E → E is nonsingular with respect 
to a reference measure m on E. Recall that a measurable transformation T : E → E is called nonsingular
with respect to m if the measure m ◦ T−1 is absolutely continuous with respect to m, i.e., m(T−1(B)) = 0
whenever m(B) = 0.

Let us briefly describe the construction of the PDMP {X(t)}t≥0 with characteristics (π, ϕ, P) (see e.g. [10,
11] for details). Define the function

Fx(t) = 1 − exp{−
t∫

0

ϕ(πsx)ds}, t ≥ 0, x ∈ E, (1.4)

and note that the assumptions imposed on ϕ imply that Fx is a distribution function of a positive and finite 
random variable for every x ∈ E. Let t0 = 0 and let X(0) = X0 be an E-valued random variable. For each 
n ≥ 1 we can choose the nth jump time tn as a positive random variable satisfying

Pr(tn − tn−1 ≤ t|Xn−1 = x) = Fx(t), t ≥ 0,

and we define

X(t) =
{
πt−tn−1(Xn−1) for tn−1 ≤ t < tn,

Xn for t = tn,

where the nth post-jump position Xn is an E-valued random variable such that

Pr(Xn ∈ B|X(tn−) = x) = P(x,B),

and X(tn−) = limt↑tn X(t) = πtn−tn−1(Xn−1). In this way, the trajectory of the process is defined for 
all t < t∞ := limn→∞ tn and t∞ is called the explosion time. To define the process for all times, we set 
X(t) = Δ for t ≥ t∞, where Δ /∈ E is some extra state representing a cemetery point for the process. The 
PDMP {X(t)}t≥0 is called the minimal PDMP corresponding to (π, ϕ, P). It is said to be non-explosive if 
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Px(t∞ = ∞) = 1 for m-almost every (m-a.e.) x ∈ E, where Px is the distribution of the process starting at 
X(0) = x. We denote by Ex the expectation operator with respect to Px.

Our main result is the following.

Theorem 1.1. Assume that the chain (X(tn))n≥0 has only one invariant probability measure μ∗ absolutely 
continuous with respect to m. If the density f∗ = dμ∗/dm is strictly positive a.e. then the process {X(t)}t≥0
is non-explosive and it can have at most one invariant probability measure absolutely continuous with respect 
to m. Moreover, if ∫

E

Ex(t1)f∗(x)m(dx) < ∞, (1.5)

then the process {X(t)}t≥0 has a unique invariant density and it is strictly positive a.e.

The problem of existence and uniqueness of an invariant probability measure for the process {X(t)}t≥0
with comparison to the similar problem for the chain (X(tn))n≥0 was studied in [7] in the context of general 
PDMPs with boundaries and under some technical assumptions. We also refer the reader to [8,13] for the 
study of equivalence between stability properties of continuous time processes and yet another discrete time 
processes associated with them. Here we concentrate on the existence of absolutely continuous invariant 
measures and we make use of the results from [34]. That is why we need to assume that the semiflow 
{πt}t≥0 satisfies πt(E) ⊆ E for all t ≥ 0 (this implies that there are no active boundaries) and that the 
stochastic kernel P describing jumps gives rise to a transition operator P on L1 (see (2.1)) so that we 
can use [34, Theorem 5.2]. In particular, the kernel P as in (1.2) has the required property and covers 
many interesting examples. However, any refinements entail considerable mathematical difficulties and are 
currently under research.

We study the continuous time process with the help of a strongly continuous semigroup of positive 
contraction operators {P (t)}t≥0 (substochastic semigroup) on the L1-space of functions integrable with 
respect to the measure m. The semigroup can be obtained from the Kato–Voigt perturbation theorem for 
substochastic semigroups on L1-spaces and this functional analytic framework is recalled in Section 3 as 
Theorem 3.1. Using results from [34], this gives that the chain (X(tn))n≥0 has the property that there exists 
a unique linear operator K (stochastic operator) on L1 which satisfies: if the distribution of the random 
variable X(0) has a density f , i.e.,

Pr(X(0) ∈ B) =
∫
B

f(x)m(dx), B ∈ B(E),

then X(t1) has a density Kf . Hence, the density f∗ in Theorem 1.1 is invariant for the operator K. 
Sufficient conditions for the existence of only one invariant density for stochastic operators are described 
in Section 2 and are based on [28,29]. Section 3 presents relationships between invariant densities for the 
semigroup {P (t)}t≥0 and for the operator K. Here the most important results are obtained in Theorems 3.3
and 3.10 and give Corollary 3.12 which is our main tool in the proof of Theorem 1.1. Theorems 3.3 and 3.10
together with Corollaries 3.9 and 3.11 should be compared with [7, Theorems 1 and 2] and [25, Theorem 5]. 
However, we need not to assume that the process is non-explosive and we look for absolutely continuous 
subinvariant measures. Moreover, in [25] a perturbed substochastic semigroup is obtained with the help of 
Desch’s theorem [12], which in our setting becomes a particular case of Theorem 3.1.

If for some t > 0 and for x from a set of positive Lebesgue measure the absolutely continuous part 
in the Lebesgue decomposition of the measure Px(X(t) ∈ ·) is nontrivial, then the semigroup {P (t)}t≥0
is partially integral as in [27]. This allows us to combine Theorem 1.1 with [27, Theorem 2], recalled in 
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Section 2 as Theorem 2.4, to obtain asymptotic stability of the semigroup {P (t)}t≥0, i.e., the density of 
X(t) converges to the invariant density in L1 irrespective of the density of X(0). In that case condition (1.5)
appears to be not only sufficient but also necessary for the existence of an invariant density for the process, 
see Corollary 3.16.

In Section 4 we provide sufficient conditions for existence of a unique invariant density for the Markov 
chain (X(tn))n≥0 in terms of the local characteristics of the semiflow with jumps. We also show that 
dynamical systems with random switching evolving in Rd×I with a finite set I, as in [2,5,27], can be studied 
with our methods. Section 5 contains a detailed study of a two dimensional model of gene expression with 
bursting illustrating applicability of our results. Our framework can be used to analyze biological processes 
described by PDMPs, see e.g. [14,20–22] for gene regulatory dynamics with bursting and [6,19,30,31,38] for 
dynamics with switching.

2. Asymptotic behavior of stochastic operators and semigroups

Let (E, E , m) be a σ-finite measure space and L1 = L1(E, E , m) be the space of integrable functions. We 
denote by D(m) ⊂ L1 the set of all densities on E, i.e.

D(m) = {f ∈ L1
+ : ‖f‖ = 1}, where L1

+ = {f ∈ L1 : f ≥ 0},

and ‖ · ‖ is the norm in L1. A linear operator P : L1 → L1 such that P (D(m)) ⊆ D(m) is called stochastic
or Markov [18]. It is called substochastic if P is a positive contraction, i.e., Pf ≥ 0 and ‖Pf‖ ≤ ‖f‖ for all 
f ∈ L1

+.
If T : E → E is nonsingular then there exists a unique stochastic operator T̂ : L1 → L1 satisfying∫

B

T̂ f(x)m(dx) =
∫

T−1(B)

f(x)m(dx)

for all B ∈ E and f ∈ D(m). The operator T̂ is usually called [18] the Frobenius–Perron operator corre-
sponding to T . In particular, if T : E → E is one-to-one and nonsingular with respect to m, then

T̂ f(x) = 1T (E)(x)f(T−1(x))d(m ◦ T−1)
dm

(x) for m-a.e. x ∈ E,

where d(m ◦ T−1)/dm is the Radon–Nikodym derivative of the measure m ◦ T−1 with respect to m.
Let P: E×E → [0, 1] be a stochastic transition kernel, i.e., P(x, ·) is a probability measure for each x ∈ E

and the function x �→ P(x, B) is measurable for each B ∈ E , and let P be a stochastic operator on L1. If∫
E

P(x,B)f(x)m(dx) =
∫
B

Pf(x)m(dx) (2.1)

for all B ∈ E , f ∈ D(m), then P is called the transition operator corresponding to P. A stochastic operator 
P on L1 is called partially integral or partially kernel if there exists a measurable function p: E×E → [0, ∞)
such that ∫

E

∫
E

p(x, y)m(dx)m(dy) > 0 and Pf(x) ≥
∫
E

p(x, y)f(y)m(dy)

for m-a.e. x ∈ E and for every density f .
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We can extend a substochastic operator P beyond the space L1 in the following way. If 0 ≤ fn ≤ fn+1, 
fn ∈ L1, n ∈ N, then the pointwise almost everywhere limit of fn exists and will be denoted by supn fn. 
For f ≥ 0 we define

Pf = sup
n

Pfn for f = sup
n

fn, fn ∈ L1
+.

(Note that Pf is independent of the particular approximating sequence fn and that Pf may be infinite.) 
Moreover, if P is the transition operator corresponding to P then (2.1) holds for all measurable nonnega-
tive f . A nonnegative measurable f∗ is said to be subinvariant (invariant) for a substochastic operator P
if Pf∗ ≤ f∗ (Pf∗ = f∗). Note that if f∗ is a subinvariant density for a stochastic operator P then f∗ is 
invariant for P .

A substochastic operator P is called mean ergodic if

lim
N→∞

1
N

N−1∑
n=0

Pnf exists for all f ∈ L1.

If a substochastic operator has a subinvariant density f∗ with f∗ > 0 a.e., then it is mean ergodic (see 
e.g. [16, Lemma 1.1 and Theorem 1.1]). We say that a stochastic operator is uniquely mean ergodic if there 
is an invariant density f∗ such that

lim
N→∞

1
N

N−1∑
n=0

Pnf = f∗‖f‖ for all f ∈ L1
+. (2.2)

In particular, if P has a unique invariant density f∗ and f∗ > 0 a.e. then P is uniquely mean ergodic (see e.g. 
[18, Theorem 5.2.2]). Moreover, an operator with this property can not have a non-integrable subinvariant 
function as the following result shows. For any measurable f the support of f is defined up to sets of measure 
m zero by

supp f = {x ∈ E : f(x) �= 0}.

Proposition 2.1. Suppose that a stochastic operator P is uniquely mean ergodic with an invariant density f∗. 
If f̃∗ is subinvariant for P and m(supp f∗ ∩ {x : f̃∗(x) < ∞}) > 0, then f̃∗ ∈ L1.

Proof. It is a direct consequence of (2.2) and the fact that the measure m is σ-finite. �
To prove that an operator has a unique strictly positive invariant density we use the approach from 

[28,29]. A stochastic operator P is called sweeping with respect to a set B ∈ E if

lim
n→∞

∫
B

Pnf(x)m(dx) = 0 for all f ∈ D(m).

From Lemma 2 and Theorem 2 of [28] we obtain the following result.

Theorem 2.2. Let E be a metric space and E = B(E) be the σ-algebra of Borel subsets of E. Suppose that 
P is the transition operator corresponding to the stochastic kernel P satisfying the following conditions:

(a) there is no P -absorbing sets, i.e., there does not exist a set B ∈ E such that m(B) > 0, m(E \ B) > 0
and P(x, B) ≥ 1B(x) for m-a.e. x ∈ E,
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(b) for every x0 ∈ E there exist δ > 0, a nonnegative measurable function η satisfying 
∫
η(y)m(dy) > 0, 

and a positive integer n such that

Pn(x,B) ≥ 1B(x0,δ)(x)
∫
B

η(y)m(dy)

for m-a.e. x ∈ E and all B ∈ B(E), where B(x0, δ) is the ball with center at x0 and radius δ.

Then either P is sweeping with respect to compact sets or P has an invariant density f∗. In the latter case, 
f∗ is unique and f∗ > 0 a.e.

In order to exclude sweeping we can use a Foster–Lyapunov drift condition [24,26]. For the proof of the 
following see e.g. [32].

Proposition 2.3. Let P be the transition operator corresponding to a stochastic transition kernel P. Assume 
that the following condition holds:

(c) there exist a set B0, two positive constants c1, c2, and a nonnegative measurable function V satisfying 
m(x : V (x) < ∞) > 0 and∫

E

V (y)P(x, dy) ≤ V (x) − c1 + c21B0(x), x ∈ E. (2.3)

Then

lim inf
N→∞

1
N

N−1∑
n=0

∫
B0

Pnf(x)m(dx) ≥ c1
c2

> 0

for all f ∈ D(m) such that 
∫
E
V (x)f(x)m(dx) < ∞. In particular, P is not sweeping with respect to the 

set B0.

We conclude this section with the notion of stochastic semigroups and a general result from [27] concerning 
possible asymptotic behavior of such semigroups. A family of substochastic (stochastic) operators {P (t)}t≥0
on L1 which is a C0-semigroup, i.e.,

(1) P (0) = I (the identity operator);
(2) P (t + s) = P (t)P (s) for every s, t ≥ 0;
(3) for each f ∈ L1 the mapping t �→ P (t)f is continuous: for each s ≥ 0

lim
t→s+

‖P (t)f − P (s)f‖ = 0;

is called a substochastic (stochastic) semigroup. A nonnegative measurable f∗ is said to be subinvariant
(invariant) for the semigroup {P (t)}t≥0 if it is subinvariant (invariant) for each operator P (t).

A stochastic semigroup {P (t)}t≥0 is called asymptotically stable if it has an invariant density f∗ such 
that

lim
t→∞

‖P (t)f − f∗‖ = 0 for all f ∈ D(m)

and partially integral if, for some s > 0, the operator P (s) is partially integral.
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Theorem 2.4. (See [27].) Let {P (t)}t≥0 be a partially integral stochastic semigroup. Assume that the 
semigroup {P (t)}t≥0 has only one invariant density f∗. If f∗ > 0 a.e. then the semigroup {P (t)}t≥0 is 
asymptotically stable.

Note that if the semigroup {P (t)}t≥0 is asymptotically stable then, for each s > 0, the operator P (s) is 
uniquely mean ergodic. Thus, Proposition 2.1 gives the following.

Corollary 2.5. Suppose that a stochastic semigroup {P (t)}t≥0 is asymptotically stable with an invariant 
density f∗. If f̃∗ is subinvariant for {P (t)}t≥0 and m(supp f∗ ∩ {x : f̃∗(x) < ∞}) > 0, then f̃∗ ∈ L1.

3. Existence of invariant densities for perturbed semigroups

In this section we study the problem of existence of invariant densities for substochastic semigroups 
on L1. We first recall some notation and a generalization of Kato’s perturbation theorem [15].

Let {S(t)}t≥0 be a substochastic semigroup on L1. The infinitesimal generator of {S(t)}t≥0 is by definition 
the operator A with domain D(A) ⊂ L1 defined as

D(A) = {f ∈ L1 : lim
t↓0

1
t
(S(t)f − f) exists},

Af = lim
t↓0

1
t
(S(t)f − f), f ∈ D(A).

The operator A is closed with D(A) dense in L1. If for some real λ the operator λ −A := λI−A is one-to-one, 
onto, and (λ − A)−1 is a bounded linear operator, then λ is said to belong to the resolvent set ρ(A) and 
R(λ, A) := (λ −A)−1 is called the resolvent at λ of A. If A is the generator of the substochastic semigroup 
{S(t)}t≥0 then (0, ∞) ⊂ ρ(A) and we have the integral representation

R(λ,A)f =
∞∫
0

e−λsS(s)f ds for f ∈ L1.

The operator λR(λ, A) is substochastic and R(μ, A)f ≤ R(λ, A)f for μ > λ > 0, f ∈ L1
+.

We assume throughout this section that P is a stochastic operator on L1, ϕ: E → [0, ∞) is a measurable 
function, and that {S(t)}t≥0 is a substochastic semigroup with generator (A, D(A)) such that

D(A) ⊆ L1
ϕ and

∫
E

Af(x)m(dx) = −
∫
E

ϕ(x)f(x)m(dx) (3.1)

for f ∈ D(A)+ = D(A) ∩ L1
+, where

L1
ϕ = {f ∈ L1 :

∫
E

ϕ(x)|f(x)|m(dx) < ∞}.

Our starting point is the following generation result [1,3,4,15,35] for the operator

Gf = Af + P (ϕf) for f ∈ D(A). (3.2)

Theorem 3.1. There exists a substochastic semigroup {P (t)}t≥0 on L1 such that the generator (G, D(G)) of 
{P (t)}t≥0 is an extension of the operator in (3.2), i.e.,
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D(A) ⊆ D(G) and Gf = Gf for f ∈ D(A),

the generator G of {P (t)}t≥0 is characterized by

R(λ,G)f = lim
n→∞

R(λ,A)
n∑

k=0

(P (ϕR(λ,A)))kf, f ∈ L1, λ > 0, (3.3)

and the semigroup {P (t)}t≥0 is minimal, i.e., if {P̄ (t)}t≥0 is another semigroup with generator which is an 
extension of (G, D(A)) then P̄ (t)f ≥ P (t)f for all f ∈ L1

+.
Moreover, the following are equivalent:

(1) {P (t)}t≥0 is a stochastic semigroup.
(2) The generator G is the closure of the operator (G, D(A)).
(3) There is f ∈ L1

+, f > 0 a.e. such that for some λ > 0

lim
n→∞

‖(P (ϕR(λ,A)))nf‖ = 0. (3.4)

Remark 3.2. Note that (see e.g. [33]) the generator of {P (t)}t≥0 is the operator (G, D(A)) if and only if for 
some λ > 0

lim
n→∞

‖(P (ϕR(λ,A)))n‖ = 0.

In particular, if ϕ is bounded then this condition holds.

We also need the substochastic operator K: L1 → L1 defined by

Kf = lim
λ↓0

P (ϕR(λ,A))f for f ∈ L1. (3.5)

It follows from [34, Theorem 3.6] that K is stochastic if and only if the semigroup {S(t)}t≥0 generated by 
A is strongly stable, i.e.,

lim
t→∞

S(t)f = 0 for all f ∈ L1. (3.6)

Moreover, if K is mean ergodic then the minimal semigroup {P (t)}t≥0 from Theorem 3.1 is stochastic.
We study relationships between invariant densities of the operator K defined by (3.5) and invariant 

densities of the minimal semigroup {P (t)}t≥0. Our first main result in this section is the following.

Theorem 3.3. Suppose that the operator K has a subinvariant density f∗ and let

f∗ = sup
λ>0

R(λ,A)f∗. (3.7)

Then f∗ is subinvariant for the semigroup {P (t)}t≥0. In particular, if f∗ ∈ L1 and the semigroup {P (t)}t≥0
is stochastic, then it has an invariant density.

Proof. Let fλ = R(λ, A)f∗ for λ > 0. Since R(λ, A) is the resolvent of a substochastic semigroup, we have 
fλ ≥ 0, fλ ↑ f∗, and f∗ is nontrivial. From (3.5) it follows that P (ϕR(λ, A))f∗ ≤ Kf∗ ≤ f∗. We have 
D(A) ⊆ D(G) and Gf = Af + P (ϕf) for f ∈ D(A). Hence
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GR(λ,A)f = λR(λ,A)f + P (ϕR(λ,A))f − f

for every f ∈ L1, which implies that Gfλ ≤ λfλ for all λ > 0. The semigroup e−μtP (t) has the generator 
(G − μ, D(G)), thus

f − e−μtP (t)f =
t∫

0

e−μsP (s)(μ−G)fds

for all t, μ > 0 and f ∈ D(G). Since (μ −G)fλ ≥ (μ − λ)fλ ≥ 0 for every μ ≥ λ > 0, we conclude that

fλ − e−μtP (t)fλ ≥ 0

for all μ ≥ λ > 0 and t > 0. Consequently,

P (t)fλ ≤ eμtfλ ≤ eμtf∗,

and taking pointwise limits of both sides when λ ↓ 0 and then μ ↓ 0 shows that f∗ is subinvariant for P (t). 
Finally, if P (t) is stochastic and f∗ ∈ L1 then ‖f∗‖ > 0 and f∗/‖f∗‖ is an invariant density for P (t). �

We now give a useful observation.

Corollary 3.4. If the operator K has a subinvariant density f∗ and f∗ > 0 a.e., then the semigroup {P (t)}t≥0
is stochastic and f∗ as defined in (3.7) satisfies f∗ > 0 a.e.

Proof. Since Kf∗ ≤ f∗ and f∗ > 0 a.e., the operator K is mean ergodic. Thus {P (t)}t≥0 is stochastic. We 
have f∗ ≥ R(λ, A)f∗ for λ > 0. Since R(λ, A) is a positive bounded operator with dense range, we get 
R(λ, A)f∗ > 0 a.e. �
Remark 3.5. Note that if {P (t)}t≥0 has an invariant density f̃ with f̃ > 0 a.e. then {P (t)}t≥0 is stochastic. 
To see this we check that condition (3) of Theorem 3.1 holds. By [34, Remark 3.3], we obtain that

‖R(1, G)f‖ = lim
n→∞

‖R(1, A)
n∑

k=0

(P (ϕR(1, A)))kf‖ = lim
n→∞

(‖f‖ − ‖(P (ϕR(1, A)))n+1f‖)

for any f ∈ L1
+. On the other hand, we have R(1, G)f̃ = f̃ , which shows that there is f̃ ∈ L1

+, f̃ > 0 a.e., 
satisfying (3.4).

Remark 3.6. The assumption in Theorem 3.3 that the subinvariant function f∗ is integrable is essential, 
as the following example shows [15, Example 4.3]. Let E be the set of integers and let m be the counting 
measure on E = Z so that L1 = l1(Z). Consider Af = −ϕf where ϕ is a positive function such that

∑
k∈Z

1
ϕ(k) < ∞.

The semigroup generated by Af = −ϕf , f ∈ L1
ϕ, being of the form

S(t)f(x) = e−tϕ(x)f(x),
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has the resolvent operator R(λ, A)f = f/(λ + ϕ), λ > 0. Let P be the Frobenius–Perron operator corre-
sponding to T (x) = x + 1 so that Pf(x) = f(x − 1). We have K = P and Kf∗ = f∗ for f∗ ≡ 1. Thus 
f∗ = supλ>0 R(λ, A)f∗ = 1/ϕ and f∗ ∈ l1(Z). Since the operator

Gf(x) = −ϕ(x)f(x) + ϕ(x− 1)f(x− 1),

with the maximal domain Dmax = {f ∈ l1(Z) : Gf ∈ l1(Z)} is an extension of the generator G of the 
semigroup {P (t)}t≥0 (see e.g. [15, Theorem 1.1]), we have f∗ ∈ Dmax and Gf∗ = 0. It follows from [15, 
Example 4.3] that {P (t)}t≥0 is not stochastic. Thus f∗ /∈ D(G), because otherwise f∗ is a strictly positive 
invariant density for the semigroup {P (t)}t≥0, implying that {P (t)}t≥0 is stochastic, by Remark 3.5.

We next also discuss the problem of integrability of f∗ given by (3.7).

Corollary 3.7. Let f∗ be defined as in (3.7). If 0 ∈ ρ(A) then f∗ ∈ L1. In particular, if the function ϕ is 
bounded away from 0 then f∗ ∈ L1.

Proof. If 0 ∈ ρ(A), then R(0, A) = −A−1 is a bounded operator and R(0, A) = supλ>0 R(λ, A), which 
implies that f∗ ∈ L1. Suppose now that there is a positive constant ϕ such that ϕ ≥ ϕ. It follows from (3.1)
that ∫

E

Af(x)m(dx) ≤ −ϕ‖f‖

for all f ∈ D(A)+. Thus the operator (A +ϕ, D(A)) is the generator of a substochastic semigroup {T (t)}t≥0
(see e.g. [33, Lemma 4.3]). On the other hand T (t) = eϕtS(t) for every t > 0, which shows that ‖S(t)f‖ ≤
e−ϕt‖f‖ for all f ∈ L1 and t > 0. Hence, 0 ∈ ρ(A). �

The generator A might not have a bounded inverse operator, but if the semigroup {S(t)}t≥0 is strongly 
stable, then A has always a densely defined inverse operator. We next recall its definition and properties. 
Let the operator R0: D(R0) → L1 be defined by

R0f =
∞∫
0

S(s)f ds := lim
t→∞

t∫
0

S(s)f ds,

D(R0) = {f ∈ L1:
∞∫
0

S(s)f ds exists}. (3.8)

The mean ergodic theorem for semigroups [36, Chapter VIII.4] (see also [9, Theorem 12]) together with 
additivity of the norm in L1 and the characterization [17, Theorem 3.1] of the range of the generator of a 
substochastic semigroup gives the following.

Proposition 3.8. Let (R0, D(R0)) be defined by (3.8). Then Im(R0) ⊆ D(A), AR0f = −f for f ∈ D(R0), 
and

D(R0) ⊆ Im(A) = {f ∈ L1 : sup
t≥0

∥∥ t∫
0

S(s)f ds
∥∥ < ∞},

where Im(A) = {Af : f ∈ D(A)} is the range of the operator A.
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Moreover, if the semigroup {S(t)}t≥0 is strongly stable then D(R0) is dense, Im(A) ⊆ D(R0), R0Af = −f

for f ∈ D(A), and

R0f = lim
λ↓0

R(λ,A)f, f ∈ D(R0).

We can now prove the following simple fact.

Corollary 3.9. Let (R0, D(R0)) be defined by (3.8). Suppose that K is stochastic. Then K is the unique 
bounded extension of the densely defined operator (P (ϕR0), D(R0)). Moreover, if f∗ is an invariant density 
for K then f∗ = supλ>0 R(λ, A)f∗ ∈ L1 if and only if f∗ ∈ D(R0), in which case f∗ = R0f∗ and f∗ ∈ D(A).

Proof. We have Im(R0) ⊆ D(A) and D(A) ⊆ L1
ϕ. Let f ∈ D(R0)+. From (3.1) it follows that

‖ϕR0f‖ =
∫

ϕ(x)R0f(x)m(dx) = −
∫

AR0f(x)m(dx).

Since AR0f = −f , we obtain that ‖ϕR0f‖ = ‖f‖. The multiplication operator Mϕ: L1
ϕ → L1 defined by 

Mϕf = ϕf for f ∈ D(Mϕ) = L1
ϕ is closed. Since R0f = limλ↓0 R(λ, A)f and R0f ∈ L1

ϕ, we obtain that 
limλ↓0 ϕR(λ, A)f = ϕR0f . Hence, Kf = P (ϕR0f) and the result follows from Proposition 3.8. �

We next prove a partial converse of Theorem 3.3.

Theorem 3.10. Suppose that the semigroup {P (t)}t≥0 has a subinvariant density f̃∗ ∈ D(G). Then P (ϕf̃∗) <
∞ a.e. and P (ϕf̃∗) is subinvariant for the operator K. Moreover, if ϕf̃∗ ∈ L1 then f̃∗ ∈ D(A).

Proof. Let λ > 0 be fixed and let f0 = λf̃∗ − Gf̃∗. Since e−λtP (t)f̃∗ ≤ f̃∗ for every t > 0, we obtain that 
Gf̃∗ ≤ λf̃∗. Thus f0 ∈ L1

+. Define

fn =
n∑

k=0

(P (ϕR(λ,A)))kf0 and f̃n = R(λ,A)fn, n ≥ 0.

From (3.3) it follows that

lim
n→∞

f̃n = lim
n→∞

R(λ,A)fn = R(λ,G)(f0) = f̃∗.

We have 0 ≤ fn ≤ fn+1 ∈ L1
+, n ≥ 0, and supn fn < ∞ a.e. (see e.g. [4, Lemma 6.17]). Moreover, 

0 ≤ f̃n ≤ f̃n+1 ∈ D(A), n ≥ 0, and supn f̃n = f̃∗ ∈ L1
+. Thus, we obtain that

P (ϕf̃n) = P (ϕR(λ,A))fn = fn+1 − f0 ∈ L1
+,

which gives

P (ϕf̃∗) = sup
n

P (ϕf̃n) = sup
n

fn − f0. (3.9)

Consequently, P (ϕf̃∗) < ∞ a.e. Since λR(λ, A) is substochastic, the operator R(λ, A) can be extended to 
the space of nonnegative measurable functions by setting

R(λ,A)f = supR(λ,A)fn, if f = sup fn,

n n
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which implies that

R(λ,A)P (ϕf̃∗) ≤ R(λ,A)f = f̃∗.

Since ϕR(λ, A)P (ϕf̃n) ≤ ϕR(λ, A)P (ϕf̃n+1) ∈ L1
+, we conclude that

P (ϕR(λ,A))(P (ϕf̃∗)) = sup
n

P (ϕR(λ,A)P (ϕf̃n)) ≤ P (ϕf̃∗),

which gives K(P (ϕf̃∗)) ≤ P (ϕf̃∗) and completes the proof of the first part. Suppose now that ϕf̃∗ ∈ L1. 
This implies that P (ϕf̃∗) ∈ L1 and that f ∈ L1, by (3.9). Hence, f̃∗ = R(λ, A)f ∈ D(A). �
Corollary 3.11. Suppose that the semigroup {P (t)}t≥0 has an invariant density f̃∗. Then P (ϕf̃∗) is subin-
variant for the operator K. Moreover, if ϕf̃∗ ∈ L1 and K is stochastic, then ‖ϕf̃∗‖ > 0 and P (ϕf̃∗)/‖ϕf̃∗‖
is an invariant density for K.

Proof. Recall that f̃∗ is a fixed point of each operator P (t) if and only if f̃∗ ∈ ker(G) = {f ∈ D(G) : Gf = 0}. 
Thus, f̃∗ ∈ D(G) and Gf̃∗ = 0. From Theorem 3.10 it follows that f̃∗ ∈ D(A), thus Gf̃∗ = Af̃∗+P (ϕf̃∗) = 0. 
Suppose that ‖P (ϕf̃∗)‖ = 0. Then Af̃∗ = 0, which implies that f̃∗ ∈ ker(A). Since the operator K is 
stochastic, condition (3.6) holds. Recall that A is the generator of the semigroup {S(t)}t≥0. Thus ker(A) =
{0} and we infer that f̃∗ = 0, which contradicts the fact that ‖f̃∗‖ = 1 and completes the proof that f∗ is a 
density. Because K is stochastic, the subinvariant f∗ is invariant. �

We establish the following useful result when combined with Theorem 2.4.

Corollary 3.12. Assume that the operator K is stochastic and uniquely mean ergodic with an invariant 
density f∗. Then the semigroup {P (t)}t≥0 is stochastic, it can have at most one invariant density, and 
ϕf̃∗ ∈ L1 for any invariant density f̃∗. Moreover, if R0f∗ ∈ L1, where R0 is as in (3.8), then R0f∗/‖R0f∗‖
is the unique invariant density for the semigroup {P (t)}t≥0.

Proof. From Theorem 3.10 it follows that if f is an invariant density for {P (t)}t≥0 then P (ϕf) < ∞ a.e. and 
K(P (ϕf)) ≤ P (ϕf). We have P (ϕf) ∈ L1, by Proposition 2.1, implying that ϕf ∈ L1. Hence, f ∈ D(A)
and f∗ = P (ϕf)/‖ϕf‖ is an invariant density for K, by Corollary 3.11. Suppose now that the semigroup 
{P (t)}t≥0 has two invariant densities f1, f2. We have Gf1 = 0 = Gf2 and Gf = Af +P (ϕf) for f ∈ D(A). 
Since f∗ is the unique invariant density for the operator K, we obtain that

P (ϕf1)
‖ϕf1‖

= P (ϕf2)
‖ϕf2‖

,

which implies that

Af1

‖ϕf1‖
= Af2

‖ϕf2‖
.

The operator K is stochastic thus ker(A) = {0} by (3.6). Consequently

f1

‖ϕf1‖
= f2

‖ϕf2‖

and f1 = f2, because ‖f1‖ = ‖f2‖ = 1. The last part follows from Theorem 3.3. �



W. Biedrzycka, M. Tyran-Kamińska / J. Math. Anal. Appl. 435 (2016) 61–84 73
Remark 3.13. Observe that if the function ϕ is bounded then the assumption that K is mean ergodic is not 
needed in Corollary 3.12, since then automatically the semigroup is stochastic and P (ϕf) ∈ L1 for every 
f ∈ L1

+. Instead we can only assume that K has a unique invariant density f∗.

Before we give the proof of Theorem 1.1, we recall the relation established in [34, Section 5.2] between 
minimal PDMPs and the minimal semigroups. Let {X(t)}t≥0 be the minimal PDMP on E with character-
istics (π, ϕ, P) and let m be a σ-finite measure on E = B(E). We assume that P : L1 → L1 is the transition 
operator corresponding to P and that the semigroup {S(t)}t≥0, with generator (A, D(A)) satisfying (3.1), 
is such that ∫

E

e−
∫ t
0 ϕ(πrx)dr1B(πtx)f(x)m(dx) =

∫
B

S(t)f(x)m(dx) (3.10)

for all t ≥ 0, f ∈ L1
+, B ∈ E . Observe that if ϕ satisfies condition (1.3) then the semigroup {S(t)}t≥0 is 

strongly stable. The semigroup {P (t)}t≥0 will be referred to as the minimal semigroup on L1 corresponding 
to (π, ϕ, P). The following result combines Theorem 5.2 and Corollary 5.3 from [34].

Theorem 3.14. (See [34].) Let (tn) be the sequence of jump times and t∞ = limn→∞ tn be the explosion time 
for {X(t)}t≥0. Then the following hold:

(1) The operator K as defined in (3.5) is the transition operator corresponding to the discrete-time Markov 
process (X(tn))n≥0 with stochastic kernel

K(x,B) =
∞∫
0

P(πsx,B)ϕ(πsx)e−
∫ s
0 ϕ(πrx)drds, x ∈ E, B ∈ B(E). (3.11)

(2) For any B ∈ B(E), a density f , and t > 0∫
B

P (t)f(x)m(dx) =
∫
E

Px(X(t) ∈ B, t < t∞)f(x)m(dx).

(3) The semigroup {P (t)}t≥0 is stochastic if and only if

m{x ∈ E : Px(t∞ < ∞) > 0} = 0.

In that case if the distribution of X(0) has a density f0 then X(t) has the density P (t)f0 for all t > 0.

Theorem 1.1 is a direct consequence of the following result. Observe also that it follows from condition (3)
of Theorem 3.14 that the process X is non-explosive.

Theorem 3.15. Let K be the transition operator corresponding to the stochastic kernel given by (3.11). 
Suppose that K has a unique invariant density f∗ and that f∗ > 0 a.e. Then the minimal semigroup 
{P (t)}t≥0 corresponding to (π, ϕ, P) is stochastic and it can have at most one invariant density. Moreover, 
if condition (1.5) holds, then the semigroup {P (t)}t≥0 has a unique invariant density and it is strictly 
positive a.e.

Proof. Since the stochastic operator K has a unique invariant density f∗ and f∗ > 0 a.e., K is uniquely 
mean ergodic. Thus the first assertion follows from Corollary 3.12. If, moreover, condition (1.5) holds then 
R0f∗ ∈ L1, where R0 is defined by (3.8), since



74 W. Biedrzycka, M. Tyran-Kamińska / J. Math. Anal. Appl. 435 (2016) 61–84
‖R0f∗‖ =
∞∫
0

‖S(t)f∗‖dt =
∞∫
0

∫
E

e−
∫ t
0 ϕ(πrx)drf∗(x)m(dx)dt =

∫
E

Ex(t1)f∗(x)m(dx).

In that case f̃∗ = R0f∗/ ‖R0f∗‖ is the unique invariant density for {P (t)}t≥0. �
We conclude this section with the following characterization of asymptotic behavior of the minimal 

semigroup.

Corollary 3.16. Assume that the minimal semigroup {P (t)}t≥0 is partially integral. Suppose that K has a 
unique invariant density f∗ and that f∗ > 0 a.e. Then {P (t)}t≥0 is asymptotically stable if and only if 
condition (1.5) holds.

Proof. The semigroup {P (t)}t≥0 is stochastic. If condition (1.5) holds then Theorems 1.1 and 2.4 imply 
asymptotic stability. To get the converse we show that we can apply Corollary 2.5 to R0f∗. Since P is the 
transition operator corresponding to P, we obtain, by approximation, equation (3.10), and Fubini’s theorem,∫

B

P (ϕR0f)(x)m(dx) =
∫
E

P(x,B)ϕ(x)R0f(x)m(dx) =
∫
E

K(x,B)f(x)m(dx)

for all B ∈ B(E) and f ∈ D(m). Substituting f = f∗ and B = E gives∫
E

ϕ(x)R0f∗(x)m(dx) =
∫
E

f∗(x)m(dx) = 1,

which implies that ϕ(x)R0f∗(x) < ∞ for m-a.e. x ∈ E. Hence suppϕ ⊆ {x : R0f∗(x) < ∞}. From 
Corollary 3.12 it follows that ϕf̃∗ ∈ L1 for any invariant density f̃∗ for the semigroup {P (t)}t≥0, which, 
by Corollary 3.11, implies that m(supp f̃∗ ∩ suppϕ) > 0. From Theorem 3.3 it follows that f∗ = R0f∗ is 
subinvariant for the semigroup {P (t)}t≥0. Consequently, m(supp f̃∗ ∩ {x : R0f∗(x) < ∞}) > 0 and if the 
semigroup is asymptotically stable then Corollary 2.5 implies that R0f∗ ∈ L1 giving condition (1.5). �
4. Sufficient conditions for existence of a unique invariant density

Let the standing hypothesis from Introduction hold and let L1 = L1(E, B(E), m), where m is the Lebesgue 
measure on Rd. The transition operator P corresponding to P, as in (1.2), is of the form

Pf =
∫
Θ

T̂θ(pθf)ν(dθ), f ∈ L1,

where T̂θ is the Frobenius–Perron operator for Tθ. The stochastic kernel K in (3.11) is given by

K(x,B) =
∞∫
0

∫
Θ

1B(Tθ(πsx))pθ(πsx)ν(dθ)ϕ(πsx)e−
∫ s
0 ϕ(πrx)drds

for x ∈ E, B ∈ B(E), and can be represented as

K(x,B) =
∫

1B(T(θ,s)(x))k(θ,s)(x)ν(dθ)ds, (4.1)

Θ×(0,∞)
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where

T(θ,s)(x) = Tθ(πsx) and k(θ,s)(x) = pθ(πsx)ϕ(πsx)e−
∫ s
0 ϕ(πrx)dr (4.2)

for all (θ, s) ∈ Θ × (0, ∞), x ∈ E. The transition operator K on L1 corresponding to K becomes

Kf =
∫

Θ×(0,∞)

T̂(θ,s)(k(θ,s)f)ν(dθ)ds, f ∈ L1.

Given θn = (θ1, . . . , θn) ∈ Θn and sn = (s1, . . . , sn) ∈ (0, ∞)n we denote by (θn, sn) the sequence 
(θn, sn) = (θn, sn, . . . , θ1, s1). We define inductively transformations T(θn,sn) for n ≥ 1, by setting

T(θ1,s1)(x) = T(θ1,s1)(x),

T(θn+1,sn+1)(x) = T(θn+1,sn+1)(T(θn,sn)(x)),

and nonnegative functions k(θn,sn) by

k(θ1,s1)(x) = k(θ1,s1)(x),

k(θn+1,sn+1)(x) = k(θn+1,sn+1)(T(θn,sn)(x))k(θn,sn)(x).

Consequently, the nth iterate stochastic kernel Kn is of the form

Kn(x,B) =
∫

Θn×(0,∞)n

1B(T(θn,sn)(x))k(θn,sn)(x)νn(dθn)dsn,

where νn = ν × · · · × ν denotes the product of the measure ν on Θn.
In the rest of this section we assume that both mappings (θ, x) �→ Tθ(x) and (θ, x) �→ pθ(x) are continuous 

as well as the intensity function ϕ. Furthermore, for every x ∈ E and θn ∈ Θn let the transformation 
sn �→ T(θn,sn)(x) be continuously differentiable and let ∂

∂snT(θn,sn)(x) denote its derivative.

Lemma 4.1. Let x0 ∈ E. Assume that there exists (θn, sn) ∈ Θn× (0, ∞)n such that k(θn,sn)(x0) > 0 and the 
rank of ∂

∂snT(θn,sn)(x0) is equal to d. Then there exist a constant c0 > 0 and open sets Ux0 , Uy0 containing 
x0 and y0 = T(θn,sn)(x0), respectively, such that for all B ∈ B(E) and x ∈ E

Kn(x,B) ≥ c01Ux0
(x)m(B ∩ Uy0).

Proof. We adapt the proof of Lemma 6.3 in [5] to our situation. If the rank of ∂
∂sn

T(θn,sn)(x0) is equal to d, 
then we can choose d variables si1 , . . . , sid from sn = (s1, . . . , sn) in such a way that the derivative of the 
transformation (si1 , . . . , sid) �→ T(θn,sn)(x0) is invertible. In that case, we write u = (si1 , . . . , sid) and we 
take v as the remaining coordinates of sn, so that, up to the order of coordinates, we denote sn by (u, v). 
We also write w for θn. By assumption, there exists (ū, ̄v, w̄) such that k(w̄,(ū,v̄))(x0) > 0 and the rank of 

∂
∂(u,v)T(w,(u,v))(x0) is equal to d for u = ū, v = v̄, w = w̄ so, in what follows, we identify every sn with 
this particular choice of coordinates u and v. Since the rank is a lower semicontinuous function, the rank of 

∂
∂(u,v)T(w,(u,v))(x) is equal to d in a neighborhood of ū, v̄, w̄, x0. For (u, v) we define the mapping Q = Qx,w

by the formula

Q(u, v) = (T(w,(u,v))(x), v).

Consequently, the determinant of 
[

∂ Q
]

is nonzero in a neighborhood of ū, v̄, w̄, x0.
∂(u,v)
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We can rewrite Kn in the form

Kn(x,B) =
∫

Θn×(0,∞)n

1B×(0,∞)n−d(Q(u, v))k(w,(u,v))(x)νn(dw)dudv

for all x ∈ E and B ∈ B(E). Using continuity, we can find a positive constant c and open sets Ux0 ⊂ E, 
Uū ⊂ (0, ∞)d, Uv̄ ⊂ (0, ∞)n−d and Uw̄ ⊂ Θn such that k(w,(u,v))(x)| det[ ∂

∂(u,v)Q]|−1 ≥ c for x ∈ Ux0 , u ∈ Uū, 
v ∈ Uv̄, w ∈ Uw̄. We write Uz to indicate that the point z belongs to Uz. Moreover, for y0 = T(w̄,(ū,v̄))(x0)
we can find an open set Uy0 ⊂ E such that Uy0 ×Uv̄ ⊂ Q(Uū ×Uv̄). Hence, for all x ∈ Ux0 and for every set 
B ∈ B(E) we have

Kn(x,B) ≥ c

∫
Uw̄

∫
Uū×Uv̄

1B×Uv̄
(Q(u, v))

∣∣∣∣det
[

∂Q

∂(u, v)

]∣∣∣∣ dudvνn(dw).

Substituting z1 = T(w,(u,v))(x) and z2 = v we obtain

Kn(x,B) ≥ c

∫
Uw̄

∫
Q(Uū×Uv̄)

1B(z1)1Uv̄
(z2)dz1dz2ν

n(dw).

By the choice of the set Uy0 we get

Kn(x,B) ≥ c

∫
Uw̄

∫
Uy0×Uv̄

1B(z1)1Uv̄
(z2)dz1dz2ν

n(dw) = c0

∫
B

1Uy0
(y)m(dy),

where c0 = cmn−d(Uv̄)νn(Uw̄) and mn−d(Uv̄) is the n −d dimensional Lebesgue measure of the set Uv̄ when 
d < n, and it is 1, otherwise. �

To apply Lemma 4.1 we have to calculate the rank of ∂
∂snT(θn,sn)(x0), which is the most difficult part. 

We next describe two possibilities how to make these calculations easier.

Remark 4.2. Using the continuity of derivatives with respect to s1, . . . , sn and taking the limit when each 
si goes to zero from the right, the limit of the derivative ∂

∂snT(θn,sn)(x0) becomes of the form[
T ′
θn(yn−1) . . . T ′

θ1(y0)g(y0)
∣∣T ′

θn(yn−1) . . . T ′
θ2(y1)g(y1)

∣∣ · · · ∣∣T ′
θn(yn−1)g(yn−1)

]
, (4.3)

where y0 = x0 and yi for i = 1, 2, . . . , n is given inductively by yi = Tθi(yi−1). Since the transformations 
Tθ, θ ∈ Θ, and the mapping g are explicitly defined, the rank of the matrix in (4.3) can be obtained much 
easier than the rank of ∂

∂snT(θn,sn)(x0). Moreover, lower semicontinuity of the rank allows us to find sn with 
positive coordinates.

Remark 4.3. Suppose that Θ is an open subset of Rk for some positive k and ν is the Lebesgue measure. 
Assume also that transformations (θn, sn, x) �→ T(θn,sn)(x) are continuously differentiable. Then, for a given 
x ∈ E we can consider the derivative of the transformation (θn, sn) �→ T(θn,sn)(x), which can be written as

∂T(θn,sn)(x)
∂(θn, sn) =

[
∂T(θn,sn)(x)
∂(θ1, s1)

∣∣∣∣∂T(θn,sn)(x)
∂(θ2, s2)

∣∣∣∣ · · · ∣∣∣∣∂T(θn,sn)(x)
∂(θn, sn)

]
.

Lemma 4.1 remains true under the assumption that the rank of the matrix ∂
∂(θn,sn)T(θn,sn)(x), instead of 

∂
nT(θn,sn)(x), is equal to d. As in [23], we can introduce the notation
∂s
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Ξn := Ξn(x, (θn+1, sn+1)) =
[
∂T(θ,s)(y)

∂y

]
y=T(θn,sn)(x)
θ=θn+1,s=sn+1

,

Ψn := Ψn(x, (θn+1, sn+1)) =
[
∂T(θ,s)(y)
∂(θ, s)

]
y=T(θn,sn)(x)
θ=θn+1,s=sn+1

, (4.4)

where the derivatives are evaluated at T(θn,sn)(x) and for θ = θn+1, s = sn+1. Here T(θn,sn)(x) = x for 
n = 0. Then the matrix ∂

∂(θn,sn)T(θn,sn)(x) can be rewritten in the form

∂T(θn,sn)(x)
∂(θn, sn) = [Ξn−1 · · ·Ξ1Ψ0|Ξn−1 · · ·Ξ2Ψ1| · · · |Ξn−1Ψn−2|Ψn−1] .

Now we provide sufficient conditions for which the assumptions of Theorem 2.2 are satisfied for the 
transition operator K corresponding to K as defined in (4.1). For each x ∈ E we define the set

O+(x) = {T(θn,sn)(x) : the rank of
∂T(θn,sn)(x)

∂sn
is d and

k(θn,sn)(x) > 0 for (θn, sn) ∈ Θn × (0,∞)n, n ≥ 1}. (4.5)

Corollary 4.4. Assume that O+(x) �= ∅ for every x ∈ E. Suppose also that there is no K-absorbing sets. 
Then either K is sweeping with respect to compact subsets of E or K has a unique invariant density f∗. In 
the latter case, f∗ > 0 a.e.

Remark 4.5. Observe that if there is a non-trivial K-absorbing set, then there is a non-trivial set B such 
that ⋃

n≥1

⋃
(θn,sn)∈Θn×(0,∞)n

T(θn,sn)(B) ⊂ B.

This may be rewritten as ⋃
x∈B

O(x) ⊂ B,

where O(x) =
⋃

n≥1 On(x) and

On(x) = {T(θn,sn)(x) : (θn, sn) ∈ Θn × (0,∞)n}, n ≥ 1.

Once we know that a unique invariant density exists for the operator K, we can use Corollary 3.16 to 
prove asymptotic stability of the semigroup {P (t)}t≥0. We need to check that the semigroup {P (t)}t≥0 is 
partially integral. Our next result gives a simple condition for that.

Lemma 4.6. Let x0 ∈ E, t > 0 and n ≥ 1. Define

Δn
t = {sn = (s1, . . . , sn) ∈ (0,∞)n : s(n) := s1 + · · · + sn < t}

and assume that there exists (θn, sn) ∈ Θn × Δn
t such that k(θn,sn)(x0) > 0 and the rank of 

∂
∂snπt−s(n)T(θn,sn)(x0) is equal to d. Then there exist a constant c0 > 0 and open sets Ux0 , Uy0 containing 
x0 and y0 = πt−s(n)T(θn,sn)(x0), respectively, such that for all B ∈ B(E) and x ∈ E

Px(X(t) ∈ B) ≥ c01Ux0
(x)m(B ∩ Uy0). (4.6)

In particular, the semigroup {P (t)}t≥0 is partially integral.
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Proof. Observe that if x is such that Px(t∞ < ∞) = 0, then

Px(X(t) ∈ B) =
∞∑
k=0

Px(X(t) ∈ B, tk ≤ t < tk+1).

Thus, to check whether condition (4.6) is satisfied, it is sufficient to prove that

Px(πt−tnX(tn) ∈ B, tn ≤ t < tn+1) ≥ c01Ux0
(x)m(B ∩ Uy0). (4.7)

Since we have

Px(πt−tnX(tn) ∈ B, tn ≤ t < tn+1)

=
∫

Θn×(0,∞)n

1Δn
t
(sn)1B(πt−s(n)T(θn,sn)(x))ψt−s(n)(T(θn,sn)(x))k(θn,sn)(x)νn(dθn)dsn,

where φ is a positive continuous function defined by ψt(x) = e−
∫ t
0 ϕ(πrx)dr for x ∈ E, t ≥ 0, we can 

obtain (4.7) in an analogous way as in the proof of Lemma 4.1. �
As in Remarks 4.2 and 4.3, we can simplify the calculation of the rank of ∂

∂snπt−s(n)T(θn,sn)(x0).

Remark 4.7. Analogously to Remark 4.2, the limit of the derivative ∂
∂snπt−s(n)T(θn,sn)(x0) when s1, . . . , sn, t

go to zero, is of the form[
T ′
θn(yn−1) . . . T ′

θ1(y0)g(y0) − g(yn) |· · ·|T ′
θn(yn−1)g(yn−1) − g(yn)

]
, (4.8)

where y0 = x0 and yi = Tθi(yi−1) for i = 1, 2, . . . , n. A similar approach to check this “rank condition” is 
used in [27, Proposition 3.1] and [29] as well as in [2] and [5].

In the case when Θ is an open subset of Rk and we can take derivative with respect to θ ∈ Θ we have

∂πt−s(n)T(θn,sn)(x)
∂(θn, sn) =

[
∂πt−s(n)T(θn,sn)(x)

∂(θ1, s1)

∣∣∣∣ · · · ∣∣∣∣∂πt−s(n)T(θn,sn)(x)
∂(θn, sn)

]
,

for x ∈ E. Using the notation as in (4.4) and defining additionally the derivatives

Υn := Υn(x, (θn, sn), k) =
[

∂πsy

∂(θk, sk)

]
s=t−s(n)
y=T(θn,sn)(x)

=
[
0| − g(T(θn,sn)(x))

]
,

Υx,n := Υx,n(x, (θn, sn)) =
[
∂πsy

∂y

]
s=t−s(n)
y=T(θn,sn)(x)

,

we have

∂πt−s(n)T(θn,sn)(x)
∂(θn, sn) = [Υn + Υx,nΞn−1 · · ·Ξ1Ψ0| · · · |Υn + Υx,nΞn−1Ψn−2|Υn + Υx,nΨn−1] . (4.9)

We will show how our results can be applied in one particular example in the next section. We conclude 
this section with the idea how to write dynamical systems with random switching as studied in [2,5,27], in 
our framework. Given a finite or countable set I, consider a family of locally Lipschitz functions gi: Rd → R

d, 
i ∈ I, and the differential equation
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{
x′(t) = gi(t)(x(t)),
i′(t) = 0.

(4.10)

We assume that there exists a set M ⊂ R
d such that for every i0 ∈ I and x0 ∈ M the solution x(t) of 

x′(t) = gi0(x(t)) with initial condition x(0) = x0 exists and that x(t) ∈ M for all t ≥ 0. We denote this 
solution by πi0

t (x0). Then, the general solution of the system (4.10) may be written in the form

πt(x0, i0) = (πi0
t (x0), i0), (x0, i0) ∈ M × I.

This gives one semiflow on E = M × I which is generated by the differential equation

(x′(t), i′(t)) = g(x(t), i(t)),

where the function g: Rd × I → R
d+1 is of the form

g(x, i) = (gi(x), 0), x ∈ R
d, i ∈ I.

Let m be the product of the Lebesgue measure md on Rd and the counting measure ν on Θ = I. We define 
the transformation Tj : Rd × I → R

d × I, j ∈ I, by

Tj(x, i) = (x, j), x ∈ R
d, i, j ∈ I.

Each transformation is nonsingular with respect to m since

m(T−1
j (B × {i})) =

{
md(B)ν({j}) if i = j,

0 if i �= j.

We assume that qj(x, i), j �= i, are nonnegative continuous functions satisfying 
∑

j 
=i qj(x, i) < ∞ for all 
i ∈ I, x ∈ R

d. Then we can define the intensity function ϕ by

ϕ(x, i) =
∑
j 
=i

qj(x, i)

and the densities pj , j ∈ I, by pi(x, i) = 0 and

pj(x, i) =
{

1, ϕ(x, i) = 0, j �= i,
qj(x,i)
ϕ(x,i) , ϕ(x, i) �= 0, j �= i.

As a particular example of dynamical systems with random switching, one can consider a standard birth–
death process by taking qi+1(x, i) = bi, qi−1(x, i) = di and qj(x, i) = 0 for j < i − 1 or j > i + 1. Then 
ϕ(x, i) = bi + di < ∞.

According to (4.2), we can write explicitly formulas for the density

k(j,s)(x, i) = qj(πi
sx, i)e−

∫ s
0 ϕ(πi

rx,i)dr

and for the transformation

T(j,s)(x, i) = Tj(πi
sx, i) = (πi

sx, j).

For each n we get a general form of T(θn,sn)(x0, i0) for θn = (i1, . . . , in) and sn = (s1, . . . , sn), which is
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T(θn,sn)(x0, i0) = (πin−1
sn ◦ · · · ◦ πi1

s2 ◦ π
i0
s1x0, in).

This may be rewritten as

T(θn,sn)(x0, i0) = (xn, in),

where

xn = πin−1
sn ◦ · · · ◦ πi1

s2 ◦ π
i0
s1x0 = πin−1

sn (xn−1).

Using this notation we adjust the definition of the set in (4.5) as follows

O+(x0, i0) = {(xn, in) ∈ E : the rank of ∂xn

∂sn
is d and

qin(xn, in−1) . . . qi1(x0, i1) > 0 for i1, . . . , in ∈ I, s1, . . . , sn > 0, n ≥ 1}.

For such semiflow with jumps, we can modify the proof of Lemma 4.1, to get the next result for the 
corresponding operator K.

Corollary 4.8. Assume that O+(x, i) �= ∅ for every (x, i) ∈ E = M × I. Suppose also that there is no 
K-absorbing sets. Then either K is sweeping with respect to compact subsets of E or K has a unique 
invariant density f∗. In the latter case, f∗ > 0 a.e. In particular, if M is compact, then K has a unique 
invariant density.

To verify whether the rank of ∂xn

∂sn is equal to d, we may use either Remark 4.2 or Lie brackets as in [2, 
Theorem 3], [5, Theorem 4.4]. It is worth to mention that in [5] it is assumed that the set M is compact.

5. A two dimensional model of gene expression with bursting

In this section we study a particular example of a two dimensional PDMP X(t) = (X1(t), X2(t)) with 
values in E = [0, ∞)2. We let X1 and X2 denote the concentrations of mRNA and protein respectively. We 
assume that the protein molecules undergo degradation at rate γ2 and that the translation of proteins from 
mRNA is at rate β2. The mRNA molecules undergo degradation at rate γ1 that is interrupted at random 
times

0 < t1 < t2 < · · · < tn < tn+1 < · · ·

when new molecules are being produced with intensity ϕ depending at least on the current level X2 of 
proteins. At each tk a random amount θk of mRNA molecules is produced, which is independent of everything 
else and distributed according to a density h. Therefore, pθ(x) = h(θ) and the transformation Tθ is given 
by the formula

Tθ(x1, x2) = (θ + x1, x2), θ ∈ (0,∞).

Hence, the jump kernel is of the form

P((x1, x2), B) =
∞∫

1B(θ + x1, x2)h(θ)dθ,

0
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so that the transition operator P is as follows

Pf(x1, x2) =
x1∫
0

f(z, x2)h(x1 − z)dz.

The semiflow is defined by the solutions of the system of equations

dx1

dt
= −γ1x1,

dx2

dt
= −γ2x2 + β2x1,

and it can be expressed by the formula

πt(x1, x2) = (x1e
−γ1t, x2e

−γ2t + x1ϑ(t)),

where

ϑ(t) = β2

γ1 − γ2
(e−γ2t − e−γ1t).

If γ1 > γ2 then we have πt(E) ⊆ E for all t ≥ 0 and the transformation T(θ,s) is of the form

T(θ,s)(x1, x2) = (θ + x1e
−γ1s, x2e

−γ2s + x1ϑ(s)).

The assumption γ1 > γ2 is biologically reasonable, see e.g. [37] and references therein, were it was recalled 
that a fast process of mRNA degradation has been observed in bacterias, i.e. E. coli. The production of 
mRNA molecules can be described by exponential density with mean b

h(θ) = 1
b
e−θ/b, θ > 0,

while the intensity ϕ is a Hill function depending only on the second coordinate,

ϕ(x1, x2) = κ1 + κ2x
N
2

1 + κ3xN
2

,

where N, κ1 > 0 and κ2, κ3 ≥ 0 are constants. If κ3 = 0 we assume, additionally, that N ≤ 1 and 
γ2 > bβ2κ2/(γ1 − γ2). We show that the minimal semigroup {P (t)}t≥0 is asymptotically stable.

Taking Θ = (0, ∞) with ν being the Lebesgue measure on (0, ∞), we can express the stochastic kernel K
as in (4.1). With the help of Corollary 4.4 we prove that the transition operator K corresponding to K has 
a unique invariant density, which is strictly positive a.e. First, we need to check the assumptions of Corol-
lary 4.4. The function k(θ,s)(x) defined as in (4.2) is strictly positive for all x ∈ E and θ, s > 0, since both ϕ
and h are strictly positive. Taking into account Remark 4.3, we consider the derivative ∂

∂(θn,sn)T(θn,sn)(x)
instead of ∂

∂snT(θn,sn)(x). We have

Ξk =
[
e−γ1sk+1 , 0
ϑ(sk+1), e−γ2sk+1

]
, Ψk =

[ 1,
g(πsk+1T(θk,sk)(x))

0,

]
,

where

g(x) =
( −γ1x1

)
for x = (x1, x2).
−γ2x2 + β2x1
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Fig. 1. A graphical representation of the set O1(x).

For arbitrary θ1, s1 > 0 we can calculate

∂T(θ1,s1)(x)
∂(θ1, s1) = [Ψ0] =

[ 1, −γ1x1e
−γ1s1

0, −γ2x2e
−γ2s1 + x1

β2
γ1−γ2

(γ1e
−γ1s1 − γ2e

−γ2s1)

]
.

The rank of ∂
∂(θ1,s1)T(θ1,s1)(x) is equal to 2 if and only if

−γ2x2e
−γ2s1 + x1

β2

γ1 − γ2
(γ1e

−γ1s1 − γ2e
−γ2s1) �= 0.

If this condition does not hold we need to consider T(θ2,s2)(T(θ1,s1)(x)). We have

∂T(θ2,s2)(x)
∂(θ2, s2) = [Ξ1Ψ0|Ψ1]

=
[
e−γ1s2 , e−γ1s2g1(πs1x) 1, g1(πs2T(θ1,s1)(x))

ϑ(s2), ϑ(s2)g1(πs1x) + e−γ2s2g2(πs1x) 0, g1(πs2T(θ1,s1)(x))

]

and, looking at the first and the third column, we see that the rank of ∂
∂(θ2,s2)T(θ2,s2)(x) is equal to 2. This 

implies that O+(x) �= ∅ for every x ∈ E.
We now show that there is no K-absorbing sets. By Remark 4.5 it is enough to show that (0, ∞)2 ⊂ O(x)

for m-a.e. x ∈ E. Assume first that the point x = (x1, x2) is such that x2 < β2x1/γ2. Then its trajectory has 
the shape shown in Fig. 1(a). Then the grey area covers the set O1(x) and we see that consecutive iterates 
give the rest. Suppose now that x2 > β2x1/γ2. Then the set O1(x) is as in Fig. 1(b).

Corollary 4.4 implies that either K is sweeping with respect to compact sets or K has a unique invariant 
density f∗. To exclude sweeping, we use Proposition 2.3 for the operator K and we take

V (x) = V (x1, x2) = x1
β2

γ1 − γ2
+ x2.

We have

V (X(t1)) − V (X(0)) = β2
θ1 − V (X(0))(1 − e−γ2t1).
γ1 − γ2
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Since t1 has the distribution function as in (1.4), we obtain

Ex(1 − e−γ2t1) = γ2

∞∫
0

e−γ2te−
∫ t
0 ϕ(πs(x))dsdt.

Hence, we get

∫
E

V (y)K(x, dy) − V (x) = Ex(V (X(t1)) − V (X(0))) =
∞∫
0

W (t, x)e−
∫ t
0 ϕ(πs(x))dsdt, (5.1)

where

W (t, x) = bβ2

γ1 − γ2
ϕ(πtx) − V (x)γ2e

−γ2t.

Notice that W is bounded from above by a constant and that W (t, x) tends to −∞ as ‖x‖ → ∞ for every t. 
Since the function ϕ has a positive lower bound ϕ, we obtain

∞∫
0

e−
∫ t
0 ϕ(πs(x))dsdt ≤ 1

ϕ
for all x ∈ E.

From Fatou’s Lemma it follows that

lim sup
‖x‖→∞

∞∫
0

W (t, x)e−
∫ t
0 ϕ(πs(x))dsdt < 0. (5.2)

The function in (5.1) is continuous, thus bounded on compact sets. Consequently, (5.2) implies that condi-
tion (2.3) is satisfied and completes the proof that K has a unique invariant density.

Now we look at the process X = {X(t)}t≥0. The matrices Υn and Υx,n from Remark 4.7 are of the form

Υn =
[ 0, −g(T(θn,sn)(x))

0,

]
, Υx,n =

[
e−γ1(t−s(n)), 0
ϑ(t− s(n)), e−γ2(t−s(n))

]
.

Hence ∂
∂(θ2,s2)πt−s(2)T(θ2,s2)(x) can be expressed by

∂πt−s(2)T(θ2,s2)(x)
∂(θ2, s2) = [Υ2 + Υx,2Ξ1Ψ0|Υ2 + Υx,2Ψ1]

=
[

e−γ1(t−s1), ∗ e−γ1(t−s(2)), ∗

e−γ1s2ϑ(t− s(2)) + e−γ2(t−s(2))ϑ(s2), ∗ ϑ(t− s(2)), ∗

]
,

where the first and the third column are linearly independent and the remaining columns are not important 
for the calculation. It is worth to notice that we need to use (4.9) instead of the matrix in (4.8) since its 
every two columns are linearly dependent. This proves that Lemma 4.6 holds, in other words, the semigroup 
{P (t)}t≥0 corresponding to the process X is partially integral. We conclude from Corollary 3.16 that the 
semigroup {P (t)}t≥0 is asymptotically stable.
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