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This work is devoted to the study of the initial boundary value problem for a 
general isothermal model of capillary fluids derived by J.E. Dunn and J. Serrin 
(1985) (see [18]), which can be used as a phase transition model. We aim at proving 
the existence of local and global (under a condition of smallness on the initial 
data) strong solutions with initial density ln ρ0 belonging to the Besov space B

N
2

2,∞. 
It implies in particular that some classes of discontinuous initial density generate 
strong solutions. The proof relies on the fact that the density can be written as 
the sum of the solution ρL of the associated linear system and a remainder term ρ̄; 
this last term is more regular than ρL provided that we have regularizing effects 
induced on the bilinear convection term. The main difficulty consists in obtaining 
new estimates of maximum principle type for the associated linear system; this is 
based on a characterization of the Besov space in terms of the semi-group associated 
with this linear system. We show in particular the existence of global strong solution 
for small initial data in (B̃

N
2 −1,N

2
2,∞ ∩L∞) ×B

N
2 −1

2,∞ ; it allows us to exhibit a family of 
large energy initial data when N = 2 providing global strong solution. In conclusion 
we introduce the notion of quasi-solutions for the Korteweg’s system (a tool which 
has been developed in the framework of the compressible Navier–Stokes equations 
[31,30,32,26,27]) which enables to obtain the existence of global strong solution 
with a smallness condition which is subcritical. Indeed we can deal with large 
initial velocity in B

N
2 −1

2,1 . As a corollary, we get global strong solution for highly 
compressible Korteweg system when N ≥ 2. It means that for any large initial data 
(under an irrotational condition on the initial velocity) we have the existence of 
global strong solution provided that the Mach number is sufficiently large.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

We are concerned with compressible fluids endowed with internal capillarity. The model we consider 
originates from the XIXth century work by J.F. Van der Waals and D.J. Korteweg [44,37] and was actually 
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derived in its modern form in the 1980s using the second gradient theory (see [18,35,43]). The first investi-
gations begin with the Young–Laplace theory which claims that the phases are separated by a hypersurface 
and that the jump in the pressure across the hypersurface is proportional to the curvature of the hypersur-
face. The main difficulty consists in describing the location and the movement of the interfaces. Another 
major problem is to understand whether the interface behaves as a discontinuity in the state space (sharp 
interface) or whether the phase boundary corresponds to a more regular transition (diffuse interface, DI). 
The diffuse interface models have the advantage to consider only one set of equations in a single spatial 
domain (the density takes into account the different phases) which considerably simplifies the mathematical 
and numerical study (indeed in the case of sharp interfaces, we have to treat a problem with free boundary). 
Another approach corresponds to determining equilibrium solutions which classically consists of the mini-
mization of the free energy functional. Unfortunately this minimization problem has an infinity of solutions, 
and many of them are physically irrelevant. In order to overcome this difficulty, J.F. Van der Waals in the 
XIX-th century was the first to add a term of capillarity in order to select the physically correct solutions. 
This theory is widely accepted as a thermodynamically consistent model for equilibria.

Korteweg-type models are based on an extended version of nonequilibrium thermodynamics, which as-
sumes that the energy of the fluid not only depends on standard variables but also on the gradient of the 
density. Alternatively, another way to penalize the high density variations consists in applying a zero order 
but non-local operator to the density gradient (see [42,41,40]). For more results on non-local Korteweg 
system, we refer also to [10–13,23,24].

Let us now consider a fluid of density ρ ≥ 0, velocity field u ∈ R
N , we are now going to consider the 

so-called local Korteweg system which is a compressible capillary fluid model, it can be derived from a 
Cahn–Hilliard like free energy (see the pioneering work by J.E. Dunn and J. Serrin in [18] and also [1,8,21]). 
The conservation of mass and of momentum write:⎧⎪⎨⎪⎩

∂

∂t
ρ + div(ρu) = 0,

∂

∂t
(ρu) + div(ρu⊗ u) − div(2μ(ρ)D(u)) −∇

(
λ(ρ))divu

)
+ ∇P (ρ) = divK,

(1.1)

where the Korteweg tensor reads as:

divK = ∇
(
ρκ(ρ)Δρ + 1

2(κ(ρ) + ρκ′(ρ))|∇ρ|2
)
− div

(
κ(ρ)∇ρ⊗∇ρ

)
. (1.2)

κ is the coefficient of capillarity and is a regular function. The term divK allows to describe the variation 
of density at the interfaces between two phases, generally a mixture liquid-vapor. P is a general increasing 
pressure. D(u) = 1

2 (∇u +t ∇u) defines the stress tensor, μ and λ are the two Lamé viscosity coefficients 
depending on the density ρ and satisfying:

μ > 0 and 2μ + Nλ ≥ 0.

We briefly recall the classical energy estimates for the system (1.1); let ρ̄ > 0 be a constant reference density 
(in what follows, we shall assume that ρ̄ = 1) and let Π be defined by:

Π(s) = s

( s∫
ρ̄

P (z)
z2 dz − P (ρ̄)

ρ̄

)
,

so that P (s) = sΠ′(s) −Π(s), Π′(ρ̄) = 0. Multiplying the equation of momentum conservation in the system 
(1.1) by u and integrating by parts over (0, t) ×R

N , we get the following estimate:
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∫
RN

(1
2ρ|u|

2 + (Π(ρ) − Π(ρ̄)) + 1
2κ(ρ)|∇ρ|2

)
(t)dx + 2

t∫
0

∫
RN

μ(ρ)|D(u)|2dxdt

+
t∫

0

∫
RN

λ(ρ)(divu)2dxdt ≤
∫
RN

(
ρ0|u0|2 + (Π(ρ0) − Π(ρ̄)) + 1

2κ(ρ0)|∇ρ0|2
)
dx. (1.3)

It follows that assuming that the initial total energy is finite:

E0 =
∫
RN

(
ρ0|u0|2 + (Π(ρ0) − Π(ρ̄)) + κ(ρ0)

2 |∇ρ0|2
)
dx < +∞ , (1.4)

then we have the following a priori bounds when P (ρ) = aργ with γ > 1 (see [39] for the definition of the 
Orlicz spaces Lγ

2(RN )):

(ρ− 1) ∈ L∞(Lγ
2(RN )) and ρ|u|2 ∈ L∞((0,+∞), L1(RN )),√

κ(ρ)∇ρ ∈ L∞((0,+∞), L2(RN ))N and
√
μ(ρ)Du ∈ L2((0,+∞) × R

N )N
2
.

In what follows, we are interested in investigating the existence of global strong solution for the system 
(1.1) with initial density not necessary continuous (in particular admitting jump in the pressure across the 
interfaces). In order to realize this program, it seems natural to work with initial data belonging to critical 
Besov space (it means in spaces as large as possible) for the scaling of the equations. Let us now recall 
the notion of scaling for the Korteweg’s system (1.1). Such an approach is now classical for incompressible 
Navier–Stokes equation and yields local well-posedness (or global well-posedness for small initial data) in 
spaces with minimal regularity. In our situation we can easily check that, if (ρ, u) solves (1.1), then (ρλ, uλ)
solves also this system:

ρλ(t, x) = ρ(λ2t, λx), uλ(t, x) = λu(λ2t, λx)

provided the pressure laws P have been changed to λ2P .

Definition 1.1. We say that a function space is critical with respect to the scaling of the equation if the 
associated norm is invariant under the transformation:

(ρ, u) −→ (ρλ, uλ)

(up to a constant independent of λ).

This suggests us to choose initial data (ρ0, u0) in spaces whose norm is invariant for all λ > 0 by the 
transformation (ρ0, u0) −→ (ρ0(λ·), λu0(λ·)). A natural candidate is the Besov space BN/2

2,∞×(BN/2−1
2,∞ )N (see 

the section 2 for some definitions of Besov spaces). However since BN/2
2,∞ is not included in L∞, we cannot 

expect a priori L∞ estimate on the density, in particular it seems delicate to deal with the nonlinear term 
such as the pressure since it is then impossible to use composition theorems. Another difficulty concerns 
the control of the vacuum or more precisely the L∞ norm of 1

ρ ; indeed it is crucial to avoid vacuum if we 
want to take into account the parabolic effects of the momentum equation.

That is why in the sequel we will work with the critical Besov spaces (BN/2
2,∞ ∩L∞) ×(BN/2−1

2,∞ )N . However 
estimating the L∞ norm of the density all along the time for general physical coefficients is generally a hard 
task in fluid mechanics, even if the Korteweg system allows to obtain regularizing effects on the density. 
This is the reason why in the literature the authors consider initial density which are in Banach space X
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embedded in L∞; it suffices then to propagate the regularity of X all along the time via the parabolic 
structure of the system in order to have L∞ estimate on the density ρ. In our case we shall proceed in a 
different way and we will explain in the sequel how to overcome this type of difficulty.

Let us briefly mention that the existence of strong solutions for N ≥ 2 is known since the works by 
H. Hattori and D. Li [33,34]. R. Danchin and B. Desjardins in [17] improve this result by working for the 
first time in critical Besov spaces for the scaling of the equations. More precisely the initial data (ρ0−1, ρ0u0)
belong to B

N
2

2,1 × B
N
2 1

2,1 (it is important to point out that B
N
2

2,1 is embedded in L∞ which allows to control 
the vacuum and the L∞ norm of the density). In [38], M. Kotschote showed the existence of strong solution 
for the isothermal model in bounded domain by using Doreâ–Venni Theory and H∞ calculus. In [22], 
we generalize the results of [17] in the case of non-isothermal Korteweg system with physical coefficients 
depending on the density and the temperature.

1.1. Mathematical results

We now are going to state our main results. As we explained previously, one of the main difficulty in order 
to obtain strong solutions for Korteweg system in very general Besov spaces consists in dealing with the 
L∞ control on 1

ρ and on ρ. To do this, it is essential to understand precisely the structure of the equations 
in order to use in a suitable way a maximum principle argument. We are going to consider at first the 
particular case of the capillary coefficient κ(ρ) = κ

ρ with κ > 0. Indeed it is possible to rewrite the system 
(1.1) in a simple way by introducing an effective velocity which allows to highlight the parabolic structure 
of the Korteweg system (this effective velocity has been introduced by A. Jüngel in [36], we refer also to 
[7,36,29,20,28] where the authors prove the existence of global weak solutions).

Remark 1. Let us give some explanations on this choice of capillarity κ(ρ) = κ
ρ , indeed this regime flows 

exhibits particular phenomena in the case of the compressible Korteweg Euler system (which is called Euler 
system with quantum pressure when κ(ρ) = κ

ρ ). At least heuristically, the system is equivalent via the 
Madelung transform to the Gross–Pitaevskii equations which are globally well-posed for large initial data in 
dimension N = 1, 2, 3 (we refer to [19]). One of the main difficulty to pass from Gross–Pitaevskii equations 
to the Euler system with quantum pressure consists in dealing with the vacuum (we refer to [3,4] for the 
existence of global strong “dispersive” solution with small initial irrotational data). We would also like to 
mention very interesting results of global weak solutions for the compressible Euler system with quantum 
pressure due to P. Antonelli and P. Marcati (see [2]). To finish, we mention that there exist global strong 
solutions with large initial data in one dimension for the system (1.1) when κ(ρ) = μ2

ρ and μ(ρ) = μρ, 
λ(ρ) = 0 (we refer to [14]). Furthermore these solutions converge to a global weak entropy solution of the 
compressible Euler system when μ goes to 0. It shows in particular that the Korteweg system is relevant to 
select the physical solution of the compressible Euler system via a viscosity-capillarity vanishing process.

When κ(ρ) = κ
ρ with κ > 0, we can rewrite the capillarity tensor as follows (see the appendix for more 

details on the computations):

K(ρ) =κρ(∇Δ(ln ρ) + 1
2∇(|∇ ln ρ|2)).

The system (1.1) reads as follows (at least if we assume that there is no vacuum):⎧⎪⎪⎨⎪⎪⎩
∂t ln ρ + u · ∇ ln ρ + divu = 0,
∂tu + u · ∇u− 1

ρdiv(2μ(ρ)Du) − 1
ρ∇(λ(ρ)divu) + ∇F (ρ) = κ∇Δ(ln ρ) + κ

2∇(|∇ ln ρ|2),
(ln ρ, u) t=0 = (ln ρ0, u0),

(1.5)

with F (ρ) defined by F
′(ρ) = P ′(ρ). In the sequel we will use the following definition.
ρ
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Definition 1.2. We now set:

q = ln ρ.

In the first theorem of this paper we are going to prove the existence of global strong solution for (1.5)
with small initial data and of strong solution in finite time with large initial data when we deal with specific 
viscosity coefficients and pressure terms. More precisely we shall deal with the shallow water viscosity 
coefficients:

μ(ρ) = μρ, λ(ρ) = λρ,

with μ > 0 and 2μ + λ > 0. It leads to the following system:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tq + u · ∇q + divu = 0,
∂tu + u · ∇u− μΔu− 2μ∇q ·D(u) − (λ + μ)∇divu− λdivu∇q + ∇F (ρ)

= κ∇Δq + κ
2∇(|∇q|2),

(q, u) t=0 = (ln ρ0, u0).

(1.6)

The interest to restrict our attention to this type of physical coefficients is to show the existence of strong 
solution in very large Besov space of initial data. Indeed the system (1.6) has essentially no nonlinear terms 
in the sense that we can deal with all the nonlinearities without using composition theorem; it implies in 
particular that we do not require any L∞ control on the density q in order to obtain existence of strong 
solution.

Let us give a definition on the space in which we are going to work.

Definition 1.3. We set X
N
2

0 and X
N
2 −1

0 the space which corresponds to:

X
N
2

0 = S0 ∩B
N
2

2,∞
B

N
2

2,∞
,

X
N
2 −1

0 = S0 ∩B
N
2 −1

2,∞
B

N
2

2,∞
.

Remark 2. Here S0 defines functions in the Schwartz space whose Fourier transforms are supported away 

from 0 and we consider the closure of S0 ∩ B
N
2

2,∞ in B
N
2

2,∞ and of S0 ∩ B
N
2 −1

2,∞ in B
N
2 −1

2,∞ . We can observe in 

particular that if u ∈ X
N
2

0 then we have:

lim
j→±∞

2j N
2 ‖Δju‖L2 = 0.

It is necessary to work in these spaces if we wish to prove the existence of strong solution in finite time 
(indeed it requires that limT→0 ‖uL‖

L̃1
T (B

N
2 −1

2,∞ )
= 0 with uL solution of the heat equation for the initial 

velocity u0 in X
N
2 −1

0 ).
Concerning the existence of global strong solution with small initial data, we will take only initial data 

in (B
N
2

2,∞ ∩B
N
2 −1

2,∞ ) × (B
N
2 1

2,∞)N .

Let us now state our main results, we refer to the section 2 for the definitions of the Besov space and the 
Hybrid Besov spaces.
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Theorem 1.1. Let N ≥ 2. Assume that μ(ρ) = μρ, λ(ρ) = λρ with μ > 0, 2μ + λ > 0 and P (ρ) = Kρ with 

K > 0. We also suppose that q0 ∈ X
N
2

0 and u0 ∈ X
N
2 −1

0 . There exists a time T such that (1.6) has a unique 
solution (q, u) on (0, T ) with:

q ∈ L̃∞
T (B

N
2

2,∞) ∩ L̃1
T (B

N
2 +2

2,∞ ), and u ∈ L̃∞
T (B

N
2 −1

2,∞ ) ∩ L̃1
T (B

N
2 +1

2,∞ ).

Furthermore there exists ε0 such that if in addition:

‖q0‖
B̃

N
2 −1, N2

2,∞
+ ‖u0‖

B
N
2 −1

2,∞
≤ ε0, (1.7)

then the solution (q, u) is global with:

q ∈ L̃∞(R+, B̃
N
2 −1,N2

2,∞ ) ∩ L̃1(R+, B̃
N
2 +1,N2 +2

2,∞ ), u ∈ L̃∞(R+, B
N
2 −1

2,∞ ) ∩ L̃1(R+, B
N
2 +1

2,∞ ).

If in addition to the hypothesis (1.7) we assume that (q0, u0) belongs to B̃
N
2 −1,N2

2,2 ×B
N
2 −1

2,2 and that q0 ∈ L∞

then there exists a unique solution (ρ, u) of the system (1.1) with q = eρ. Furthermore for any T > 0 there 
exists CT > 0 depending on T such that:

‖1
ρ
‖L∞

T (L∞) + ‖ρ‖L∞
T (L∞) ≤ CT .

In addition for any T > 0 we have:

q ∈ L̃∞
T (B

N
2

2,2) ∩ L̃1(B̃
N
2 +1,N2 +2

2,2 ) and u ∈ L̃∞
T (B

N
2 −1

2,2 ) ∩ L̃1(B
N
2 +1

2,2 ). (1.8)

Remark 3. It is worth pointing point out that in the first part of the Theorem 1.1, we solve the system 
(1.6) and not the system (1.1). Indeed we do not assume any control on q0 in L∞, it means that we have 
no information on the vacuum of the density. It is then not clear that a solution of (1.6) is also a solution 
of (1.1) when there is vacuum. This result proves in a certain sense that the good variable to consider is 
not the density ρ but rather ln ρ. Let us emphasize on the fact that this result allows to deal with general 
critical initial data u0 ∈ B

N
2 −1

2,∞ which is not classical for compressible systems (the most of the time u0

belongs to B
N
2 −1

2,1 unlike the incompressible Navier–Stokes equations, see [9]). This is obviously due to the 
fact that the Korteweg system provides a parabolic effect on the density ρ (it is of course not the case for 
the compressible Navier–Stokes system, see [25]).

In the second part of the theorem we consider initial data with additional hypotheses of regularity, indeed 

now q0 = ln ρ0 belongs also to L∞ ∩B
N
2

22 and u0 to B
N
2 −1

22 . It allows us to show that with such initial data 
we have existence of strong solution for the “real” Korteweg system (1.1). The main difficulty consists in 
estimating the L∞ norm of the density q = ln ρ; to do this we decompose the solution q as the sum of the 
solution of the linearized system qL and a remainder term q̄ which takes into account the nonlinear terms. 
By combining some maximum principle results on qL and regularizing effects on q̄ for the third index of 
the Besov space, we can show that q is well bounded in L∞. We obtain our maximum principle result via a 
precise characterization of Besov spaces in terms of the semi-group associated with the linear system related 
to (1.1).

In addition we observe that in this theorem we can deal with discontinuous initial density which is not 
the case in [17]. However for any discontinuous initial density q0 ∈ B

N
2

2,∞, we remark that the density is 
immediately regularized in the sense that ρ is in C∞((0, T ), RN ) for any T > 0. This is due to the fact that 
the interfaces are diffuse.
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Remark 4. In this theorem we assume that (q0, u0) belongs to (B̃
N
2 −1,N2

2,2 ∩L∞) ×B
N
2 −1

2,2 but we just require a 

smallness assumption in B̃
N
2 −1,N2

2,∞ ×B
N
2 −1

2,∞ . In particular it allows us to prove the existence of global strong 
solution with large initial data in the energy space when N = 2, that is up to our knowledge something of 
new for the Korteweg system when N = 2.

We give an example of such initial data in the Corollary 3 where u0,ε,l0 can be chosen as small as possible 

in B
N
2 −1

2,∞ but very large in B
N
2 −1

2,2 . Let us recall that when N = 2, B
N
2 −1

2,2 corresponds to L2 which is the 
energy space for u0 (see (1.3)).

Another interesting point is that compared with [17], we can choose initial density with a large L∞ norm.

Remark 5. We now want to point out the specificity of the different physical coefficients, it is typically the 
case for the pressure and the viscosity coefficients where P (ρ) = Kρ and μ(ρ) = μρ. They correspond to 
the “magic” situation where there is no nonlinear terms to estimate, which require a L∞ control on the 
density ρ.

Remark 6. We would like to mention that we could easily extend the result of strong solution in finite time 
to the framework of Besov spaces constructed on general Lp spaces when the initial data verify:

q0 ∈ B
N
p
p,∞ and u0 ∈ B

N
p −1
p,∞ .

Concerning the existence of global strong solution we would have to assume that q0 is in B̃
N
2 −1N

p

2,p,∞ and 

u0 ∈ B̃
N
2 −1,Np −1

2,p,∞ .

The previous theorem uses in a crucial way the structure of the viscosity, capillary and pressure coeffi-
cients; indeed it allows to obtain global strong solution with a smallness assumption concerning only the 

space B̃
N
2 −1,N2

2,∞ ×B
N
2 −1

2,∞ . We would like to extend this result to general physical coefficients and in particular 
dealing with the case of the constant capillary coefficient in order to generalize the results of [17]. We have 
then the following result.

Theorem 1.2. Let N ≥ 2. Assume that μ(ρ) = μρ or μ, λ(ρ) = λρ or λ with μ > 0, 2μ + λ > 0, κ(ρ) = κ
ρ

or κ with κ > 0 and P a regular function such that P ′(1) > 0. Furthermore we suppose that ρ0 = 1 + h0:

h0 ∈ B̃
N
2 −1,N2

2,2 ∩B
N
2 −2

2,1 ∩ L∞ and u0 ∈ B
N
2 −2

2,1 ∩B
N
2 −1

2,2 .

There exists ε0 such that if:

‖h0‖
B̃

N
2 −1, N2

2,2 ∩B
N
2 −2

2,1 ∩L∞
+ ‖u0‖

B
N
2 −2

2,1 ∩B
N
2 −1

2,2

≤ ε0,

then there exists a global unique solution (ρ, u) of the system (1.1) with ρ = 1 + h and:

h ∈ L̃∞(R+, B̃
N
2 −1,N2

2,2 ∩B
N
2 −2

2,1 ) ∩ L̃1(R+, B̃
N
2 +1,N2 +2

2,2 ∩B
N
2

2,1) ∩ L∞(R+, L∞)

and u ∈ L̃∞(R+, B
N
2 −1

2,2 ∩B
N
2 −2

2,1 ) ∩ L̃1(R+, B
N
2 +1

2,2 ∩B
N
2

2,1). (1.9)

Remark 7. We would like to mention that this theorem extend the results of [17] in terms of rough regularity 

on the initial data. Here we only assume that u0 belongs to B
N
2 −1

2,2 instead B
N
2 −1

2,1 , the main task as in the 

previous Theorem 1.1 consists in getting control on the L∞ norm of the density ρ without assuming h0 ∈ B
N
2

2,1
as in [17].

As in the previous theorem we can choose initial density which are not continuous.
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Remark 8. Let us point out that in the previous Theorem 1.2 we ask additional regularity in low frequencies 
on (h0, u0); indeed we assume that (h0, u0) are in B

N
2 −2

2,1 × (B
N
2 −2

2,1 )N . This is essentially due to the fact 
that we have shown maximum principle for the system (N) p. 411 (which does not take into account 
precisely the low frequency behavior of the Korteweg system) and not for the system (N1) p. 413 (see the 
Proposition 3.10). It is probably possible to extend the Proposition 3.10 to the system (N1). In particular 
it will allow to avoid this additional regularity on the initial data in low frequencies. For more explanations 
we refer to the Remark 20.

We are now interested in dealing with the specific case κ(ρ) = μ2

ρ and μ(ρ) = μρ, λ(ρ) = 0 which 
corresponds to compressible Navier–Stokes system with quantum pressure for an intermediary regime (see 
[14] for more explanations on this notion). Setting v = u +μ∇ ln ρ we can rewrite the system (1.6) as follows 
(we refer to the appendix for more details on the computations or [36,29]):

{
∂tρ− μΔρ = −div(ρv),
ρ∂tv + ρu · ∇v − div(μρ∇v) + ∇P (ρ) = 0,

(1.10)

which is equivalent to the following system (at least if we control the vacuum) with q = ln ρ:

{
∂tq − μΔq + v · ∇q = −divv + μ|∇q|2,
∂tv + u · ∇v − μΔv − μ∇q · ∇v + ∇F (ρ) = 0.

(1.11)

In this particular case we are able to use a new tool developed in [26,27,31,30,32] called the quasi-solutions. 
More precisely we can check that there exists a particular solution of the following system (where we have 
canceled out the pressure P ):

{
∂tρ− μΔρ = −div(ρv),
ρ∂tv + ρu · ∇v − div(μρ∇v) = 0.

(1.12)

Indeed we verify that (ρ1, −μ∇ ln ρ1) is a particular solution of (1.10) if the density ρ1 verifies the heat 
equation:

∂tρ1 − μΔρ1 = 0. (1.13)

The idea now consists in working around this quasi-solution, it will allow us to prove the existence of global 
strong solution with small initial data in subcritical norms. We are going to search solution under the form:

q = ln ρ = ln ρ1 + h2 with ρ1 = 1 + h1 and u = −μ∇ ln ρ1 + u2.

We deduce from (1.11) that (h2, u2) verifies the following system when P (ρ) = Kρ (this last choice is only 
a way to simplify the computations in the sequel):

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂th2 + divu2 − μ∇ ln ρ1 · ∇h2 + u2 · ∇ ln ρ1 = F (h2, u2),
∂tu2 − μΔu2 − μ∇divu2 − κ∇Δh2 + K∇h2 − 2μ∇ ln ρ1 ·Du2 − 2μ∇h2 ·Du1

+ u1 · ∇u2 + u2 · ∇u1 − μ2∇(∇ ln ρ1 · ∇h2) = G(h2, u2),
(h2(0, ·), u2(0, ·)) = (h2

0, u
2
0),

(1.14)

with:
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F (h2, u2) = −u2 · ∇h2,

G(h2, u2) = −u2 · ∇u2 + 2μ∇h2 ·Du2 −K∇ ln ρ1 + μ2

2 ∇(|∇h2|2). (1.15)

Let us state our main theorem for the system (1.14).

Theorem 1.3. Let N ≥ 2. Assume that μ(ρ) = μρ, κ(ρ) = μ2

ρ and λ(ρ) = 0 with μ > 0 and P (ρ) = Kρ with 
K > 0. Furthermore we suppose that there exists c1 > 0 such that ρ0

1 ≥ c1 > 0 with u0 = −μ∇[ln ρ0
1] + u0

2
and ln ρ0 = ln(ρ0

1) + h0
2 such that ρ0

1 = 1 + h0
1. In addition we assume that:

h0
1 ∈ B̃

N
2 −2,N2

2,1 , h0
2 ∈ B̃

N
2 −1,N2

2,1 and u0
2 ∈ B

N
2 −1

2,1 .

Furthermore there exist C > 0, ε0 (depending on h0
1), and two regular functions g, g1 such that if:

Cg(‖(ρ0
1,

1
ρ0
1
)‖L∞)‖h0

1‖
B

N
2 −2

2,1

exp
(
Cg1(‖(ρ0

1,
1
ρ0
1
)‖L∞)‖h0

1‖
B

N
2

2,1

)
)
≤ 1

2 ,

‖h0
2‖

B̃
N
2 −1, N2

2,1

+ ‖u0
2‖

B
N
2 −1

2,1

≤ ε0,
(1.16)

then there exists a global unique solution (ρ, u) of the system (1.1) with: u = −μ∇ ln ρ1+u2, ln ρ = ln ρ1+h2
and ρ1 = 1 + h1 verifying the following heat equation:{

∂tρ1 − μΔρ1 = 0,
ρ1(0, ·) = ρ0

1 = 1 + h0
1.

Furthermore we have:

h2 ∈ L̃∞(B̃
N
2 −1,N2

2,1 ) ∩ L̃1(B̃
N
2 +1,N2 +2

2,1 ) and u2 ∈ L̃∞(B
N
2 −1

2,1 ) ∩ L̃1(B
N
2 +1

2,1 ). (1.17)

Remark 9. This theorem ensures the existence of global strong solution with large initial data for the 
scaling of the equations which is new up to our knowledge. Indeed it suffices to consider h0

1(x) = ϕ(λx) with 

ϕ ∈ B̃
N
2 −2,N2

2,1 such that 1 + ϕ ≥ c > 0. We observe in particular that:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

‖h0
1‖

B
N
2

2,1

= ‖ϕ‖
B

N
2

2,1

,

‖ρ0
1‖L∞ = ‖1 + ϕ‖L∞ ,

‖ 1
ρ0
1
‖L∞ = ‖ 1

1 + ϕ
‖L∞ ,

‖h0
1‖

B
N
2 −2

2,1

= 1
λ2 ‖ϕ‖B N

2 −2
2,1

.

(1.18)

It implies that h0
1 verifies (1.16) by choosing λ large enough. Thus if we take ϕ large in B

N
2

2,∞, our initial 
density h0

1 is large in the critical Besov space B
N
2

2,∞. In particular when N = 2, it is possible to choose ϕ
large in B1

2,2; it turns out that there is existence of global strong solution for large initial data in the energy 
space (we refer to (1.3) for the energy inequality). This theorem provides then a first answer to the question 
of the existence of global strong solution with large energy initial data in dimension N = 2 (at least for a 
class of initial data). This question remains obviously open for general initial data.

It is also possible to choose h0
1(x) = ln(λ)ϕ(λx) with λ > 0, it improves again the size of the large initial 

data in B
N
2

2,∞.
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Remark 10. We would like also to point out that nonlinear condition of smallness as (1.16) have been 
proved also in some works of J.-Y. Chemin and I. Gallagher (see [15,16]) for incompressible Navier–Stokes 
equations. Indeed the authors show the existence of global strong solution for large initial data in B−1

∞,∞
which is the largest critical space for the Navier–Stokes equations. However our proof is really different of 
[15,16] since our initial data are completely irrotational (that is of course not the case for incompressible 
equation). In addition we work around the quasi-solutions which naturally absorb the convection term, it 
ensures better results in term of smallness assumption (1.16) compared with [15,16] (indeed in these papers 
the authors work around the solution of the Stokes equation, and the process of smallness is related to 
a smallness assumption on the term of convection). This is obviously due to the fact that our system is 
compressible which allows us to deal with irrotational data.

Remark 11. We think that we could improve the condition on initial density h0
1 ∈ B

N
2 −2

2,1 by working around 
the quasi-solution only in high frequencies and by dealing directly with ρ − 1 in low frequencies in the spirit 
of [25].

It may be also interesting to work with general regular pressure, it would make the proof more technical.

We are going to finish by presenting a result of global strong solution with large initial data when we 
assume that the system (1.1) is highly compressible. In the sequel we will work with P (ρ) = Kρ, by highly 
compressible we mean that K = 1

Mr2 goes to zero or in other words that the Mach number Mr > 0 goes to 
+∞.

Corollary 1. Let N ≥ 2. Assume that μ(ρ) = μρ, κ(ρ) = μ2

ρ and λ(ρ) = 0 with μ > 0 and P (ρ) = Kρ with 
K > 0. Furthermore we suppose that u0 = −μ∇[ln ρ0

1] + u0
2 and ln ρ0 = ln(ρ0

1) + h0
2 such that ρ0

1 = 1 + h0
1

and there exists c1 > 0 such that ρ0
1 ≥ c1 > 0. In addition we suppose that:

h0
1 ∈ B̃

N
2 −2,N2

2,1 , h0
2 ∈ B̃

N
2 −1,N2

2,1 and u0
2 ∈ B

N
2 −1

2,1 .

Furthermore there exists ε0 > 0 (depending on h0
1 and the viscosity coefficient μ) such that for any K ≤ ε0, 

there exists ε1 > 0 such that if

‖h0
2‖

B̃
N
2 −1, N2

2,1

+ ‖u0
2‖

B
N
2 −1

2,1

≤ ε1, (1.19)

then there exists a global unique solution (ρ, u) of the system (1.1) with: u = −μ∇ ln ρ1 + u2 and ln ρ =
ln ρ1 + h2 with ρ1 = 1 + h1 verifying the following system:

{
∂tρ1 − μΔρ1 = 0,
ρ1(0, ·) = ρ0

1 = 1 + h0
1.

Furthermore we have:

h2 ∈ L̃∞(B̃
N
2 −1,N

2,1 ) ∩ L̃1(B̃
N
2 +1,N2 +2

2,1 ) and u2 ∈ L̃∞(B
N
2 −1

2,1 ) ∩ L̃1(B
N
2 +1

2,1 ). (1.20)

Remark 12. This theorem shows the existence of global strong solution for any large initial data of the form 
u0 = −μ∇ ln ρ0 provided that K is sufficiently small with P (ρ) = Kρ. In other terms we get global existence 
(and uniqueness) for highly compressible fluids in any dimension N ≥ 2. Roughly speaking K = 1

Mr2 tends 
to be very small when ‖h0

1‖
B̃

N
2 −2, N2

2,1

is very large (in other words it means that the Mach number Mr goes 

to +∞ which corresponds to a highly compressible limit, see [30,32]).
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This article is structured in the following way, first of all we recall in the section 2 some definitions and
theorems related to the Littlewood–Paley theory. Next in the section 3 we prove Theorems 1.1 and 1.2. In 
section 4, we show the Theorem 1.3 by introducing the notion of quasi-solution which will play a crucial 
role. In section 5 we finish with the proof of the Corollary 1. We postpone in appendix (see Appendix A) 
some technical computation on the capillarity tensor.

2. Littlewood–Paley theory and Besov spaces

Throughout the paper, C stands for a constant whose exact meaning depends on the context. The 
notation A � B means that A ≤ CB with C > 0. For all Banach space X, we denote by C([0, T ], X)
the set of continuous functions on [0, T ] with values in X. For p ∈ [1, +∞], the notation Lp(0, T, X) or 
Lp
T (X) stands for the set of measurable functions on (0, T ) with values in X such that t → ‖f(t)‖X

belongs to Lp(0, T ). Littlewood–Paley decomposition corresponds to a dyadic decomposition of the space 
in Fourier variables. We can use for instance any ϕ ∈ C∞(RN ) and χ ∈ C∞(RN ), supported respectively 
in C = {ξ ∈ R

N/3
4 ≤ |ξ| ≤ 8

3} and B(0, 43 ) such that:∑
l∈Z

ϕ(2−lξ) = 1 if ξ �= 0,

and:

χ(ξ) +
∑
l∈N

ϕ(2−lξ) = 1 ∀ξ ∈ R
N .

Denoting h = F−1ϕ, we then define the dyadic blocks by:

Δlu = ϕ(2−lD)u = 2lN
∫
RN

h(2ly)u(x− y)dy and Slu =
∑

k≤l−1

Δku .

Formally, one can write that:

u =
∑
k∈Z

Δku .

This decomposition is called homogeneous Littlewood–Paley decomposition. Let us observe that the above 
formal equality does not hold in S ′(RN ) for two reasons:

1. The right hand-side does not necessarily converge in S ′(RN ).
2. Even if it does, the equality is not always true in S ′(RN ) (consider the case of the polynomials).

2.1. Homogeneous Besov spaces and first properties

Definition 2.1. We denote by S ′
h the space of tempered distribution u such that:

lim
j→−∞

Sju = 0 in S ′.

Definition 2.2. For s ∈ R, p ∈ [1, +∞], q ∈ [1, +∞], and u ∈ S ′(RN ) we set:

‖u‖Bs
p,q

=
(∑

l∈Z

(2ls‖Δlu‖Lp)q
) 1

q .

The homogeneous Besov space Bs
p,q is the set of distribution u in S ′

h such that ‖u‖Bs < +∞.

p,q
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Remark 13. The above definition is a natural generalization of the homogeneous Sobolev and Hölder 
spaces: one can show that Bs

∞,∞ is the homogeneous Hölder space Cs and that Bs
2,2 is the homogeneous 

space Hs.

Proposition 2.1. The following properties hold:

1. There exists a universal constant C such that:

C−1‖u‖Bs
p,r

≤ ‖∇u‖Bs−1
p,r

≤ C‖u‖Bs
p,r

.

2. If p1 < p2 and r1 ≤ r2 then Bs
p1,r1 ↪→ B

s−N(1/p1−1/p2)
p2,r2 .

3. Moreover we have the following interpolation inequalities, there exists C > 0 such that for any θ ∈]0, 1[
and s < s̃ we have:

‖u‖
B

θs+(1−θ)s̃
p,r

≤ ‖u‖θBs
p,r

‖u‖1−θ
Bs̃

p,r
,

‖u‖
B

θs+(1−θ)s̃
p,1

≤ C

θ(1 − θ)(s̃− s)‖u‖
θ
Bs

p,∞
‖u‖1−θ

Bs̃
p,∞

.

We now recall a few product laws in Besov spaces coming directly from the paradifferential calculus of 
J.-M. Bony (see [6,5]).

Proposition 2.2. We have the following laws of product:

• For all s ∈ R, (p, r) ∈ [1, +∞]2 we have:

‖uv‖Bs
p,r

≤ C(‖u‖L∞‖v‖Bs
p,r

+ ‖v‖L∞‖u‖Bs
p,r

) . (2.21)

• Let (p, p1, p2, r, λ1, λ2) ∈ [1, +∞]2 such that: 1p ≤ 1
p1

+ 1
p2

, p1 ≤ λ2, p2 ≤ λ1, 1p ≤ 1
p1

+ 1
λ1

and 1p ≤ 1
p2

+ 1
λ2

. 
We have then the following inequalities:

If s1 + s2 + N inf(0, 1 − 1
p1

− 1
p2

) > 0, s1 + N
λ2

< N
p1

and s2 + N
λ1

< N
p2

then:

‖uv‖
B

s1+s2−N( 1
p1

+ 1
p2

− 1
p

)
p,r

� ‖u‖Bs1
p1,r

‖v‖Bs2
p2,∞ , (2.22)

when s1 + N
λ2

= N
p1

(resp. s2 + N
λ1

= N
p2

) we replace ‖u‖Bs1
p1,r

‖v‖Bs2
p2,∞ (resp. ‖v‖Bs2

p2,∞) by 

‖u‖Bs1
p1,1

‖v‖Bs2
p2,r

(resp. ‖v‖Bs2
p2,∞∩L∞), if s1 + N

λ2
= N

p1
and s2 + N

λ1
= N

p2
we take r = 1.

If s1 + s2 = 0, s1 ∈ ( N
λ1

− N
p2
, Np1

− N
λ2

] and 1
p1

+ 1
p2

≤ 1 then:

‖uv‖
B

−N( 1
p1

+ 1
p2

− 1
p

)
p,∞

� ‖u‖Bs1
p1,1

‖v‖Bs2
p2,∞ . (2.23)

If |s| < N
p for p ≥ 2 and −N

p′ < s < N
p else, we have:

‖uv‖Bs
p,r

≤ C‖u‖Bs
p,r

‖v‖
B

N
p

p,∞∩L∞
. (2.24)

Remark 14. In the sequel p will be either p1 or p2 and in this case 1
λ = 1

p1
− 1

p2
if p1 ≤ p2, respectively

1 = 1 − 1 if p2 ≤ p1.
λ p2 p1



B. Haspot / J. Math. Anal. Appl. 438 (2016) 395–443 407
Corollary 2. Let r ∈ [1, +∞], 1 ≤ p ≤ p1 ≤ +∞ and s such that:

• s ∈ (−N
p1
, Np1

) if 1
p + 1

p1
≤ 1,

• s ∈ (−N
p1

+ N( 1
p + 1

p1
− 1), Np1

) if 1
p + 1

p1
> 1,

then we have if u ∈ Bs
p,r and v ∈ B

N
p1
p1,∞ ∩ L∞:

‖uv‖Bs
p,r

≤ C‖u‖Bs
p,r

‖v‖
B

N
p1
p1,∞∩L∞

.

The study of non-stationary PDE’s requires space of type Lρ(0, T, X) for appropriate Banach spaces X. 
In our case, we expect X to be a Besov space, so that it is natural to localize the equation through 
Littlewood–Paley decomposition. That is why we are going to define the spaces of Chemin–Lerner which 
are a refinement of the spaces Lρ

T (Bs
p,r).

Definition 2.3. Let ρ ∈ [1, +∞], T ∈ [1, +∞] and s1 ∈ R. We set:

‖u‖L̃ρ
T (Bs1

p,r) =
(∑

l∈Z

2lrs1‖Δlu(t)‖rLρ(Lp)
) 1

r .

We then define the space L̃ρ
T (Bs1

p,r) as the set of tempered distribution u over (0, T ) × R
N such that 

limq→−∞ Squ = 0 in S ′((0, T ) × R
N ) and ‖u‖L̃ρ

T (Bs1
p,r) < +∞.

We set C̃T (B̃s1
p,r) = L̃∞

T (Bs1
p,r) ∩C([0, T ], Bs1

p,r). Let us emphasize that, according to Minkowski inequality, 
we have:

‖u‖L̃ρ
T (Bs1

p,r) ≤ ‖u‖Lρ
T (Bs1

p,r) if r ≥ ρ, ‖u‖L̃ρ
T (Bs1

p,r) ≥ ‖u‖Lρ
T (Bs1

p,r) if r ≤ ρ. (2.25)

Remark 15. It is easy to generalize Proposition 2.2 and Corollary 2 to L̃ρ
T (Bs1

p,r) spaces. The indices s1, p, r
behave just as in the stationary case whereas the time exponent ρ behaves according to Hölder inequality.

In the sequel we will need composition lemma in L̃ρ
T (Bs

p,r) spaces (we refer to [5] for a proof).

Proposition 2.3. Let s > 0, (p, r) ∈ [1, +∞] and u ∈ L̃ρ
T (Bs

p,r) ∩ L∞
T (L∞).

1. Let F ∈ W
[s]+2,∞
loc (RN ) such that F (0) = 0. Then F (u) ∈ L̃ρ

T (Bs
p,r). More precisely there exists a 

function C depending only on s, p, r, N and F such that:

‖F (u)‖L̃ρ
T (Bs

p,r) ≤ C(‖u‖L∞
T (L∞))‖u‖L̃ρ

T (Bs
p,r).

2. Let F ∈ W
[s]+3,∞
loc (RN ) such that F (0) = 0. Then F (u) −F ′(0)u ∈ L̃ρ

T (Bs
p,r). More precisely there exists 

a function C depending only on s, p, r, N and F such that:

‖F (u) − F ′(0)u‖L̃ρ
T (Bs

p,r) ≤ C(‖u‖L∞
T (L∞))‖u‖2

L̃ρ
T (Bs

p,r).

Let us now give some estimates for the heat equation.
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Proposition 2.4. Let s ∈ R, (p, r) ∈ [1, +∞]2 and 1 ≤ ρ2 ≤ ρ1 ≤ +∞. Assume that u0 ∈ Bs
p,r and 

f ∈ L̃ρ2
T (Bs−2+2/ρ2

p,r ). Let u be a solution of:

{
∂tu− μΔu = f

ut=0 = u0 .

Then there exists C > 0 depending only on N, μ, ρ1 and ρ2 such that:

‖u‖
L̃

ρ1
T (B̃s+2/ρ1

p,r ) ≤ C
(
‖u0‖Bs

p,r
+ μ

1
ρ2

−1‖f‖
L̃

ρ2
T (Bs−2+2/ρ2

p,r )

)
.

If in addition r is finite then u belongs to C([0, T ], Bs
p,r).

Hybrid Besov spaces
The homogeneous Besov spaces fail to have nice inclusion properties: owing to the low frequencies, the 

embedding Bs
p,1 ↪→ Bt

p,1 does not hold for s > t. Still, the functions of Bs
p,1 are locally more regular than 

those of Bt
p,1: for any φ ∈ C∞

0 and u ∈ Bs
p,1, the function φu ∈ Bt

p,1. This motivates the definition of 
Hybrid Besov spaces introduced by R. Danchin (see a definition in [5], see also [25]) where the growth 
conditions satisfied by the dyadic blocks and the coefficient of integrability are not the same for low and 
high frequencies. Hybrid Besov spaces have been used by R. Danchin in order to prove global well-posedness 
for compressible gases in critical spaces (we refer to [5] for an elegant proof of this result).

Definition 2.4. Let l0 ∈ N, s, t, ∈ R, (r, r1) ∈ [1, +∞]2 and (p, q) ∈ [1, +∞]. We set:

‖u‖B̃s,t
p,q,1

=
∑
l≤l0

2ls‖Δlu‖Lp +
∑
l>l0

2lt‖Δlu‖Lq ,

and:

‖u‖B̃s,t
(p,r),(q,r1)

=
(∑
l≤l0

(2ls‖Δlu‖Lp)r
) 1

r +
(∑
l>l0

(2lt‖Δlu‖Lq )r1
) 1

r1 .

Remark 16. When p = q and r = r1 we will note to simplify B̃s,t
(p,r),(p,r) = B̃s,t

p,r.

Notation 1. We will often use the following notation:

uBF =
∑
l≤l0

Δlu and uHF =
∑
l>l0

Δlu.

Remark 17. We have the following properties:

• We have B̃s,s
p,p,1 = Bs

p,1.
• If s1 ≥ s3 and s2 ≥ s4 then B̃s3,s2

p,q,1 ↪→ B̃s1,s4
p,q,1 .

Remark 18. In the sequel we shall often use this hybrid Besov space in order to distinguish the behavior of 
our solution in low and high frequencies, in particular we would like to mention that we can prove results 
analogous to Proposition 2.2 and Corollary 2 (see [25]).

We shall conclude this section by some example of initial data verifying the Theorem 1.1 with large 
energy initial data when N = 2. More precisely we are interested in defining initial data which are small in 



B. Haspot / J. Math. Anal. Appl. 438 (2016) 395–443 409
B̃
N
2 −1,N2

2,∞ but large in B
N
2

2,2 (it improves in particular the results of [17] where the initial density is assumed 

small in B
N
2

2,1 and then in B
N
2

2,2). It implies in particular that your initial data ∇√
ρ0 is large in L2 when 

N = 2.
Let us start by recalling a classical example of function in Bs

p,∞, by sake of completeness we are going to 
recall the proof (see also [5]).

Proposition 2.5. Let σ ∈]0, N [. For any p ∈ [1, +∞], the function | · |−σ belongs to B
N
p −σ
p,∞ .

Proof. By Proposition 2.1 it suffices to show that uσ = | · |−σ belongs to BN−σ
1,∞ . Let us introduce a smooth 

compactly supported function χ which is identically equal to 1 near the unit ball and such that u is splitting 
as follows:

uσ = u0 + u1 with u0(x) = χ(x)|x|−σ and u1(x) = (1 − χ(x))|x|−σ.

Clearly u0 is in L1 and u1 belongs to Lq whenever q > N
σ . The homogeneity of the function uσ gives via a 

change of variable:

Δjuσ = 2jNuσ ∗ h(2j ·)

= 2j(N+σ)uσ(2j ·) ∗ h(2j ·)

= 2jσ(Δ0uσ)(2j ·). (2.26)

Therefore, 2j(N−σ)‖Δjuσ‖L1 = ‖Δ0uσ‖L1 , it remains then to show that Δ0uσ is in L1. As u0 is in L1, Δ0u0
is also in L1 according to the continuity of the operator Δ0 on Lebesgue spaces. By Bernstein inequalities, 
we have:

‖Δ0u1‖L1 ≤ Ck‖DkΔ0u1‖L1 ≤ Ck‖Dku1‖L1 .

Leibniz’s formula ensures that Dku1 − (1 − χ)Dkuσ is a smooth compactly supported function. We then 
complete the proof by choosing k such that k > N − σ. �

We can now deduce from the previous proposition suitable functions verifying the Theorem 1.1.

Corollary 3. Let us consider:

u0,ε,l0(x) = S( 1
|x|1−ε

),

with S defined by F(Su)(ξ) = 1RN\B(0,2l0 )(ξ) û(ξ). Then for all r ∈ [1, +∞[, for all M > 0, for all ε1 > 0
there exist ε > 0 and l0 > 0 such that:

‖u0,ε,l0‖
B

N
2 −1

2,∞
≤ ε1,

‖u0,ε,l0‖
B

N
2 −1

2,r

≥ M. (2.27)

Proof. In the sequel in order to simplify the notation we shall write u0 for u0,ε,l0 . Let us denote by uσ the 
function 1

|x|σ with σ ∈]0, N [. By (2.26) we observe that:

‖Δluσ‖L2 = 2l(σ−N
2 )‖Δ0uσ‖L2 . (2.28)
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It implies that for l ≥ l0 we have for M0 independent on ε when ε ≤ 1
10 :

2l(N
2 −1+ε)‖Δlu0‖L2 = ‖Δ0u1−ε‖L2 ≤ M0.

Indeed using the same arguments than in the proof of the Proposition 2.5 we have by Bernstein inequality 
for C > 0:

‖Δ0u1−ε‖L2 ≤ C‖Δ0u1−ε‖L1

≤ C(‖χu1−ε‖L1 + Ck‖Dk((1 − χ)u1−ε)‖L1)

≤ M0.

According to (2.28) we deduce that for all l ≥ l0:

2l(N
2 −1)‖Δlu0‖L2 = 2−lε‖Δ0uσ‖L2 ≤ M02−l0ε.

It implies in particular since Δlu0 = 0 for l < l0 that:

‖u0‖
B

N
2 −1

2,∞
≤ M02−l0ε. (2.29)

We now fix l0 such that:

M02−l0ε = ε1. (2.30)

It yields that:

‖u0‖
B

N
2 −1

2,∞
≤ ε1. (2.31)

Let us now estimate the norm of u0 in B
N
2 −1

2,r with r ∈ [1, +∞[ and Mε = ‖Δ0u1−ε‖L2 :

‖u0‖
B

N
2 −1

2,r

= (
∑
l∈Z

2rl(N
2 −1)‖Δlu0‖rL2)

1
r

= (
∑
l≥l0

2−rlεMr
ε ) 1

r

= Mε2−l0ε( 1
1 − 2−rε

) 1
r . (2.32)

For all M ′ > 0, for all r < +∞ there exists ε > 0 small enough such that:

( 1
1 − 2−rε

) 1
r ≥ M ′. (2.33)

Let us prove now that when ε ≤ 1
10 there exists α > 0 such that Mε ≥ α > 0. Assume by the absurd that 

this is wrong. It implies that there exists a sequel (εn)n∈N which converges to 0 when n goes to infinity such 
that Mεn = ‖Δ0u1−εn‖L2 goes to 0 when n goes to infinity. By Plancherel theorem and the fact that we 
know the Fourier transform of | · |−1+ε (see [5], p. 23) it implies that:

‖FΔ0u1−εn‖L2 = cN,1−εn‖ϕ| · |1−εn−N‖L2 →n→+∞ 0.



B. Haspot / J. Math. Anal. Appl. 438 (2016) 395–443 411
Since we can bound by below ‖ϕ| · |1−εn−N‖L2 independently of n, it implies that cN,1−εn goes to 0 when 
n goes to infinity and this is absurd.

We finally obtain from (2.31), (2.33) and (2.32) that:

‖u0‖
B

N
2 −1

2,∞
≤ ε1,

‖u0‖
B

N
2 −1

2,∞
≥ M ′ε1α

M0
. (2.34)

It concludes the proof of the corollary by taking M ′ = MM0
αε1

. �
3. Proof of Theorems 1.1 and 1.2

In this part we are interested in proving the Theorems 1.1 and 1.2 concerning the existence of strong 
solutions in critical space for the scaling of the equations. We would like to point out that in the Theorem 1.1
the viscosity and the capillarity coefficients allow to exhibit a particular structure for the equations. This 
fact will be crucial in order to obtain estimates on the density without assuming any control on the vacuum 
or on the L∞ norm of the density. Indeed when μ(ρ) = μρ and κ(ρ) = κ

ρ with κ > 0, the system depends 
only on the unknown ln ρ “in a linear way” in the sense that we do need to use any composition lemma for 
the nonlinear terms.

Next in order to prove the second part of the Theorem 1.1, we will have to estimate the L∞ norm of 1
ρ

and ρ. To do this, we are going to consider solution (q, u) under the following form:

(q, u) = (qL, uL) + (q̄, ū),

with (qL, uL) the solution of the linearized part of the system (1.6). In order to bound q in L∞, we will 
combine maximum principle arguments on qL and regularizing effect on the third index of Besov space for 
q̄. More precisely we will prove that q̄ is in L̃∞

T (B
N
2

2,1) for any T > 0 which is embedded in L∞
T (L∞). Let us 

mention that in order to prove that qL is bounded in L∞ norm we shall prove an accurate characterization 
of the Besov space in term of the semi-group associated with the linearized part of the system (1.6) (see 
the Proposition 3.10). For more details on this part which is the main difficulty of the proof we refer to the 
subsection 3.4.1 and 3.4.2.

As a first step of the proof of Theorems 1.1 and 1.2, let us start by studying the linear part of the system 
(1.6) which corresponds to the following system (with F and G source terms):⎧⎪⎪⎨⎪⎪⎩

∂tq + divu = F,

∂tu− aΔu− b∇divu− c∇Δq = G,

(q, u)(0, ·) = (q0, u0).
(N)

3.1. Study of the linearized equation

We want to prove a priori estimates in Chemin–Lerner spaces for system (N) with the following hypothe-
ses on a, b, c which are constant:

0 < a < ∞, 0 < a + b < ∞ and 0 < c < ∞.

This system has been studied by R. Danchin and B. Desjardins (see [17]) in the framework of the Besov 
space Bs

2,1, the following proposition uses exactly the same type of arguments used in [17] excepted that we 



412 B. Haspot / J. Math. Anal. Appl. 438 (2016) 395–443
extend the result to general Besov spaces Bs
2,r with r ∈ [1, +∞]. By sake of completeness we are going to 

show the following proposition.

Proposition 3.6. Let 1 ≤ r ≤ +∞, s ∈ R, and we assume that (q0, u0) belongs to B
N
2 +s

2,r × (B
N
2 −1+s

2,r )N with 

the source terms (F, G) in L̃1
T (B

N
2 +s

2,r ) × (L̃1
T (B

N
2 −1+s

2,r ))N .
Let (q, u) ∈ (L̃1

T (B
N
2 +s+2

2,r ) ∩ L̃∞
T (B

N
2 +s

2,r )) ×
(
L̃1
T (B

N
2 +s+1

2,r ) ∩ L̃∞
T (B

N
2 +s−1

2,r )
)N be a solution of the system 

(N), then there exists a universal constant C such that for any T > 0:

‖(∇q, u)‖
L̃1

T (B
N
2 +1+s

2,r )∩L̃∞
T (B

N
2 −1+s

2,r )
≤ C(‖(∇q0, u0)‖

B
N
2 −1+s

2,2

+ ‖(∇F,G)‖
L̃1

T (B
N
2 −1+s

2,r )
).

Proof. As we mentioned previously, we are going to follow the arguments developed in [17]. Let us apply 
to the system (N) the operator Δl which gives:

∂tql + divul = Fl (3.35)

∂tul − div(a∇ul) −∇(b divul) − c∇Δql = Gl (3.36)

Performing integrations by parts and using (3.35) we have:

−c

∫
RN

ul · ∇Δqldx = c

∫
RN

divul Δqldx

= −c

∫
RN

∂tql Δqldx + c

∫
RN

Fl Δqldx

= c

∫
RN

∂t∇ql · ∇qldx− c

∫
RN

∇Fl · ∇qldx

= c

2
d

dt

∫
RN

|∇ql|2dx− c

∫
RN

∇ql.∇Fl dx.

Next, we take the inner product of (3.36) with ul and using the previous equality, it yields:

1
2
d

dt

(
‖ul‖2

L2 + c

∫
RN

|∇ql|2dx
)

+
∫
RN

(a|∇ul|2 + b|divul|2)dx =
∫
RN

Gl.ul dx + c

∫
RN

∇ql.∇Fl dx . (3.37)

In order to recover some terms in Δql we take the inner product of the gradient of (3.35) with ul, the inner 
product scalar of (3.36) with ∇ql and we sum, we obtain then:

d

dt

∫
RN

∇ql.uldx + c

∫
RN

(Δql)2dx =
∫
RN

(Gl.∇ql + |divul|2 + ul.∇Fl

− a∇ul : ∇2ql − bΔqldivul)dx. (3.38)

Let α > 0 small enough. We define kl by:

k2
l = ‖ul‖2

L2 + c‖∇ql‖2
L2 + 2α

∫
∇ql.uldx . (3.39)
RN
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By using (3.37), (3.38) and the Young inequalities, we get provided that α is chosen small enough:

1
2
d

dt
k2
l + 1

2

∫
RN

(a|∇ul|2 + b|divul|2 + 2αc|Δql|2)dx � ‖Gl‖L2(2α‖∇ql‖L2 + ‖ul‖L2)

+ ‖∇Fl‖L2(2α‖ul‖L2 + ‖∇ql‖L2). (3.40)

For α small enough we have according to (3.39):

1
2k

2
l ≤ ‖ul‖2 + c‖∇ql‖2

L2 ≤ 3
2k

2
l . (3.41)

Hence from (3.40) and (3.41) we deduce that there exists K > 0 small enough, C > 0 such that:

1
2
d

dt
k2
l + K22lk2

l ≤ C kl (‖Gl‖L2 + ‖∇Fl‖L2).

By integrating with respect to the time, we obtain:

kl(t) ≤ e−K22ltkl(0) + C

t∫
0

e−K22l(t−τ)(‖∇Fl(τ)‖L2 + ‖Gl(τ)‖L2)dτ .

Using convolution inequalities, it yields for 1 ≤ ρ1 ≤ ρ ≤ +∞:

‖kl‖Lρ([0,T ]) �
(
2−

2l
ρ kl(0) + 2−2l(1+ 1

ρ− 1
ρ1

)‖(∇Fl, Gl)‖Lρ1
T (L2)

)
. (3.42)

Moreover since we have:

C−1 kl ≤ ‖∇ql‖L2 + ‖ul‖L2 ≤ C kl,

multiplying by 2(N
2 −1+s+ 2

ρ )l, taking the lr norm and using (3.41), we end up with:

‖(∇q, u)‖
Lρ

T (B
N
2 −1+s+ 2

ρ
2,r )

≤ ‖(∇F,G)‖
L̃

ρ1
T (B

N
2 −3+s+ 2

ρ1
2,r )

+ ‖(∇q0, u0)‖
B

N
2 −1+s

2,r

.

It conclude the proof of the proposition. �
Let us extend the result of the Proposition 3.6 to the case where we include the pressure term inside of 

the linearized system. This is necessary when we are interested in dealing with the existence of global strong 
solution with small initial data. Indeed in this case it is very important to take into account the behavior 
of low frequencies. More precisely we will consider the following linear system:⎧⎪⎪⎨⎪⎪⎩

∂tq + divu = F,

∂tu− aΔu− b∇divu− c∇Δq + d∇q = G,

(q, u)(0, ·) = (q0, u0).
(N1)

We now want to prove a priori estimates in Chemin–Lerner spaces for system (N1) with the following 
hypotheses on a, b, c, d which are constant:

0 < a < ∞, 0 < a + b < ∞, 0 < c < ∞ and 0 < d < ∞.
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This system has also been studied by Danchin and Desjardins in [17] in the framework of Besov spaces of the 
type Bs

2,1 with s ∈ R, let us generalize this study to the case of general Besov spaces Bs
2,r with r ∈ [1, +∞]

by using similar arguments.

Proposition 3.7. Let 1 ≤ r ≤ +∞, s ∈ R, and we assume that (q0, u0) belongs to B̃
N
2 −1+s,N2 +s

2,r ×(B
N
2 −1+s

2,r )N . 
Furthermore we suppose that the source terms (F, G) are in L̃1

T (B̃
N
2 −1+s,N2 +s

2,r ) × (L̃1
T (B

N
2 −1+s

2,r ))N .
Let (q, u) ∈ (L̃1

T (B̃
N
2 +s+1,N2 +s+2

2,r ) ∩ L̃∞
T (B̃

N
2 −1+s,N2 +s

2,r )) ×
(
L̃1
T (B

N
2 +s+1

2,r ) ∩ L̃∞
T (B

N
2 +s−1

2,r )
)N be a solution 

of the system (N1), then there exists a universal constant C such that for any T > 0:

‖q‖
L̃1

T (B̃
N
2 +1+s,N2 +2+s

2,r )
+ ‖q‖

L̃∞
T (B

N
2 −1+s,N2 +s

2,r )
+ ‖u‖

L̃1
T (B

N
2 +1+s

2,r )
+ ‖u‖

L̃∞
T (B

N
2 −1+s

2,r )

≤ C
(
‖q0‖

B̃
N
2 −1+s,N2 +s

2,r

+ ‖u0‖
B

N
2 +s

2,r

+ ‖F‖
L̃1

T (B̃
N
2 −1+s,N2 +s

2,r )
+ ‖G‖

L̃1
T (B

N
2 −1+s

2,r )

)
.

Proof. It suffices to follow exactly the same lines as the proof of Proposition 3.6 except that we have to 
consider the following kl:

k2
l = ‖ul‖2

L2 + c‖∇ql‖2
L2 + d‖ql‖2

L2 + 2α
∫
RN

∇ql · uldx.

Now choosing α suitably small, it turns out that:

1
2k

2
l ≤ ‖ul‖2

L2 + c‖∇ql‖2
L2 + d‖ql‖2

L2 ≤ 3
2k

2
l . (3.43)

By combining energy estimates in frequencies space, we show as in [17] that there exist c, C > 0 such that:

1
2
d

dt
k2
l + c22lk2

l ≤ Ckl(‖Gl‖L2 + ‖(∇Fl, Fl)‖L2).

As in the proof of Proposition 3.6 routine computations yield Proposition 3.7. �
We are now interested in studying the following system with μ > 0 and κ > 0:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂th2 + divu2 − μ∇ ln ρ1 · ∇h2 + u2 · ∇ ln ρ1 = F,

∂tu2 − μΔu2 − μ∇divu2 − κ∇Δh2 + K∇h2 − 2μ∇ ln ρ1 ·Du2 − 2μ∇h2 ·Du1

+ u1 · ∇u2 + u2 · ∇u1 − μ2∇(∇ ln ρ1 · ∇h2) = G,

(h2(0, ·), u2(0, ·)) = (h2
0, u

2
0).

(3.44)

Here (h2, u2) are the unknowns, ρ1 and u1 corresponds to some functions defined in suitable Chemin Lerner 
Besov space L̃ρ(Bs

p,r) that we will precise below in the Proposition 3.8. F , G are source term (we will also 
precise their regularity). In order to prove the Theorem 1.3 we will need precise estimates on the solution 
(h2, u2) of (3.44) in terms of Chemin Lerner Besov spaces; to do this we are going to prove the following 
proposition.

Proposition 3.8. Let (h2
0, u

2
0) ∈ B̃

N
2 −1,N2

2,1 × B
N
2 −1

2,1 and we assume that ln ρ1 belongs to L̃∞(R+, B̃
N
2 −1,N2

2,1 ) ∩
L̃1(R+, B̃

N
2 +1,N2 +2

2,1 ) and u1 is in L̃∞(R+, B
N
2 −1

2,1 ) ∩ L̃1(R+, B
N
2 +1

2,1 ).
Furthermore (F, G) are in L̃1(R+, B̃

N
2 −1,N2

2,1 ) × L̃1(R+, B
N
2 −1

2,1 ).
Let (h2, u2) be the solution of the linear system (3.44), then there exists C > 0 such that (h2, u2) verify 

for any T > 0:
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‖h2‖
L̃1

T (B̃
N
2 +1, N2 +2

2,1 )
+ ‖h2‖

L̃∞
T (B

N
2 −1, N2

2,1 )
+ ‖u2‖

L̃1
T (B

N
2 +1

2,1 )
+ ‖u2‖

L̃∞
T (B

N
2 −1

2,1 )

≤ C
(
‖h2

0‖
B̃

N
2 −1, N2

2,1

+ ‖u2
0‖

B
N
2

2,1

+ ‖F‖
L̃1

T (B̃
N
2 −1, N2

2,1 )
+ ‖G‖

L̃1
T (B

N
2 −1

2,1 )

)
× exp

(
C

T∫
0

(
‖u1‖4

B
N
2 − 1

2
2,∞

+ ‖u1‖
4
3

B
N
2 + 1

2
2,∞

+ ‖∇ ln ρ1‖4

B
N
2 − 1

2
2,∞

+ ‖∇ ln ρ1‖
4
3

B
N
2 + 1

2
2,∞

)
(s)ds

)
. (3.45)

Remark 19. We would like to emphasize on the fact that in the Proposition 3.8 the main estimates (3.45) in-
volves a control of ∇ ln ρ1 in L

4
3 (R+, B

N
2 + 1

2
2,∞ ) ∩L4(R+, B

N
2 − 1

2
2,∞ ) and of u1 in L

4
3 (R+, B

N
2 + 1

2
2,∞ ) ∩L4(R+, B

N
2 − 1

2
2,∞ ); 

but by Minkowski inequality (see (2.25)) we know that:

‖∇ ln ρ1‖
L

4
3 (R+,B

N
2 + 1

2
2,∞ )∩L4(R+,B

N
2 − 1

2
2,∞ )

≤ ‖∇ ln ρ1‖
L̃

4
3 (R+,B

N
2 + 1

2
2, 43

)∩L̃4(R+,B
N
2 − 1

2
2, 43

)
. (3.46)

Since ln ρ1 belongs to L̃∞(R+, B̃
N
2 −1,N2

2,1 ) ∩ L̃1(R+, B̃
N
2 +1,N2 +2

2,1 ), it implies by interpolation that ∇ ln ρ1 is in 

L̃
4
3 (R+, B

N
2 + 1

2
2, 43

) ∩ L̃4(R+, B
N
2 − 1

2
2, 43

). In particular it proves that with such assumptions we control the right 
hand side of the inequality (3.45).

Let us mention that since in the Theorem 1.3 we will have u1 = −μ∇ ln ρ1 with ρ1 verifying a heat 
equation, we may improve the condition on the initial data ρ0

1 = h0
1 + 1 of Theorem 1.3 by assuming only 

h1
0 ∈ B

N
2 −2

2,1 ∩ B
N
2

2, 43
∩ L∞ and ρ1

0 ≥ c > 0. Indeed with such condition ∇ ln ρ1 would verify exactly the 

quantity on the right hand side of (3.45). In fact a more accurate proof of the Proposition 3.8 by using 

critical interpolation estimate would show that h1
0 ∈ B

N
2 −2

2,1 ∩ B
N
2

2,2−ε ∩ L∞ (with ε > 0) and ρ1
0 ≥ c > 0 is 

sufficient for the Theorem 1.3.

Proof. We observe that (h2, u2) are solution of the following system:

⎧⎪⎪⎨⎪⎪⎩
∂th2 + divu2 = F (h2, u2),
∂tu2 − μΔu2 − μ∇divu2 − κ∇Δh2 + K∇h2 = G(h2, u2),
(h2(0, ·), u2(0, ·)) = (h2

0, u
2
0),

(3.47)

with:

F (h2, u2) = F + μ∇ ln ρ1 · ∇h2 − u2 · ∇ ln ρ1,

G(h2, u2) = G + 2μ∇ ln ρ1 ·Du2 + 2μ∇h2 ·Du1 − u1 · ∇u2 − u2 · ∇u1 + μ2∇(∇ ln ρ1 · ∇h2).

By applying the Proposition 3.7, we have for any T > 0:

‖h2‖
L̃1

T (B̃
N
2 +1, N2 +2

2,1 )
+ ‖h2‖

L̃∞
T (B

N
2 −1, N2

2,1 )
+ ‖u2‖

L̃1
T (B

N
2 +1

2,1 )
+ ‖u2‖

L̃∞
T (B

N
2 −1

2,1 )

≤ C
(
‖h2

0‖
B̃

N
2 −1, N2

2,1

+ ‖u2
0‖

B
N
2

2,1

+ ‖F (h2, u2)‖
L̃1

T (B̃
N
2 −1, N2

2,1 )
+ ‖G(h2, u2)‖

L̃1
T (B

N
2 −1

2,1 )

)
. (3.48)

We have only to deal with the right hand side of (3.48), we have in particular:

‖∇ ln ρ1 · ∇h2‖
L̃1

T (B̃
N
2 −1, N2

2,1 )
=

T∫
‖∇ ln ρ1 · ∇h2‖

B̃
N
2 −1, N2

2,1

(s)ds

0



416 B. Haspot / J. Math. Anal. Appl. 438 (2016) 395–443
�
T∫

0

(
‖∇h2‖

B̃
N
2 − 1

2 , N2 + 1
2

2,1

‖∇ ln ρ1‖
B

N
2 − 1

2
2,∞

+ ‖∇h2‖
B̃

N
2 − 3

2 , N2 − 1
2

2,1

‖∇ ln ρ1‖
B

N
2 + 1

2
2,∞

)
(s)ds. (3.49)

By interpolation (see the Proposition 2.1) we get:

‖∇h2‖
B̃

N
2 − 3

2 , N2 − 1
2

2,1

� ‖∇h2‖
3
4

B̃
N
2 −2, N2 −1

2,1

‖∇h2‖
1
4

B̃
N
2 , N2 +1

2,1

,

‖∇h2‖
B̃

N
2 − 1

2 , N2 + 1
2

2,1

≤ ‖∇h2‖
1
4

B̃
N
2 −2, N2 −1

2,1

‖∇h2‖
3
4

B̃
N
2 , N2 +1

2,1

. (3.50)

By combining (3.50), (3.49) and Young inequality we have for any ε > 0:

‖∇ ln ρ1 · ∇h2‖
L̃1

T (B̃
N
2 −1, N2

2,1 )
�

T∫
0

(
‖∇h2‖

1
4

B̃
N
2 −2, N2 −1

2,1

‖∇h2‖
3
4

B̃
N
2 , N2 +1

2,1

‖∇ ln ρ1‖
B

N
2 − 1

2
2,∞

+ ‖∇h2‖
3
4

B̃
N
2 −2, N2 −1

2,1

‖∇h2‖
1
4

B̃
N
2 , N2 +1

2,1

‖∇ ln ρ1‖
B

N
2 + 1

2
2,∞

)
(s)ds

�
T∫

0

(
2ε‖∇h2‖

B̃
N
2 , N2 +1

2,1

+ Cε‖∇ ln ρ1‖4

B
N
2 − 1

2
2,∞

‖∇h2‖
B̃

N
2 −2, N2 −1

2,1

+ Cε‖∇h2‖
B̃

N
2 −2, N2 −1

2,∞
‖∇ ln ρ1‖

4
3

B
N
2 + 1

2
2,∞

)
(s)ds. (3.51)

In a similar way by interpolation we obtain:

‖u2 · ∇ ln ρ1‖
L̃1

T (B̃
N
2 −1, N2

2,1 )
=

∫
R+

‖u2 · ∇ ln ρ1‖
B̃

N
2 −1, N2

2,1

(s)ds

�
T∫

0

(
‖∇ ln ρ1‖

B̃
N
2 − 1

2 , N2 + 1
2

2,∞
‖u2‖

B
N
2 − 1

2
2,1

+ ‖∇ ln ρ1‖
B̃

N
2 − 3

2 , N2 − 1
2

2,∞
‖u2‖

B
N
2 + 1

2
2,1

)
(s)ds

�
T∫

0

(
‖∇ ln ρ1‖

B̃
N
2 − 1

2 , N2 + 1
2

2,∞
‖u2‖

3
4

B
N
2 −1

2,1

‖u2‖
1
4

B
N
2 +1

2,1

+ ‖∇ ln ρ1‖
B̃

N
2 − 3

2 , N2 − 1
2

2,∞
‖u2‖

1
4

B
N
2 −1

2,1

‖u2‖
3
4

B
N
2 +1

2,1

)
(s)ds. (3.52)

Applying Young inequality it yields:

‖u2 · ∇ ln ρ1‖
L̃1

T (B̃
N
2 −1, N2

2,1 )
�

T∫
0

(
2ε‖u2‖

B
N
2 +1

2,1

+ Cε‖∇ ln ρ1‖4

B̃
N
2 − 3

2 , N2 − 1
2

2,∞

‖u2‖
B

N
2 −1

2,1

+ Cε‖u2‖
B

N
2 −1

2,∞
‖∇ ln ρ1‖

4
3

B̃
N
2 − 1

2 , N2 + 1
2

2,∞

)
(s)ds. (3.53)

Let us proceed in a similar way for ‖G(h2, u2)‖
L̃1

T (B
N
2 −1

2,1 )
, we are going only to treat two terms (the other 

one will be left to the reader). As previously, we get:
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‖∇ ln ρ1 ·Du2‖
L̃1

T (B
N
2 −1

2,1 )
=

T∫
0

‖∇ ln ρ1 ·Du2‖
B

N
2 −1

2,1

(s)ds

�
T∫

0

(
‖∇ ln ρ1‖

B
N
2 − 1

2
2,∞

‖Du2‖
B

N
2 − 1

2
2,1

+ ‖∇ ln ρ1‖
B

N
2 + 1

2
2,∞

‖Du2‖
B

N
2 − 3

2
2,1

)
(s)ds

�
T∫

0

(
2ε‖u2‖

B
N
2 +1

2,1

+ Cε‖∇ ln ρ1‖4

B̃
N
2 − 3

2 , N2 − 1
2

2,∞

‖u2‖
B

N
2 −1

2,1

+ Cε‖u2‖
B

N
2 −1

2,∞
‖∇ ln ρ1‖

4
3

B̃
N
2 − 1

2 , N2 + 1
2

2,∞

)
(s)ds, (3.54)

and:

‖u1 · ∇u2‖
L̃1

T (B
N
2 −1

2,1 )
=

T∫
0

‖u1 · ∇u2‖
B

N
2 −1

2,1

(s)ds

�
T∫

0

(
2ε‖u2‖

B
N
2 +1

2,1

+ Cε‖u1‖4

B
N
2 − 1

2
2,∞

‖u2‖
B

N
2 −1

2,1

+ Cε‖u2‖
B

N
2 −1

2,1

‖u1‖
4
3

B
N
2 + 1

2
2,∞

)
(s)ds. (3.55)

Finally combining (3.48), (3.51), (3.53), (3.54) and (3.55) we have for C > 0 and ε > 0 small enough such 
that Cε ≤ 1

2 :

‖h2‖
L̃1

T (B̃
N
2 +1, N2 +2

2,1 )
+ ‖h2‖

L̃∞
T (B

N
2 −1, N2

2,1 )
+ ‖u2‖

L̃1
T (B

N
2 +1

2,1 )
+ ‖u2‖

L̃∞
T (B

N
2 −1

2,1 )

≤ C

(
‖h2

0‖
B̃

N
2 −1, N2

2,1

+ ‖u2
0‖

B
N
2

2,1

+ ‖F‖
L̃1

T (B̃
N
2 −1, N2

2,1 )
+ ‖G‖

L̃1
T (B

N
2 −1

2,1 )

+
T∫

0

(
ε
(
‖u2‖

B
N
2 +1

2,1

+ ‖h2‖
L̃1

T (B̃
N
2 +1, N2 +2

2,1 )

)
+ Cε

(
‖u2‖

B
N
2 −1

2,1

+ ‖h2‖
B̃

N
2 −1, N2

2,1

)
×
(
‖u1‖4

B
N
2 − 1

2
2,∞

+ ‖u1‖
4
3

B
N
2 + 1

2
2,∞

+ ‖∇ ln ρ1‖
4
3

B
N
2 + 1

2
2,∞

+ ‖∇ ln ρ1‖4

B
N
2 − 1

2
2,∞

))
(s)ds

)
. (3.56)

By a bootstrap argument and the Gronwall lemma where we use the fact that:

‖u2(s)‖
B

N
2 −1

2,1

+ ‖h2(s)‖
B̃

N
2 −1, N2

2,1

� ‖u2‖
L̃∞

s (B
N
2 −1

2,1 )
+ ‖h2‖

L̃∞
s (B̃

N
2 −1, N2

2,1 )

we get for C > 0 large enough:

‖h2‖
L̃1

T (B̃
N
2 +1, N2 +2

2,1 )
+ ‖h2‖

L̃∞
T (B

N
2 −1, N2

2,1 )
+ ‖u2‖

L̃1
T (B

N
2 +1

2,1 )
+ ‖u2‖

L̃∞
T (B

N
2 −1

2,1 )

≤ C
(
‖h2

0‖
B̃

N
2 −1, N2

2,1

+ ‖u2
0‖

B
N
2

2,1

+ ‖F‖
L̃1

T (B̃
N
2 −1, N2

2,1 )
+ ‖G‖

L̃1
T (B

N
2 −1

2,1 )

)
× exp

(
C

T∫
0

(
‖u1‖4

B
N
2 − 1

2
2,∞

+ ‖u1‖
4
3

B
N
2 + 1

2
2,∞

+ ‖∇ ln ρ1‖
4
3

B
N
2 + 1

2
2,∞

+ ‖∇ ln ρ1‖4

B
N
2 − 1

2
2,∞

)
(s)ds

)
. (3.57)

It concludes the proof of the Proposition 3.8. �



418 B. Haspot / J. Math. Anal. Appl. 438 (2016) 395–443
3.2. Existence of local solutions for system (1.6)

We now are going to prove the existence of strong solutions in finite time with large initial data verifying 
the hypothesis of Theorem 1.1 for the system (1.6). More precisely we assume that (q0, u0) belong to 

B
N
2

2,∞ ×B
N
2 −1

2,∞ .

Existence of solutions
The existence part of the theorem is proved by an iterative method. We define a sequence (qn, un) as 

follows:

qn = qL + q̄n, un = uL + ūn,

where (qL, uL) stands for the solution of:{
∂tqL + divuL = 0,
∂tuL −AuL − κ∇(ΔqL) = 0,

(3.58)

supplemented with initial data:

qL(0) = q0 , uL(0) = u0.

Here A define the Lamé operator Au = μΔu + (λ + μ)∇divu. Using the Proposition 3.6, we obtain the 
following estimates on (qL, uL) for all T > 0:

qL ∈ C̃([0, T ], B
N
2

2,∞) ∩ L̃1
T (B

N
2 +2

2,∞ ) and uL ∈ C̃([0, T ], B
N
2 −1

2,∞ ) ∩ L̃1
T (B

N
2 +1

2,∞ ).

Setting (q̄0, ̄u0) = (0, 0) we now define (q̄n, ̄un) as the solution of the following system:⎧⎪⎪⎨⎪⎪⎩
∂tq̄

n + div(ūn) = Fn−1,

∂tūn −Aūn − κ∇(Δq̄n) = Gn−1,

(q̄n, ūn)t=0 = (0, 0),
(N1)

where:

Fn−1 = − un−1 · ∇qn−1,

Gn−1 = − (un−1)∗.∇un−1 + 2μ∇qn−1 ·Dun−1 + λ∇qn−1 divun−1 + κ

2∇(|∇qn−1|2) −K∇qn−1.

1) First step, uniform bound
Let ε be a small parameter and choose T small enough such that according to the Proposition 3.6 we 

have (this is possible since q0 and u0 are respectively in X
N
2

0 and in X
N
2 −1

0 ):

‖uL‖
L̃1

T (B
N
2 +1

2,∞ )
+ ‖qL‖

L̃1
T (B

N
2 +2

2,∞ )
≤ ε,

‖uL‖
L̃∞

T (B
N
2 −1

2,∞ )
+ ‖qL‖

L̃∞
T (B

N
2

2,∞)
≤ CA0, (Hε)

with A0 = ‖q0‖
B

N
2

2,∞
+ ‖u0‖

B
N
2 −1

2,∞
. We are going to show by induction that:

‖(q̄n, ūn)‖FT
≤

√
ε, (Pn)
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for ε small enough with:

FT =
(
C̃([0, T ], B

N
2

2,∞) ∩ L̃1
T (B

N
2 +2

2,∞ )
)
×

(
C̃([0, T ], B

N
2 −1

2,∞ ) ∩ L̃1
T (B

N
2 +1

2,∞ )
)N

.

As (q̄0, ̄u0) = (0, 0) the result is true for n = 0. We now suppose (Pn−1) (with n ≥ 1) true and we are going 
to show (Pn). Applying Proposition 3.6 we have:

‖(q̄n, ūn)‖FT
≤ C‖(∇Fn−1, Gn−1)‖

L̃1
T (B

N
2 −1

2,∞ )
. (3.59)

Bounding the right-hand side of (3.59) may be done by applying Proposition 2.2, Lemma 2.3 and Corollary 2. 
We first treat the case of ‖Fn−1‖L̃1

T (BN/2
2,∞), let us recall that:

Fn−1 = −uL · ∇qL − ūn−1 · ∇qL − uL · ∇q̄n−1 − ūn−1 · ∇q̄n−1. (3.60)

We are going to bound each term of (3.60) we have then:

‖uL · ∇qL‖L̃1
T (BN/2

2,∞) ≤ ‖uL‖L̃1
T (BN/2+1

2,∞ )‖qL‖L̃∞
T (BN/2

2,∞) + ‖qL‖L̃1
T (BN/2+2

2,∞ )‖uL‖L̃∞
T (BN/2−1

2,∞ ). (3.61)

Similarly we obtain:

‖uL · ∇q̄n−1‖
L̃1

T (BN/2
2,∞) ≤‖uL‖L̃1

T (BN/2+1
2,∞ )‖q̄

n−1‖
L̃∞

T (BN/2
2,∞)

+ ‖∇q̄n−1‖
L̃

4
3
T (B

N
2 + 1

2
2,∞ )

‖uL‖
L̃4

T (B
N
2 − 1

2
2,∞ )

, (3.62)

‖ūn−1 · ∇qL‖L̃1
T (BN/2

2,∞) ≤‖ūn−1‖
L̃

4
3
T (B

N
2 + 1

2
2,∞ )

‖∇qL‖
L̃4

T (B
N
2 − 1

2
2,∞ )

+ ‖qL‖L̃1
T (BN/2+2

2,∞ )‖ū
n−1‖

L̃∞
T (BN/2−1

2,∞ ), (3.63)

and:

‖ūn−1 · ∇q̄n−1‖
L̃1

T (BN/2
2,∞) ≤‖ūn−1‖

L̃1
T (BN/2+1

2,∞ )‖q̄
n−1‖

L̃∞
T (BN/2

2,∞)

+ ‖q̄n−1‖
L̃1

T (BN/2+2
2,∞ )‖ū

n−1‖
L̃∞

T (BN/2−1
2,∞ ). (3.64)

By using the previous inequalities (3.61), (3.62), (3.63), (3.64), (Pn−1) and by interpolation, we get that for 
C > 0 large enough:

‖Fn‖L̃1
T (BN/2

2,∞) ≤ C
√
ε(A

3
4
0 ε

1
4 +

√
ε(1 + A0) + ε). (3.65)

Next we want to control ‖Gn‖
L̃1(B

N
2 −1

2,∞ )
. According to Propositions 2.2, 3.6, and Corollary 2, it yields:

‖(un−1)∗.∇un−1‖
L̃1

T (B
N
2 −1

2,∞ )
� ‖un−1‖

L̃
4
3
T (B

N
2 + 1

2
2,∞ )

‖un−1‖
L̃4

T (B
N
2 − 1

2
2,∞ )

,

‖∇(|∇qn−1|2)‖
L̃1

T (B
N
2 −1

2,∞ )
� ‖|∇qn−1|2‖

L̃1
T (B

N
2

2,∞)

� ‖∇qn−1‖
L̃

4
3
T (B

N
2 + 1

2
2,∞ )

‖∇qn−1‖
L̃4

T (B
N
2 − 1

2
2,∞ )

� ‖qn−1‖˜ 4
3

N
2 + 3

2
‖qn−1‖˜4

N
2 + 1

2
,

LT (B2,∞ ) LT (B2,∞ )
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‖∇qn−1 ·Dun−1‖
L̃1

T (B
N
2 −1

2,∞ )
� ‖∇qn−1‖

L̃
4
3
T (B

N
2 + 1

2
2,∞ )

‖un−1‖
L̃4

T (B
N
2 − 1

2
2,∞ )

+ ‖un−1‖
L̃

4
3
T (B

N
2 + 1

2
2,∞ )

‖∇qn−1‖
L̃4

T (B
N
2 − 1

2
2,∞ )

,

‖∇qn−1divun−1‖
L̃1

T (B
N
2 −1

2,∞ )
� ‖∇qn−1‖

L̃
4
3
T (B

N
2 + 1

2
2,∞ )

‖un−1‖
L̃4

T (B
N
2 − 1

2
2,∞ )

+ ‖un−1‖
L̃

4
3
T (B

N
2 + 1

2
2,∞ )

‖∇qn−1‖
L̃4

T (B
N
2 − 1

2
2,∞ )

,

‖∇qn−1‖
L̃1

T (B
N
2 −1

2,∞ )
≤ T‖qn−1‖

L̃∞
T (B

N
2

2,∞)
. (3.66)

Let us recall that we have by interpolation and the condition (Pn−1):

‖un−1‖
L̃4

T (B
N
2 − 1

2
2,∞ )

≤ ‖un−1‖
3
4

L̃∞
T (B

N
2 −1

2,∞ )
‖un−1‖

1
4

L̃1
T (B

N
2 +1

2,∞ )
≤ A

3
4
0 ε

1
4 +

√
ε,

‖un−1‖
L̃

4
3
T (B

N
2 + 1

2
2,∞ )

≤ ‖un−1‖
1
4

L̃∞
T (B

N
2 −1

2,∞ )
‖un−1‖

3
4

L̃1
T (B

N
2 +1

2,∞ )
≤ A

1
4
0 ε

3
4 +

√
ε. (3.67)

Using (3.59), (3.65), (3.66) and (3.67) we have for C > 0 large enough:

‖(q̄n, ūn)‖FT
≤ C

√
ε(A

3
4
0 ε

1
4 +

√
ε(1 + A0) + ε) + C(A

3
4
0 ε

1
4 +

√
ε)(A

1
4
0 ε

3
4 +

√
ε) + T (A0 +

√
ε)

≤ C
√
ε(A

3
4
0 ε

1
4 + 2

√
ε(1 + A0) + A

3
4
0 ε

1
4 + A

1
4
0 ε

3
4 + ε) + T (A0 +

√
ε).

By choosing T and ε small enough the property (Pn) is verified, so we have shown by induction that (qn, un)
is bounded in FT .

Second step, convergence of the sequence
We will show that (qn, un) is a Cauchy sequence in the Banach space FT , hence converges to some 

(q, u) ∈ FT . Let:

δqn = qn+1 − qn, δun = un+1 − un.

The system verified by (δqn, δun) reads:

⎧⎪⎪⎨⎪⎪⎩
∂tδq

n + divδun = Fn − Fn−1,

∂tδu
n − μΔδun − (λ + μ)∇divδun − κ∇Δδqn = Gn −Gn−1,

δqn(0) = 0 , δun(0) = 0.

Applying Propositions 3.6 gives:

‖(δqn, δun)‖FT
≤ C(‖Fn − Fn−1‖L̃1

T (BN/2
2,∞) + ‖Gn −Gn−1‖L̃1

T (BN/2−1
2,∞ )). (3.68)

Tedious calculus ensure that:

Fn − Fn−1 = −δun−1 · ∇qn − un−1 · ∇δqn−1,

Gn −Gn−1 = −un · ∇δun−1 − δun−1 · ∇un−1 + μ∇qn ·Dδun−1 + μ∇δqn−1 ·Dun−1

+ λ∇qndivδun−1 + λ∇δqn−1divun−1 −K∇δqn−1 + ∇
(
∇qn · ∇δqn−1 + ∇δqn−1 · ∇qn−1).
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It remains only to estimate the terms on the right hand side of (3.68) by using the same type of estimates 
than in the previous section and the property (Pn). More precisely according to the Proposition 2.2 and 
(Pn), there exists C > 0 such that:

‖Fn − Fn−1‖L̃1
T (BN/2

2,∞) ≤ ‖δun−1‖
L̃

4
3
T (B

N
2 + 1

2
2,∞ )

‖∇qn‖
L̃4

T (B
N
2 − 1

2
2,∞ )

+ ‖δun−1‖
L̃∞

T (B
N
2 −1

2,∞ )
‖∇qn‖

L̃1
T (B

N
2 +1

2,∞ )
+ ‖un−1‖

L̃1
T (B

N
2 +1

2,∞ )
‖∇δqn−1‖

L̃∞
T (B

N
2 −1

2,∞ )

+ ‖∇δqn−1‖
L̃

4
3
T (B

N
2 + 1

2
2,∞ )

‖un−1‖
L̃4

T (B
N
2 − 1

2
2,∞ )

≤ C(A
3
4
0 ε

1
4 + A

1
4
0 ε

3
4 +

√
ε + ε)‖(δqn−1, δun−1)‖FT

. (3.69)

In a similar way we show that there exists C > 0 large enough such that:

‖Gn −Gn−1‖L̃1
T (BN/2−1

2,∞ ) ≤ C(A
3
4
0 ε

1
4 + A

1
4
0 ε

3
4 +

√
ε + ε + T )‖(δqn−1, δun−1)‖FT

. (3.70)

By combining (3.68), (3.69) and (3.70), we get for C > 0 large enough:

‖(δqn, δun)‖FT
≤ C(A

3
4
0 ε

1
4 + A

1
4
0 ε

3
4 +

√
ε + ε + T )‖(δqn−1, δun−1)‖FT

.

It implies that choosing ε and T small enough (qn, un) is a Cauchy sequence in FT which is a Banach. It 
provides that (qn, un) converges to (q, u) in FT . The verification that the limit (q, u) is solution of (1.6) in 
the sense of distributions is a straightforward application of Proposition 2.2.

Third step, uniqueness
Now, we are going to prove the uniqueness of the solution in FT . Suppose that (q1, u1) and (q2, u2) are 

solutions with the same initial conditions; furthermore they belong to FT and (q1, u1) corresponds to the 
previous solution. We set:

δq = q2 − q1 and δu = u2 − u1.

We deduce that (δq, δu) satisfy the following system:

⎧⎪⎪⎨⎪⎪⎩
∂tδq + divδu = F2 − F1,

∂tδu− μΔδu− (λ + μ)∇divδu− κ∇Δδq = G1 −G2,

δq(0) = 0 , δu(0) = 0.

We now apply Proposition 3.6 to the previous system, and by using the same type of estimates than in the 
previous part, we show that:

‖(δq, δu)‖
F̃

N
2

T1

� (‖q1‖
L̃2T1(B

N
2 +1

2,∞ )
+ ‖q2‖

L̃T12(B
N
2 +1

2,∞ )
+ ‖u1‖

L̃2T1(B
N
2 +1

2,∞ )
+ ‖u2‖

L̃T12(B
N
2

2,∞)
)‖(δq, δu)‖

F̃
N
2

T1

.

We have then for T1 small enough: (δq, δu) = (0, 0) on [0, T1] and by connexity we finally conclude that:

q1 = q2, u1 = u2 on [0, T ]. �
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3.3. Global strong solution near equilibrium for system (1.6)

We are now interested in proving the existence of global strong solution with small initial data for the 
system (1.6). The main difference with the previous proof consists essentially in taking into account the 
behavior of the density in low frequencies, to do this we will use the Proposition 3.6. More precisely we are 
going to use a contracting mapping argument for the function ψ defined as follows:

ψ(q, u) = W (t, ·) ∗
(

q0
u0

)
+

t∫
0

W (t− s)
(
F (q, u)
G(q, u)

)
ds, (3.71)

where W is the semi-group associated with the linear system (N1) with a = μ, b = λ +μ, c = κ and d = K. 
The nonlinear terms F, G are defined as follows:

F (q, u) = − u · ∇q,

G(q, u) = − u.∇u + 2μ∇q ·Du + λdivu ∇q + κ

2∇(|∇q|2). (3.72)

We are going to check that we can apply a fixed point theorem for the function ψ in E
N
2 defined below, the 

proof is divided in two step the stability of ψ for a ball B(0, R) in E
N
2 and the contraction property. We 

define E
N
2 by:

E
N
2 =

(
L̃∞(B̃

N
2 −1,N2

2,∞ ) ∩ L̃1(B̃
N
2 +1,N2 +2

2,∞ )
)
×

(
L̃∞(B

N
2 −1

2,∞ ) ∩ L̃1(B
N
2 +1

2,∞ )
)N

.

1) First step, stability of B(0, R)
Let:

η = ‖q0‖
B̃

N
2 −1, N2

2,∞
+ ‖u0‖

B
N
2 −1

2,∞
.

We are going to show that ψ maps the ball B(0, R) into itself if R is small enough. According to Proposi-
tion 3.7, we have:

‖W (t, ·) ∗
(

q0
u0

)
‖
E

N
2
≤ Cη . (3.73)

According to the Proposition 3.7 it implies also that:

‖ψ(q, u)‖
E

N
2
≤ C

(
η + ‖F (q, u)‖

L̃1(B̃
N
2 −1, N2

2,∞ )
+ ‖G(q, u)‖

L̃1(B
N
2 −1

2,∞ )

)
. (3.74)

The main task consists in using the Proposition 2.2 and Corollary 2 to obtain estimates on:

‖F (q, u)‖
L̃1(B̃

N
2 −1, N2

2,∞ )
, ‖G(q, u)‖

L̃1(B
N
2 −1

2,∞ )
.

Let us first estimate ‖F (q, u)‖
L̃1(B̃

N
2 −1, N2

2,∞ )
. According to Proposition 2.2, we have:

‖u · ∇q‖
L̃1(B̃

N
2 −1, N2

2,∞ )
� ‖∇q‖

L̃
4
3 (B̃

N
2 − 1

2 , N2 + 1
2

2,∞ )
‖u‖

L̃4(B
N
2 − 1

2
2,∞ )

+ ‖∇q‖˜4 ˜ N
2 − 3

2 , N2 − 1
2
‖u‖˜ 4 N

2 + 1
2
. (3.75)
L (B2,∞ ) L 3 (B2,∞ )
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Let us now estimate ‖G(q, u)‖
L̃1(B

N
2 −1

2,∞ )
. Hence by Proposition 2.2 it yields:

‖u · ∇u‖
L̃1(B

N
2 −1

2,∞ )
�‖u‖

L̃
4
3 (B

N
2 + 1

2
2,∞ )

‖u‖
L̃4

T (B
N
2 − 1

2
2,∞ )

. (3.76)

In the same way, from the Proposition 2.2 and the fact that B̃
N
2 − 1

2 ,
N
2 + 1

2
2,∞ ↪→ B

N
2 + 1

2
2,∞ , B̃

N
2 − 3

2 ,
N
2 − 1

2
2,∞ ↪→ B

N
2 − 1

2
2,∞

(see the Remark 17) we deduce that:

‖∇q ·Du‖
L̃1(B

N
2 −1

2,∞ )
� ‖∇q‖

L̃
4
3 (B̃

N
2 − 1

2 , N2 + 1
2

2,∞ )
‖Du‖

L̃4(B
N
2 − 3

2
2,∞ )

+ ‖∇q‖
L̃4(B̃

N
2 − 3

2 , N2 − 1
2

2,∞ )
‖Du‖

L̃
4
3 (B

N
2 − 1

2
2,∞ )

.

‖∇q divu‖
L̃1(B

N
2 −1

2,∞ )
� ‖∇q‖

L̃
4
3 (B̃

N
2 − 1

2 , N2 + 1
2

2,∞ )
‖divu‖

L̃4(B
N
2 − 3

2
2,∞ )

+ ‖∇q‖
L̃4(B̃

N
2 − 3

2 , N2 − 1
2

2,∞ )
‖divu‖

L̃
4
3 (B

N
2 − 1

2
2,∞ )

. (3.77)

It now remains only to deal with the capillary terms:

‖∇(|∇q|2)‖
L̃1(B

N
2 −1

2,∞ )
� ‖|∇q|2‖

L̃1(B
N
2

2,∞)

� ‖∇q‖
L̃

4
3 (B̃

N
2 − 1

2 , N2 + 1
2

2,∞ )
‖∇q‖

L̃4(B̃
N
2 − 3

2 , N2 − 1
2

2,∞ )
. (3.78)

We have previously used the fact that B̃
N
2 − 1

2 ,
N
2 + 1

2
2,∞ ↪→ B

N
2 + 1

2
2,∞ and B̃

N
2 − 3

2 ,
N
2 − 1

2
2,∞ ↪→ B

N
2 − 1

2
2,∞ . We are now going 

to assume that (q, u) belong to the ball B(0, R) of E N
2 with R > 0. Combining the estimates (3.75), (3.76), 

(3.77) and (3.78) we get:

‖ψ(q, u)‖
E

N
2
≤ C((C + 1)η + R)2. (3.79)

By choosing R and η small enough we have:

C((C + 1)η + R)2 ≤ R. (3.80)

It implies that the ball B(0, R) of E N
2 is stable under ψ which means:

ψ(B(0, R)) ⊂ B(0, R) .

2) Second step, property of contraction
We consider (q1, u1), (q2, u2) in B(0, R) and we are interested in verifying that ψ is a contraction. Ac-

cording to the Proposition 3.7 we have:

‖ψ(q2, u2) − ψ(q1, u1)‖
E

N
2
≤ C

(
‖F (q2, u2) − F (q1, u1)‖

L̃1(B̃
N
2 −1, N2

2,∞ )

+ ‖G(q2, u2) −G(q1, u1)‖
L̃1(B

N
2 −1

2,∞ )

)
, (3.81)

with:

F (q2, u2) − F (q1, u1) = −δu · ∇q2 − u1 · ∇δq.

G(q2, u2) −G(q1, u1) = −u2 · ∇δu− δu · ∇u1 + μ∇q2 ·Dδu + μ∇δq ·Du1

+ λ∇q2divδu + λ∇δqdivu1 + ∇
(
∇q2 · ∇δq + ∇δq · ∇q1

)
.
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We now set δq = q2 − q1 and δu = u2 − u1. Let us first estimate ‖F (q2, u2) − F (q1, u1)‖
L̃1(B̃

N
2 −1, N2

2,∞ )
. We 

have by Proposition 2.2 and the Remark 17:

‖F (q2, u2) − F (q1, u1)‖
L̃1(B̃

N
2 −1, N2

2,∞ )
� ‖δu‖

L̃
4
3
T (B

N
2 + 1

2
2,∞ )

‖∇q2‖
L̃4

T (B̃
N
2 − 3

2 , N2 − 1
2

2,∞ )

+ ‖δu‖
L̃∞

T (B
N
2 −1

2,∞ )
‖∇q2‖

L̃1
T (B̃

N
2 , N2 +1

2,∞ )
+ ‖u1‖

L̃1
T (B

N
2 +1

2,∞ )
‖∇δq‖

L̃∞
T (B̃

N
2 −2, N2 −1

2,∞ )

+ ‖∇δq‖
L̃

4
3
T (B̃

N
2 − 1

2 , N2 + 1
2

2,∞ )
‖u1‖

L̃4
T (B

N
2 − 1

2
2,∞ )

≤ C
(
2‖(q2, u2)‖

E
N
2

+ 2‖(q1, u1)‖
E

N
2

)
‖(δq, δu)‖E N

2
. (3.82)

Next, we have to bound ‖G(q2, u2) −G(q1, u1)‖
L̃1(B

N
2 −1

2,∞ )
. We treat only one typical term, the others are of 

the same form.

‖−u2 · ∇δu− δu · ∇u1‖
L̃1(B

N
2 −1

2,∞ )
� ‖∇δu‖

L̃
4
3
T (B

N
2 − 1

2
2,∞ )

‖u2‖
L̃4

T (B
N
2 − 1

2
2,∞ )

+ ‖∇δu‖
L̃∞

T (B
N
2 −2

2,∞ )
‖u2‖

L̃1
T (B

N
2 +1

2,∞ )
+ ‖∇u1‖

L̃1
T (B

N
2

2,∞)
‖δu‖

L̃∞
T (B

N
2 −1

2,∞ )

+ ‖δu‖
L̃

4
3
T (B

N
2 + 1

2
2,∞ )

‖∇u1‖
L̃4

T (B
N
2 − 3

2
2,∞ )

≤ C
(
2‖(q2, u2)‖

E
N
2

+ 2‖(q1, u1)‖
E

N
2

)
‖(δq, δu)‖E N

2
. (3.83)

We can bound the other terms of ‖G(q2, u2) −G(q1, u1)‖
L̃1(B

N
2 −1

2,∞ )
in the same manner and this work is left 

to the reader. Finally by combining (3.81), (3.82) and (3.83) we obtain for C > 0 large enough:

‖ψ(q2, u2) − ψ(q1, u1)‖
E

N
2
≤C ‖(δq, δu)‖

E
N
2

(
‖(q1, u1)‖

E
N
2

+ ‖(q2, u2)‖
E

N
2
‖
E

N
2

)
.

If one chooses R small enough such that RC ≤ 3
4 , we end up with using the previous estimate which yields:

‖ψ(q2, u2) − Ψ(q1, u1)‖
E

N
2
≤ 3

4 ‖(δq, δu)‖
E

N
2
.

We thus have the property of contraction and so by the fixed point theorem, we have the existence of a 
global solution (q, u) for the system (1.6). Indeed we can see easily that E N

2 is a Banach space.
Concerning the uniqueness of this solution, it suffices to proceed as previously. More precisely if (q, u) is 

the previous solution and (q1, u1) another solution in E
N
2 then by setting δq = q − q1 and δu = u − u1 we 

show that for T small enough:

δq = 0 and δu = 0 on [0, T ].

We conclude by using an argument of connexity in order to get the uniqueness on R+. �
3.4. Global strong solution near equilibrium for system (1.1)

We are now interested in proving the existence of global strong solution for the original system (1.1), 
indeed the system (1.1) is a priori not equivalent to the system (1.6) if we do not control 1

ρ and ρ in L∞

norm. When it will be done, it will be possible to propagate on the density ρ the regularity proved in 
Theorem 1.1 for the unknown q = ln ρ by using Proposition 2.3. Then it will be easy to verify that (ρ, u)
verify the system (1.1) and is a unique solution. In order to apply this program we are going to assume 
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additional hypothesis on the initial data. (q0, u0) is now in B̃
N
2 −1,N2

2,2 × B
N
2 −1

2,2 with q0 = ln ρ0 ∈ L∞ (this 
last condition implies in particular that ρ0 and 1

ρ0
belong to L∞).

The first part of the proof consists in getting L∞ estimates for the solution of the linear system (N), and 
the second part consists in splitting the solution (q, u) under the following form:

(q, u) = (qL, uL) + (q̄, ū),

with (qL, uL) solution of (N) with F = G = 0 and (qL(0, ·), uL(0, ·) = (q0, u0). The key points will be to 
show that qL belongs to L∞

T (L∞) for any T > 0 and that q̄ is more regular that qL. More precisely by a 

regularizing effect on the third index of the Besov space we shall prove that q̄ is in L̃∞
T (B

N
2

2,1) for any T > 0
with is embedded in L∞

T (L∞). It will be then sufficient to deduce a control of ln ρ in L∞
T (L∞) and to show 

that q and ρ have the same regularity.

3.4.1. Result of maximum principle type for the linear system (N)
Let us start by studying the following system:

⎧⎪⎪⎨⎪⎪⎩
∂tq + divu = 0,
∂tu− μΔu− (λ + μ)∇divu− κ∇Δq = 0,
(q(0, ·), u(0, ·)) = (q0, u0),

(3.84)

with μ > 0 and λ + 2μ > 0. We are now interested in characterizing the Besov spaces in term of the 
semi-group B(t) associated with the system (3.84), it will be useful in order to obtain L∞ estimates for q. 
More precisely we have the following proposition.

Proposition 3.9. Let s be a positive real number and (p, r) ∈ [1, +∞]2. Let (q, u) be the solution of (3.84)
with (q, u)(t) = eB(t)(q0, u0) and with the following notation:

(∇q, u)(t) = eB(t)(∇q0, u0).

Then there exists a constant C > 0 which satisfies:

‖ ‖tseB(t)(∇q0, u0)‖Lp ‖Lr(R+, dtt ) ≤ C‖(∇q0, u0)‖B−2s
p,r

∀(∇q0, u0) ∈ B−2s
p,r . (3.85)

Proof. Apply operator Δ to the first equation of (3.84) and operators div and curl to the second one; we 
obtain the following system with ν = 2μ + λ:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tΔq + Δdivu = 0,
∂tdivu− νΔdivu− κΔ2q = 0,
∂tcurlu− μΔcurlu = 0,
(q(0, ·), u(0, ·)) = (q0, u0).

(3.86)

We observe that the third equation is a heat equation and we know via lemma 2.4, p. 54 in [5] that there 
exist C, c > 0 such that for all l ∈ Z:

‖eμtΔΔlcurlu0‖Lp ≤ Ce−c22lμ‖Δlcurlu0‖Lp ∀p ∈ [1,+∞]. (3.87)
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Let us study now the following system:⎧⎪⎪⎨⎪⎪⎩
∂tc + Δv = 0,
∂tv − νΔv − κΔc = 0,
(c(0, ·), v(0, ·)) = (c0, v0),

(3.88)

where c = Δq and v = divu. Denoting by U(t) the semi-group associated with (3.88), we deduce from 
Duhamel’s formula that:

∂t

(
q̂(t, ξ)
d̂(t, ξ)

)
= U(t)

(
q0
u0

)
.

We are now interested in proving estimate of the same form than (3.87) for eU(t)(Δlc, Δlv), and to do this 
we are going to prove the following lemma which is a direct consequence of the lemma 3 of [17]. For the 
sake of completeness we are going to recall its proof.

Lemma 1. For any p ∈ [1, +∞] and any t > 0 we have for all q ∈ Z:

‖eU(t)(Δqc0,Δqv0)‖Lp ≤ Ce−c min(1, 4κ
ν2 )22qνt(‖Δqc0‖Lp + ‖Δqv0‖Lp). (3.89)

Proof. Simple calculus show that U(t) = e−tA(D) with:

A(ξ) =
(

0 −|ξ|2
κ|ξ|2 μ|ξ|2

)
.

Following [17] we show that:

e−tA(ξ) = e−
tν|ξ|2

2

(
h1(t, ξ) + ν

2h2(t, ξ) h2(t, ξ)
−κh2(t, ξ) h1(t, ξ) − ν

2h2(t, ξ)

)
,

with:

h1(t, ξ) = cos(ν′|ξ|2t), h2(t, ξ) = sin(ν′|ξ|2t)
ν′

, if μ2 < 4κ,

h1(t, ξ) = 1, h2(t, ξ) = t|ξ|2, if ν2 = 4κ,

h1(t, ξ) = cos(ν′|ξ|2t), h2(t, ξ) = sin(ν′|ξ|2t)
μ′ , if ν2 > 4κ,

and ν′ =
√
|κ− ν2

4 |. Let ϕ defined as in the definition of Littlewood–Paley theory, we denote by aij(t, ξ)
the coefficients of the matrix e−tA(ξ) and:

Δqbij(t, x) = F−1Δq

(
aij)(t, x)

)
= (2π)−N

∫
RN

eix·ξaij(t, ξ)ϕ(2−qξ)dξ.

Let us show now that:

‖Δq(bij)(t, ·)‖L1 ≤ Ce−c min(1, 4κ
ν2 )22qνt, (3.90)
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where c depends only on ν, κ and c is a universal constant. We first remark that ‖Δqbij‖L1 = ‖hijq‖L1

with:

hijq(t, y) = (2π)−N

∫
RN

eiy·ηaij(t, 2qη)ϕ(η)dη.

Let us observe that the functions hijq can be rewritten under the form:

hq(t, x) =
∫
RN

eiy·ξf(22q|ξ|2t)ϕ(ξ)dξ, (3.91)

with f ∈ C∞(R+). By integration by parts and Leibniz’ formula, we obtain for all α ∈ N
N ,

(−ix)αhq(x) =
∑
β≤α

(
α
β

) ∫
RN

eix·ξ∂βf(22q|ξ|2t)∂α−βϕ(ξ)dξ. (3.92)

Next using Faà-di-Bruno’s formula, it gives:

∂βf(22q|ξ|2t) =
∑

γ1+···+γm=β,|γi|≥1

f (m)(22q|ξ|2t)(22qt)m(Πm
j=1∂

γj (|ξ|2)). (3.93)

Let us start with the case ν2 > 4κ. Then, it suffices to show that:

‖hq‖L1 ≤ Ce−c22qνt, (3.94)

for f(u) = eiν
′ue−νu/2. We have then:

|f (m)(u)| ≤ (ν′ + ν

2 )me−νu/2.

Using (3.92), (3.93), we prove the existence of constant Cα,β,m such that:

|xαhq(x)| ≤
∑
β≤α

|β|∑
m=1

Cα,β,m(22qt)me−νt22q/8.

For any constant c < 1 and m ∈ N, there exists Cm such that ume−u ≤ Cme−cu which implies (3.94).
When ν2 = 4κ, it suffices to verify (3.94) for f(u) = ue−νu/2 and f(u) = e−νu/2. When ν2 > 4κ, we have 

to check (3.94) for:

f(u) = exp(−− ν

2 (1 +
√

1 − 4κ
ν2 )u) and f(u) = exp(−− ν

2 (1 −
√

1 − 4κ
ν2 )u).

Using again (3.93) we have:

|xαhq(x)| ≤ C max(e−cνt22q(1+
√

1− 4κ
ν2 )

, e
−cνt22q(1−

√
1− 4κ

ν2 )) ≤ Ce−c(κ
ν )22qt

and we conclude to (3.90).
We obtain finally by using (3.90) and the Young inequality for the convolution:

‖eU(t)(Δqc0,Δqv0)‖Lp ≤ Ce−c min(1, 4κ
ν2 )22qμt(‖Δqc0‖Lp + ‖Δqv0‖Lp).

It proves the Lemma 1. �
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Via the Bernstein lemma, the Lemma 1, (3.87) we obtain that ∀l ∈ Z:

‖eB(t)(Δl∇q0,Δlu0)‖Lp ≤ Ce−c min(1, 4κ
ν2 )22lνt(‖Δl∇q0‖Lp + ‖Δlu0‖Lp). (3.95)

According the estimate (3.95) we have by setting V = (∇q0, u0) for c, C > 0:

‖tsΔle
B(t)V ‖Lp ≤ Cts22lse−ct22l

2−2ls‖ΔlV ‖Lp .

We are now going to define some Besov space in terms of the semi-group B(t) (this is an adaptation of a 
classical criterion for the heat equation, see theorem 2.34 in [5]).

Since V belongs to S ′
h and the definition of the homogeneous Besov semi-norm we have:

‖tsetB(t)V ‖Lp ≤
∑
l∈Z

‖tsΔle
B(t)V ‖Lp

≤ C‖V ‖B−2s
p,r

∑
l∈Z

ts22lse−ct22l
cr,l (3.96)

where (crl)l∈Z is an element of the unit sphere of lr(Z). If r = +∞, we easily show (3.85) by using the 
following lemma (we left to the reader the proof of this last one).

Lemma 1. For any s, we have:

sup
t>0

∑
l∈Z

ts22lse−ct22l
< +∞.

Let us deal now with the case r < +∞, combining Hölder’s inequality with the weight 22lse−ct22l and 
(3.96), we obtain:

+∞∫
0

trs‖eB(t)V ‖rLp

dt

t
≤ C‖V ‖r

B−2s
p,r

+∞∫
0

(
∑
l∈Z

ts22lse−ct22l
crl)r

dt

t

≤ C‖V ‖r
B−2s

p,r

+∞∫
0

(
∑
l∈Z

ts22lse−ct22l
)r−1(

∑
l∈Z

ts22lse−ct22l
crrl)

dt

t

≤ C‖V ‖r
B−2s

p,r

+∞∫
0

(
∑
l∈Z

ts22lse−ct22l
crrl)

dt

t
.

Using Fubini’s theorem and the change of variable u = ct2j , we have:

+∞∫
0

trs‖eB(t)V ‖rLp

dt

t
≤ C‖V ‖r

B−2s
p,r

∑
l∈Z

crrl

+∞∫
0

ts22lse−ct22l dt

t

≤ CΓ(s)‖V ‖r
B−2s

p,r
,

with Γ(s) =
∫ +∞
0 ts−1e−tdt. The proof of the Proposition 3.9 is now achieved. �

Let us now prove L∞ estimate for the density solution q of the system (3.84). We recall that in the sequel 
q will correspond roughly speaking to ln ρ, in particular L∞ estimate on q will provide L∞ estimate on ρ
and 1 .
ρ
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Proposition 3.10. Let q0 ∈ B
N
2

2,2, u0 ∈ BN−1
2,2 and q0 ∈ L∞. Let (q, u) be the solution of the system 3.84, then 

there exists C > 0 such that for all T > 0 we have:

sup
t∈[0,T ]

(
√
t‖(∇q, u)(t, ·)‖L∞) ≤ C‖(∇q0, u0)‖

B
N
2 −1

2,2

.

‖q‖L∞
T (L∞) ≤ ‖q0‖L∞ + C‖(∇q0, u0)‖

B
N
2 −1

2,2

. (3.97)

Proof. The first estimate in (3.97) is a direct application of the Proposition 3.9 applied to p = +∞, r = +∞, 
s = 1

2 and using the fact that B
N
2 −1

2,2 is embedded in B−1
∞,∞.

Let E be the fundamental solution of the Laplacian operator, and we define the operator (Δ)−1 by the 
convolution operator (Δ)−1f = E ∗ f with f ∈ S ′(RN ). By applying the operator (Δ)−1div to the second 
equation of (3.84) and using the fact that Δc = divu, we obtain the following system with c = (Δ)−1divu:

⎧⎨⎩∂tq −
κ

μ
Δq = − 1

μ
∂tc,

∂tc− μΔc− κΔq = 0.

Let us prove that q belongs to L∞
T (L∞) for any T > 0; from Duhamel formula we have:

q(t, x) = e
κ
μ tΔq0 −

1
μ

t∫
0

e
κ
μ (t−s)Δ∂tc(s)ds. (3.98)

According to the maximum principle for the heat equation, we deduce that:

‖e κ
μ tΔq0‖L∞(L∞) ≤ ‖q0‖L∞(RN ). (3.99)

Next we are going to consider 
∫ t

0 e
κ
μ (t−s)Δ∂sc(s)ds, we recall that:

e
κ
μ (t−s)Δ∂sc(s) = K( ·√

t− s
) ∗x ∂s(Δ)−1divu(s, ·)

= K( ·√
t− s

) ∗x
(
∂s[(E ∗x divu(s, ·)]

)
= K( x√

t− s
) ∗x

(
[
∑
i

∂iE ∗x ∂sui(s, ·)]
)

=
∑
i

(
K( x√

t− s
) ∗x ∂iE

)
∗x ∂sui(s, ·)]

)
=

∑
i

(
∂i[K( ·√

t− s
)] ∗x E

)
∗x ∂sui(s, ·)

=
∑
i

∂i[K( ·√
t− s

)] ∗x
(
E ∗x ∂sui(s, ·)

)
=

∑
i

∂i[K( ·√
t− s

)] ∗x (Δ)−1∂sui(s, ·), (3.100)

with ∗x the convolution in space and setting μ̄ = κ
μ :

K( x√ ) = 1
N e−

|x|2
4μ̄t .
t (4πμ̄t) 2
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We deduce that:

∂i[K( ·√
t− s

)](x) = −2xi

π
N
2

1
(4μ̄(t− s))N

2 +1
e−

|x|2
4μ̄(t−s) .

We easily check by a change of variable u = x√
4μ̄(t−s) that:

‖∂i[K( ·√
t− s

)]‖L1 ≤ C√
t− s

.

Then by Young’s inequality we have for 0 < s < t:

‖∂i[K( ·√
t− s

)] ∗x (Δ)−1∂sui(s, ·)‖L∞
x

≤ C√
t− s

1√
s

sup
0<s<t

√
s‖(Δ)−1∂su(s)‖L∞ (3.101)

with C > 0. Applying the operator (Δ)−1 to the second equation of (3.84) we have:

∂t(Δ)−1u = μu + κ∇q. (3.102)

Using (3.100), (3.101) and (3.102), we observe that there exist C, C1 > 0 such that:

‖
t∫

0

e
κ
μ (t−s)Δ∂sc(s)ds‖L∞(L∞) ≤ ( sup

0<s<t

√
s‖Δ−1∂su(s)‖L∞)

t∫
0

1√
t− s

1√
s
ds

≤ C sup
0<s<t

√
s‖μu(s, ·) + κ∇q(s, ·)‖L∞

≤ C1 sup
0<s<t

√
s‖(u(s, ·),∇q(s, ·))‖L∞ . (3.103)

Combining the first estimate in (3.97) and (3.103), (3.99) we obtain that for any T > 0 we have:

‖q‖L∞
T (L∞) ≤ ‖q0‖L∞ + C‖(∇q0, u0)‖

B
N
2 −1

2,2

,

with C > 0. It achieves the proof of the Proposition 3.10. �
3.4.2. The unique solution of (1.6) verifies ρ ∈ L∞

T (L∞)

Regularizing effect on the third index of the Besov spaces
Let us start by recalling that we are concerned now with initial data such that (q0, u0) belong to (B

N
2

2,2 ∩
L∞) × B

N
2 −1

2,2 . This additional regularity assumptions on the initial data will be crucial in order to prove 
L∞ estimates on ln ρ. Let us start by proving additional regularity assumption on the solution (q, u) of the 
system (1.6) which verify (q, u) ∈ E with E defined as follows:

E =
(
L̃∞(R+, B̃

N
2 −1,N2

2,∞ ) ∩ L̃1(R+, B̃
N
2 +1,N2 +2

2,∞
)
×
(
L̃∞(R+, B

N
2 −1

2,∞ ) ∩ L̃1(R+, B
N
2 +1

2,∞ )
)N

.

Indeed we are interested in splitting the unique solution (q, u) constructed in the subsection 3.3 as the 
following sum:

(q, u) = (qL, uL) + (q̄, ū),
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with (qL, uL) the solution of the system (N1) with F = G = 0 a = μ, b = λ + μ, c = κ, d = K and with 
initial data (ln ρ0, u0). Compared with the subsection 3.3, we are going to show that the remainder term 
(q̄, ̄u) is more regular than (qL, uL) and is in the space F defined as follows:

F =
(
L̃∞(R+, B̃

N
2 −1,N2

2,1 ) ∩ L̃1(R+, B̃
N
2 +1,N2 +2

2,1 )
)
×

(
L̃∞(R+, B

N
2 −1

2,1 ∩ L̃1(R+, B
N
2 +1

2,1 )
)N

.

This type of regularizing effect on the remainder (q̄, ̄u) in term of the third index on the Besov spaces has 
been observed for the first time by M. Cannone and F. Planchon in [9] for the incompressible Navier–Stokes 
equations. We are going to use a similar type of ideas in your case, to do this let us use the Proposition 3.7
which ensures:

‖qL‖
L̃∞(R+,B

N
2 −1

2,2 ∩B
N
2

2,2)
+ ‖qL‖

L̃1(R+,B
N
2 +1

2,2 ∩B
N
2 +2

2,2 )
+ ‖uL‖

L̃∞(R+,B
N
2 −1

2,2 )

+ ‖uL‖
L̃1(R+,B

N
2 +1

2,2 )
� ‖q0‖

B̃
N
2 −1, N2

2,2

+ ‖u0‖
B

N
2 −1

2,2

. (3.104)

As in the subsection 3.3, we know that (q̄, ̄u) verify the following system:⎧⎪⎪⎨⎪⎪⎩
∂tq̄ + divū = F (q̄, ū),
∂tū− μΔū− (λ + μ)∇divū− κ∇Δq̄ + K∇q = G(q̄, ū),
(q̄, ū)(0, ·) = (0, 0),

(3.105)

with:

F (q̄, ū) = −u · ∇q,

G(q̄, ū) = −u · ∇u + 2μ∇q ·Du + λdivu∇q + κ

2∇(|∇q|2).

We are going to apply the Proposition 3.7 to (q̄, ̄u), it implies that:

‖q̄‖
L̃∞(R+,B̃

N
2 −1, N2

2,1 )
+ ‖q̄‖

L̃1(R+,B̃
N
2 +1, N2 +2

2,1 )
+ ‖ū‖

L̃∞(R+,B
N
2 −1

2,1 )
+ ‖ū‖

L̃1(R+,B
N
2 +1

2,1 )

� ‖F (q̄, ū)‖
L̃1(R+,B̃

N
2 −1, N2

2,1 )
+ ‖G(q̄, ū)‖

L̃1(R+,B
N
2 −1

2,1 )
. (3.106)

It remains only to bound the terms F (q̄, ̄u) and G(q̄, ̄u) on the right hand side of (3.106). Let us start with 
F (q̄, ̄u) = −u · ∇q that we can rewrite as follows:

u · ∇q = ū · ∇q + uL · ∇q̄ + uL · ∇qL.

According to Proposition 2.2 we have:

‖ū · ∇q‖
L̃1

T (B̃
N
2 −1, N2

2,1 )
� ‖∇q‖

L̃
4
3
T (B̃

N
2 − 1

2 , N2 + 1
2

2,∞ )
‖ū‖

L̃4
T (B

N
2 − 1

2
2,1 )

+ ‖∇q‖
L̃4

T (B̃
N
2 − 3

2 , N2 − 1
2

2,∞ )
‖ū‖

L̃
4
3
T (B

N
2 + 1

2
2,1 )

,

‖uL · ∇q̄‖
L̃1

T (B
N
2

2,1)
� ‖∇q̄‖

L̃
4
3
T (B̃

N
2 − 1

2 , N2 + 1
2

2,1 )
‖uL‖

L̃4
T (B

N
2 − 1

2
2,∞ )

+ ‖∇q̄‖
L̃4

T (B̃
N
2 − 3

2 , N2 − 1
2

2,1 )
‖uL‖

L̃
4
3
T (B

N
2 + 1

2
2,∞ )

,

‖uL · ∇qL‖
L̃1

T (B
N
2

2,1)
� ‖∇qL‖

L̃
4
3
T (B̃

N
2 − 1

2 , N2 + 1
2

2,2 )
‖uL‖

L̃4
T (B

N
2 − 1

2
2,2 )

+ ‖∇qL‖
L̃4

T (B̃
N
2 − 3

2 , N2 − 1
2

2,2 )
‖uL‖

L̃
4
3
T (B

N
2 + 1

2
2,2 )

.

(3.107)

Let us deal now with the term G(q̄, ̄u) and in particular the term u · ∇u, we have then:

u · ∇u = ū · ∇u + uL · ∇ū + uL · ∇uL.
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From the Proposition 2.2, it yields:

‖ū · ∇u‖
L̃1

T (B
N
2 −1

2,1 )
� ‖ū‖

L̃∞(B
N
2 −1

2,1 )
‖∇u‖

L̃1(B
N
2

2,∞)
+ ‖∇u‖

L̃2(B
N
2 −1

2,∞ )
‖ū‖

L̃2(B
N
2

2,1)
,

‖uL · ∇ū‖
L̃1

T (B
N
2 −1

2,1 )
� ‖uL‖

L̃∞(B
N
2 −1

2,∞ )
‖∇ū‖

L̃1(B
N
2

2,1)
+ ‖∇ū‖

L̃2(B
N
2 −1

2,1 )
‖uL‖

L̃2(B
N
2

2,∞)
,

‖uL · ∇uL‖
L̃1

T (B
N
2 −1

2,1 )
� ‖uL‖

L̃∞(B
N
2 −1

2,2 )
‖∇uL‖

L̃1(B
N
2

2,2)
+ ‖∇uL‖

L̃2(B
N
2 −1

2,2 )
‖uL‖

L̃2(B
N
2

2,2)
. (3.108)

We can proceed similarly for the terms ∇q · Du and divu ∇q. Let us treat the last term ∇|∇q|2 we have 
then:

|∇q|2 = ∇q · ∇q̄ + ∇q̄ · ∇qL + |∇qL|2.

By Proposition 2.2, we get:

‖∇(|∇q|2)‖
L̃1

T (B
N
2 −1

2,1 )
� ‖|∇q|2‖

L̃1
T (B

N
2

2,1)
,

‖|∇qL|2‖
L̃1

T (B
N
2 −1

2,1 )
� ‖∇qL‖

L̃
4
3
T (B

N
2 + 1

2
2,2 )

‖∇qL‖
L̃4

T (B
N
2 − 1

2
2,2 )

,

‖∇q · ∇q̄‖
L̃1

T (B
N
2 −1

2,1 )
� ‖∇q‖

L̃
4
3
T (B

N
2 + 1

2
2,∞ )

‖∇q̄‖
L̃4

T (B
N
2 − 1

2
2,1 )

+ ‖∇q̄‖
L̃

4
3
T (B

N
2 + 1

2
2,1 )

‖∇q‖
L̃4

T (B
N
2 − 1

2
2,∞ )

. (3.109)

By collecting the estimates (3.107), (3.108) and (3.109) and by interpolation we obtain that there exists 
C > 0 such that:

‖q̄‖
L̃∞(R+,B

N
2 −1

2,1 ∩B
N
2

2,1)
+ ‖q̄‖

L̃1(R+,B
N
2 +1

2,1 ∩B
N
2 +2

2,1 )
+ ‖ū‖

L̃∞(R+,B
N
2 −1

2,1 )
+ ‖ū‖

L̃1(R+,B
N
2 +1

2,1 )

≤ C
(
‖uL‖

L̃∞(B
N
2 −1

2,∞ )
+ ‖qL‖

L̃∞(B
N
2 −1, N2

2,∞ )
+ ‖uL‖

L̃1(B
N
2 +1

2,∞ )
+ ‖qL‖

L̃1(B
N
2 +1, N2 +2

2,∞ )

+ ‖u‖
L̃∞(B

N
2 −1

2,∞ )
+ ‖q‖

L̃∞(B
N
2 −1, N2

2,∞ )
+ ‖u‖

L̃1(B
N
2 +1

2,∞ )
+ ‖q‖

L̃∞(B
N
2 +1, N2 +2

2,∞ )

)
× (‖q̄‖

L̃∞(R+,B
N
2 −1, N2

2,1 )
+ ‖q̄‖

L̃1(R+,B
N
2 +1, N2 +2

2,1 )
+ ‖ū‖

L̃∞(R+,B
N
2 −1

2,1 )
+ ‖ū‖

L̃1(R+,B
N
2 +1

2,1 )
)

+ C
(
‖uL‖

L̃∞(B
N
2 −1

2,2 )
+ ‖qL‖

L̃∞(B
N
2 −1, N2

2,2 )
+ ‖uL‖

L̃1(B
N
2 +1

2,2 )
+ ‖qL‖

L̃∞(B
N
2 +1, N2 +2

2,2 )
)2. (3.110)

Let us recall that via the first part of the Theorem 1.1 and the Proposition 3.7 (see the proof in the subsection 
3.3) we have for a C > 0 and M > 0 large enough:

‖uL‖
L̃∞(B

N
2 −1

2,∞ )
+ ‖qL‖

L̃∞(B
N
2 −1, N2

2,∞ )
+ ‖uL‖

L̃1(B
N
2 +1

2,∞ )
+ ‖qL‖

L̃∞(B
N
2 +1, N2 +2

2,∞ )
≤ Cε0,

‖u‖
L̃∞(B

N
2 −1

2,∞ )
+ ‖q‖

L̃∞(B
N
2 −1, N2

2,∞ )
+ ‖u‖

L̃1(B
N
2 +1

2,∞ )
+ ‖q‖

L̃∞(B
N
2 +1, N2 +2

2,∞ )
≤ Mε0,

with:

ε0 = ‖q0‖
B̃

N
2 −1, N2

2,∞
+ ‖u0‖

B
N
2 −1

2,∞
. (3.111)

By choosing ε0 small enough we can apply a bootstrap argument in (3.110) which implies that there exists 
C > 0 such that
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‖q̄‖
L̃∞(R+,B

N
2 −1

2,1 ∩B
N
2

2,1)
+ ‖q̄‖

L̃1(R+,B
N
2 +1

2,1 ∩B
N
2 +2

2,1 )
+ ‖ū‖

L̃∞(R+,B
N
2 −1

2,1 )
+ ‖ū‖

L̃1(R+,B
N
2 +1

2,1 )

≤ C
(
‖uL‖

L̃∞(B
N
2 −1

2,2 )
+ ‖qL‖

L̃∞(B
N
2 −1, N2

2,2 )
+ ‖uL‖

L̃1(B
N
2 +1

2,2 )
+ ‖qL‖

L̃∞(B
N
2 +1, N2 +2

2,2 )
)2. (3.112)

It proves finally that (q̄, ̄u) is in F and concludes this subsection.

q is bounded in L∞
T (L∞(RN )) for any T > 0

In order to show that q is bounded in L∞
T (L∞(RN )) for any T > 0 we shall use the Proposition 3.10. 

Indeed we have seen in the previous subsection that:

(q, u) = (qL, uL) + (q̄, ū),

with (qL, uL) solution of the system (N1) with F = G = 0 a = μ, b = λ + μ, c = κ, d = K and with initial 
data (ln ρ0, u0). In particular it implies via the definition of the semi-group B(t) in the Proposition 3.9 and 
the Duhamel formula that:

(qL(t), uL(t)) = eB(t)(q0, u0) +
t∫

0

eB(t−s)(0,K∇qL)(s)ds.

By using Propositions 3.6, 3.10 and the embedding of B
N
2

2,1 in L∞ we deduce that for any T > 0 there exists 
C > 0 independent on T such that (here [·]1 defines the first coordinate of the vector field):

‖qL‖L∞
T (L∞) ≤ ‖[eB(t)(q0, u0)]1‖L∞

T (L∞) + ‖[
t∫

0

eB(t−s)(0,K∇qL)(s)ds]1‖
L̃∞

T (B
N
2

2,1)

≤ C(‖ ln ρ0‖L∞ + ‖(∇q0, u0)‖
B

N
2 −1

2,2

+ ‖∇qL‖
L̃1

T (B
N
2 −1

2,1 )
). (3.113)

From Proposition 3.7, we know that there exists C > 0 such that:

‖qL‖
L̃∞(B̃

N
2 −1, N2

2,2 )
+ ‖qL‖

L̃1(B̃
N
2 +1, N2 +2

2,2 )
≤ C(‖q0‖

B̃
N
2 −1, N2

2,2

+ ‖u0‖
B

N
2 −1

2,2

). (3.114)

Let us deal now with the term ‖∇qL‖
L̃1

T (B
N
2 −1

2,1 )
on the right hand side of (3.113), we have by interpolation 

for a constant C > 0:

‖qL(t)‖
B

N
2

2,1

≤ C‖qL(t)‖
1
2

B
N
2 −1

2,2

‖qL(t)‖
1
2

B
N
2 +1

2,2

.

It implies that by Hölder’s inequality and (2.25) that there exist C, C1 > 0 large enough such that:

‖qL(t)‖
L1

T (B
N
2

2,1)
≤ C‖qL‖

1
2

L1
T (B

N
2 −1

2,2 )
‖qL‖

1
2

L1
T (B

N
2 +1

2,2 )

≤ CT
3
4 ‖qL‖

1
2

L∞
T (B

N
2 −1

2,2 )
‖qL‖

1
2

L2
T (B

N
2 +1

2,2 )

≤ C1T
3
4 (‖q0‖ ˜ N

2 −1, N2
+ ‖u0‖ N

2 −1). (3.115)

B2,2 B2,2
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Combining (3.113) and (3.115) we get:

‖qL‖L∞
T (L∞) ≤‖[eB(t)(q0, u0)]1‖L∞

T (L∞) + ‖[
t∫

0

eB(t−s)(0,K∇qL)(s)ds]1‖
L̃∞

T (B
N
2

2,1)

≤C(‖ ln ρ0‖L∞ + ‖(∇q0, u0)‖
B

N
2 −1

2,2

+ C1T
3
4 (‖q0‖

B̃
N
2 −1, N2

2,2

+ ‖u0‖
B

N
2 −1

2,2

). (3.116)

We have then proved that qL belongs to L∞
loc(L∞). Since we have seen that (q̄, ̄u) is in F , it implies in 

particular that q̄ belongs to L̃∞(B
N
2

2,1) which is embedded in L∞(L∞). We deduce that q = qL + q̄ belongs 
to L∞

loc(L∞).
It remains only to prove that (ρ, u) = (exp(q), u) is a global strong solution of (1.1) and we define 

h = exp(q) − 1 with ρ = 1 + h. By Proposition 2.3 and the fact that ρ and 1
ρ belong to L∞

loc(L∞) we easily 
show that h is for any T > 0 in:

HT =
(
L̃∞
T (B̃

N
2 −1,N2

2,∞ ) ∩ L̃1
T (B̃

N
2 +1,N2 +2

2,∞
)
.

With such regularity on h and u, the verification that (ρ, u) is a solution of (1.1) in the sense of distribution 
is a straightforward application of Propositions 2.2 and 2.3. The uniqueness follows also the same line than 
in the proof of subsection 3.2. �
3.5. Proof of the Theorem 1.2

In the Theorem 1.2 we are interested in extending the results of Theorem 1.1 to the case of general 
pressure P and also to the case of constant viscosity and capillary coefficients. It is worth pointing out that 
in this case some terms as the pressure ∇P (ρ) are nonlinear in terms of the density q = ln ρ; that is why it is 
crucial to control the L∞ norm of the density in order to estimate this term in Besov space via composition 
lemma. For this reason it seems delicate to show a result of global strong solution involving only a smallness 
hypothesis on ‖q0‖

B
N
2

2,∞
and ‖u0‖

B
N
2 −1

2,∞
as it is the case in the Theorem 1.1.

We are now going to explain how to adapt the previous arguments of the proof of Theorem 1.1 to this 
new situation. We are only dealing with the case μ(ρ) = μ, λ(ρ) = λ, κ(ρ) = κ and P a regular function 
such that P ′(1) > 0 (the viscosity and capillary coefficients verify here the conditions μ > 0, 2μ +λ > 0 and 
κ > 0). Let us mention that the other case can be handled in a similar way. The system 1.1 is equivalent to 
the following system where we set in this section ρ = 1 +h. Let us mention that in this case a straightforward 
calculus gives:

divK = κρ∇Δρ.

We can then rewrite the system (1.1) as follows:⎧⎪⎪⎨⎪⎪⎩
∂th + divu = F (h, u),
∂tu− μΔu− (μ + λ)∇divu + F ′(1)∇h− κ∇Δh = G(h, u),
(h, u) t=0 = (h0, u0),

(3.117)

with F ′(ρ) = P ′(ρ)
ρ and:

F (h, u) = −u · ∇h− hdivu,

G(h, u) = (F ′(1) − F ′(ρ))∇h + (μ − μ)Δu + (μ + λ − μ− λ)∇divu− u · ∇u. (3.118)

ρ ρ
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Let (hL, uL) be the solution of (N1) with a = μ, b = λ + μ, c = κ, d = P ′(1), F = G = 0 and the initial 
data (h0, u0). In the sequel we will consider solution under the form:

(h, u) = (hL, uL) + (h̄, ū).

In order to prove Theorem 1.2 we shall use a fixed point theorem, more precisely we are going to consider 
the following functional:

ψ(h̄, ū) =
t∫

0

W (t− s)
(
F (h, u)
G(h, u)

)
ds . (3.119)

W (t) is the semi-group associated with (N1) with a = μ, b = λ + μ, c = κ, d = P ′(1). The proof is divided 
in two steps the stability of ψ for a ball B(0, R) in E

N
2 defined below and the contraction property. We 

consider E N
2 defined as follows:

E
N
2 =

(
L̃∞(B̃

N
2 −1,N2

2,1 ) ∩ L̃1(B̃
N
2 +1,N2 +2

2,1 )
)
×
(
L̃∞(B

N
2 −1

2,1 ) ∩ L̃1(B
N
2 +1

2,1 )
)N

.

1) First step, stability of B(0, R)
By using the Proposition 3.7 we have: for C > 0:

‖hL‖
L̃∞

T (B̃
N
2 −1, N2

2,2 )
+ ‖hL‖

L̃1
T (B̃

N
2 +1, N2 +2

2,2 )
+ ‖uL‖

L̃∞
T (B

N
2 −1

2,2 )
+ ‖uL‖

L̃1
T (B

N
2 +1

2,2 )

≤ C(‖h0‖
B̃

N
2 −1, N2

2,2

+ ‖u0‖
B

N
2 −1

2,2

). (3.120)

By combining the Propositions 3.10 and 3.7, we have for any T > 0 and C > 0 independent on T :

‖hL‖L∞
T (L∞) ≤ C(‖h0‖L∞ + ‖h0‖

B
N
2 −2

2,1

+ ‖u0‖
B

N
2 −2

2,1

). (3.121)

Remark 20. Let us mention that the condition (h0, u0) ∈ B
N
2 −2

2,1 ×(B
N
2 −2

2,1 )N plays only a role in the previous 
estimate (3.121) in order to bound the term P ′(1)∇hL that we consider as a remainder term for the system 
(N). Indeed we are interested in applying Proposition 3.10 and the Duhamel formula. It would be possible 
to avoid this additional regularity by extending the Proposition 3.10 to the system (N1).

It remains only to apply the Proposition 3.7 in order to get a priori estimates on (h̄, ̄u), we have then for 
C > 0:

‖ψ(h̄, ū)‖
E

N
2
≤ C(‖F (h, u)‖

L̃1
T (B̃

N
2 −1, N2

2,1 )
+ ‖G(h, u)‖

L̃1
T (B̃

N
2 −1, N2

2,1 )
). (3.122)

By applying Proposition 2.2 and Lemma 2.3 (indeed we have seen via the estimate (3.120) and the fact that 
h̄ is in L̃∞(B

N
2

2,1) that h belongs to L∞ and ρ = 1 + h ≥ c > 0) we have as in (3.110) for a function C > 0:

‖ψ(h̄, ū)‖
E

N
2
≤ C(‖h‖L∞)

(
‖uL‖

L̃∞(B
N
2 −1

2,∞ )
+ ‖hL‖

L̃∞(B
N
2 −1, N2

2,∞ )
+ ‖hL‖

L̃1(B
N
2 +1

2,∞ )

+ ‖hL‖
L̃1(B

N
2 +1, N2 +2

2,∞ )
+ ‖u‖

L̃∞(B
N
2 −1

2,∞ )
+ ‖h‖

L̃∞(B
N
2 −1, N2

2,∞ )
+ ‖u‖

L̃1(B
N
2 +1

2,∞ )
+ ‖h‖

L̃∞(B
N
2 +1, N2 +2

2,∞ )

)
× (‖h̄‖

L̃∞(R+,B
N
2 −1, N2

2,1 )
+ ‖h̄‖

L̃1(R+,B
N
2 +1, N2 +2

2,1 )
+ ‖ū‖

L̃∞(R+,B
N
2 −1

2,1 )
+ ‖ū‖

L̃1(R+,B
N
2 +1

2,1 )
)

+ C(‖h‖L∞)
(
‖uL‖˜∞

N
2 −1 + ‖hL‖˜∞

N
2 −1, N2

+ ‖uL‖˜1
N
2 +1 + ‖hL‖˜∞

N
2 +1, N2 +2 )2. (3.123)
L (B2,2 ) L (B2,2 ) L (B2,2 ) L (B2,2 )
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We set

ε0 = ‖h0‖
B̃

N
2 −1, N2

2,2

+ ‖u0‖
B

N
2 −1

2,2

+ ‖h0‖L∞ + ‖h0‖
B

N
2 −2

2,1

+ ‖u0‖
B

N
2 −2

2,1

. (3.124)

By choosing R = Mε0 with M > 2, it suffices to choose ε0 small enough such that (3.123) ensures that:

‖ψ(h̄, ū)‖
E

N
2
≤ R.

The proof of the contraction follows the same lines as in the proof of the Theorem 1.1 and is left to the 
reader. It concludes the proof of the Theorem 1.2. �
4. Proof of the Theorem 1.3

We now wish to investigate the proof of the Theorem 1.3 where we assume that κ(ρ) = μ2

ρ , μ(ρ) = μρ

and λ(ρ) = 0. We have observed that there exists quasi-solution for the system (1.1), it means a solution of 
the form (ρ1, −μ∇ ln ρ1) with:

{
∂tρ1 − μΔρ1 = 0,
(ρ1)t=0 = (ρ1)0.

This quasi-solution (ρ1, −μ∇ ln ρ1) verifies the following system:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂

∂t
ρ + div(ρu) = 0,

∂

∂t
(ρu) + div(ρu⊗ u) − div(2μρD(u)) − μ2ρ∇Δ ln ρ− μ2

2 ∇(|∇ ln ρ|2) = 0,

(ρ, u)t=0 =
(
(ρ1)0,−μ∇ ln(ρ1)0

)
.

(4.125)

Let us work now around this quasi-solution, more precisely we search global solution of (1.1) under the 
form:

q = ln ρ = ln ρ1 + h2 with ρ1 = 1 + h1 and u = −μ∇ ln ρ1 + u2.

We deduce from (1.11) that (h2, u2) verifies the following system:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂th2 + divu2 − μ∇ ln ρ1 · ∇h2 + u2 · ∇ ln ρ1 = F (h2, u2),
∂tu2 − μΔu2 − μ∇divu2 − κ∇Δh2 + K∇h2 − 2μ∇ ln ρ1 ·Du2 − 2μ∇h2 ·Du1

+ u1 · ∇u2 + u2 · ∇u1 − μ2∇(∇ ln ρ1 · ∇h2) = G(h2, u2),
(h2(0, ·), u2(0, ·)) = (h2

0, u
2
0),

(4.126)

with:

F (h2, u2) = −u2 · ∇h2,

G(h2, u2) = −u2 · ∇u2 + 2μ∇h2 ·Du2 −K∇ ln ρ1 + μ2

2 ∇(|∇h2|2). (4.127)

We have now to solve the previous system (4.126) and to do this we are going to apply a fixed point theorem. 
We start by defining the following map ψ:
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ψ(h, u) = W1(t, ·) ∗
(
h2

0
u2

0

)
+

t∫
0

W1(t− s)
(
F (h, u)
G(h, u)

)
ds , (4.128)

where W1 is the semi-group associated with the following linear system (4.129):

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂th2 + divu2 − μ∇ ln ρ1 · ∇h2 + u2 · ∇ ln ρ1 = 0,
∂tu2 − μΔu2 − μ∇divu2 − κ∇Δh2 + K∇h2 − 2μ∇ ln ρ1 ·Du2 − 2μ∇h2 ·Du1

+ u1 · ∇u2 + u2 · ∇u1 − μ2∇(∇ ln ρ1 · ∇h2) = 0,
(h2(0, ·), u2(0, ·)) = (h2

0, u
2
0).

(4.129)

The nonlinear terms F, G are defined in (4.127). Let us now check the stability of ψ for a ball B(0, R) in 
E

N
2 (the contraction property will follow the same lines). E N

2 is defined as follows:

E
N
2 =

(
L̃∞(B̃

N
2 −1,N2

2,1 ) ∩ L̃1(B̃
N
2 +1,N2 +2

2,1 )
)
×
(
L̃∞(B

N
2 −1

2,1 ) ∩ L̃1(B
N
2 +1

2,1 )
)N

.

1) First step, stability of B(0, R)
Let:

η = ‖h2
0‖

B̃
N
2 −1, N2

2,1

+ ‖u2
0‖

B
N
2 −1

2,1

.

We are going to show that ψ maps the ball B(0, R) into itself if R is small enough. By using the Proposi-
tion 3.8 we have:

‖ψ(h, u)‖
E

N
2
≤ C

(
η + ‖F (h, u)‖

L̃1
T (B̃

N
2 −1, N2

2,1 )
+ ‖G(h, u)‖

L̃1
T (B

N
2 −1

2,1 )

)
× exp

(
C

∫
R+

(
‖u1‖4

B
N
2 − 1

2
2,∞

+ ‖u1‖
4
3

B
N
2 + 1

2
2,∞

+ ‖∇ ln ρ1‖
4
3

B
N
2 + 1

2
2,∞

+ ‖∇ ln ρ1‖
4
3

B
N
2 + 1

2
2,∞

)
(s)ds

)
. (4.130)

The main task consists in using the Proposition 2.2 and Corollary 2 to obtain estimates on

‖F (h, u)‖
L̃1(B̃

N
2 −1, N2

2,1 )
, ‖G(h, u)‖

L̃1(B
N
2 −1

2,1 )
.

Let us first estimate ‖F (h, u)‖
L̃1(B̃

N
2 −1, N2

2,1 )
. According to Proposition 2.2, we have:

‖u · ∇h‖
L̃1(B̃

N
2 −1, N2

2,1 )
�‖∇h‖

L̃
4
3 (B̃

N
2 − 1

2 , N2 + 1
2

2,1 )
‖u‖

L̃4(B
N
2 − 1

2
2,1 )

+ ‖∇h‖
L̃4(B̃

N
2 − 3

2 , N2 − 1
2

2,1 )
‖u‖

L̃
4
3 (B

N
2 + 1

2
2,1 )

. (4.131)

Similarly for ‖G(h, u)‖
L̃1

T (B
N
2 −1

2,1 )
we have:

‖u · ∇u‖
L̃1(B

N
2 −1

2,1 )
� ‖u‖

L̃
4
3 (B

N
2 + 1

2
2,1 )

‖∇u‖
L̃4(B

N
2 − 3

2
2,1 )

+ ‖u‖
L̃4(B

N
2 − 1

2
2,1 )

‖∇u‖
L̃

4
3 (B

N
2 − 1

2
2,1 )

. (4.132)

The most important term is certainly K∇ ln ρ1 which belongs to L̃1(B
N
2 −1

2,1 ) since we have assumed that 
ln ρ0

1 belongs to B
N
2 −2

2,1 ∩L∞ and the fact that ρ1 verifies a heat equation (1.13). Using Propositions 2.3, 2.4
and the maximum principle there exists a regular function g such that:
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‖∇ ln ρ1‖
L̃1(B

N
2 −1

2,1 )
� ‖ ln ρ1‖

L̃1(B
N
2

2,1)

� g(‖(ρ1,
1
ρ1

)‖L∞)‖h1‖
L̃1(B

N
2

2,1)

� g(‖(ρ0
1,

1
ρ0
1
)‖L∞)‖h0

1‖
B

N
2 −2

2,1

. (4.133)

We deal with the others terms in a similar way. Since (h, u) is in the ball B(0, R) of E N
2 and combining 

(4.130), (4.131), (4.132) and (4.133), we have for C > 0 large enough:

‖ψ(h, u)‖
E

N
2
≤ C

(
η + R2 + g(‖(ρ0

1,
1
ρ0
1
)‖L∞)‖h0

1‖
B

N
2 −2

2,1

)
× exp

(
C

∫
R+

(
‖u1‖4

B
N
2 − 1

2
2,∞

+ ‖u1‖
4
3

B
N
2 + 1

2
2,∞

+ ‖∇ ln ρ1‖
4
3

B
N
2 + 1

2
2,∞

+ ‖∇ ln ρ1‖
4
3

B
N
2 + 1

2
2,∞

)
(s)ds

)
. (4.134)

Let us recall that ρ1 verifies a heat equation (1.13), we deduce from Propositions 2.4 and the maximum 
principle that there exists a regular function g1 such that:∫

R+

(
‖u1‖4

B
N
2 − 1

2
2,∞

+ ‖u1‖
4
3

B
N
2 + 1

2
2,∞

+ ‖∇ ln ρ1‖
4
3

B
N
2 + 1

2
2,∞

+ ‖∇ ln ρ1‖
4
3

B
N
2 + 1

2
2,∞

)
(s)ds

� g1(‖(ρ0
1,

1
ρ0
1
)‖L∞)‖h0

1‖
B

N
2

2,1

. (4.135)

From (4.135) it yields:

g(‖(ρ0
1,

1
ρ0
1
)‖L∞)‖h0

1‖
B

N
2 −2

2,1

× exp
(
C

∫
R+

(
‖u1‖4

B
N
2 − 1

2
2,∞

+ ‖u1‖
4
3

B
N
2 + 1

2
2,∞

+ ‖∇ ln ρ1‖
4
3

B
N
2 + 1

2
2,∞

+ ‖∇ ln ρ1‖
4
3

B
N
2 + 1

2
2,∞

)
(s)ds

)
≤ g(‖(ρ0

1,
1
ρ0
1
)‖L∞)‖h0

1‖
B

N
2 −2

2,1

exp
(
Cg1(‖(ρ0

1,
1
ρ0
1
)‖L∞)‖h0

1‖
B

N
2

2,1

)
. (4.136)

In particular it implies that:

Cη exp
(
C

∫
R+

(
‖u1‖4

B
N
2 − 1

2
2,∞

+ ‖u1‖
4
3

B
N
2 + 1

2
2,∞

+ ‖∇ ln ρ1‖
4
3

B
N
2 + 1

2
2,∞

+ ‖∇ ln ρ1‖
4
3

B
N
2 + 1

2
2,∞

)
(s)ds

)

≤ Cη exp(Cg1(‖(ρ0
1,

1
ρ0
1
)‖L∞)‖h0

1‖
B

N
2

2,1

). (4.137)

Let us prove now the stability of the functional ψ, from label (4.134) let us choose:

R = 4Cη exp(Cg1(‖(ρ0
1,

1
ρ0
1
)‖L∞)‖h0

1‖
B

N
2

2,1

), (4.138)

and suppose that:

g(‖(ρ0
1,

1
0 )‖L∞)‖h0

1‖ N
2 −2 ≤ Cη. (4.139)
ρ1 B2,1
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Now combining (4.134), (4.138) and (4.139) we have:

‖ψ(h, u)‖
E

N
2
≤ 2Cη exp(Cg1(‖(ρ0

1,
1
ρ0
1
)‖L∞)‖h0

1‖
B

N
2

2,1

)

+ CR2 exp(Cg1(‖(ρ0
1,

1
ρ0
1
)‖L∞)‖h0

1‖
B

N
2

2,1

). (4.140)

From (4.140) it suffices that η is small enough such that:

R2 ≤ 2Cη exp(Cg1(‖(ρ0
1,

1
ρ0
1
)‖L∞)‖h0

1‖
B

N
2

2,1

). (4.141)

Indeed combining (4.141), (4.140) and (4.138) shows that:

‖ψ(h, u)‖
E

N
2
≤ R. (4.142)

This concludes the proof of the stability except that it remains to choose η and to verify that it implies the 
condition (1.16) of Theorem 1.3. The condition (4.141) via (4.138) is equivalent to:

16C2η2 exp(2Cg1(‖(ρ0
1,

1
ρ0
1
)‖L∞)‖h0

1‖
B

N
2

2,1

) ≤ 2Cη exp(Cg1(‖(ρ0
1,

1
ρ0
1
)‖L∞)‖h0

1‖
B

N
2

2,1

), (4.143)

and:

8Cη exp(Cg1(‖(ρ0
1,

1
ρ0
1
)‖L∞)‖h0

1‖
B

N
2

2,1

) ≤ 1. (4.144)

From (4.139) let us choose:

η = 1
C
g(‖(ρ0

1,
1
ρ0
1
)‖L∞)‖h0

1‖
B

N
2 −2

2,1

. (4.145)

The condition (4.144) implies by using (4.145) that:

8g(‖(ρ0
1,

1
ρ0
1
)‖L∞)‖h0

1‖
B

N
2 −2

2,1

exp(Cg1(‖(ρ0
1,

1
ρ0
1
)‖L∞)‖h0

1‖
B

N
2

2,1

) ≤ 1. (4.146)

Let us point out that this condition corresponds exactly to the condition (1.16) of the Theorem 1.3. It 
concludes the proof of the stability of the functional ψ. Let us prove now some contraction properties for 
the functional ψ.

2) Second step, contraction properties
Consider two element (h, u) and (h′, u′) in B(0, R), according to Proposition 3.8 we have:

‖ψ(h, u) − ψ(h′, u′)‖
E

N
2
≤

C
(
‖F (h, u) − F (h′, u′)‖

L̃1
T (B̃

N
2 −1, N2

2,1 )
+ ‖G(h, u) −G(h′, u′)‖

L̃1
T (B

N
2 −1

2,1 )

)
× exp

(
C

∫
R+

(
‖u1‖4

B
N
2 − 1

2
2,∞

+ ‖u1‖
4
3

B
N
2 + 1

2
2,∞

+ ‖∇ ln ρ1‖
4
3

B
N
2 + 1

2
2,∞

+ ‖∇ ln ρ1‖
4
3

B
N
2 + 1

2
2,∞

)
(s)ds

)
. (4.147)

Let us deal with the term ‖F (h, u) −F (h′, u′)‖
L̃1

T (B̃
N
2 −1, N2

2,1 )
, we have then by Proposition 2.2 and by denoting 

δh = h − h′ and δu = u − u′:
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E

N
2

)
‖(δh, δu)‖E N
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. (4.148)

We proceed similarly for the term ‖G(h, u) −G(h′, u′)‖
L̃1

T (B
N
2 −1

2,1 )
(let us mention only that the delicate term 

K∇ ln ρ1 disappears). We get finally for a C > 0 large enough by using (4.135):
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E

N
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1
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B
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2
. (4.149)

From (4.138) and (4.145) we have for a C large enough:

4CR exp
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)
)
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)
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. (4.150)

In particular it ensures the contraction property via (4.149) if:

4CR exp
(
Cg1(‖(ρ0

1,
1
ρ0
1
)‖L∞)‖h0
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2
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)
)
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2 . (4.151)

Using (4.150), the previous condition (4.151) corresponds to:

16Cg(‖(ρ0
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)
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2 . (4.152)

Let us mention that the assumption (4.152) is equivalent to the condition (1.16) of the Theorem 1.3. It 
achieves the proof of the contraction property of ψ. It concludes in particular the proof of Theorem 1.3.

5. Proof of Corollary 1

It suffices to apply the same proof than for the Theorem 1.3, in particular to apply a fixed point theorem 
for the function ψ previously defined. The main difference corresponds to the way we are going to handle 
the remainder term K∇ ln ρ1. Following the same arguments than for the estimate (4.133) we have for a 
regular function g and C > 0:
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2 −2 . (5.153)
ρ1 B2,1
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Using exactly the same idea than in the previous proof we need the following smallness hypothesis with 
C > 0 and g, g1 regular function in order to ensure the stability of the functional ψ for a ball B(0, R) with 
R defined as previously:

16KCg(‖(ρ0
1,

1
ρ0
1
)‖L∞)‖h0

1‖
B

N
2 −2

2,1

exp
(
Cg1(‖(ρ0

1,
1
ρ0
1
)‖L∞)‖h0

1‖
B

N
2

2,1

)
)
≤ 1

2 . (5.154)

If we choose K small enough this last condition will be verified, it achieves the proof of Corollary 1.

Appendix A

In this appendix, we just give a technical lemma on the computation of the capillarity tensor.

Lemma 2. When κ(ρ) = κ
ρ with κ > 0 then:

divK = κρ(∇Δ ln ρ + 1
2∇(|∇ ln ρ|2)),

and:

divK = κdiv(ρ∇∇ ln ρ).

Proof. We recall that:

divK = ∇
(
ρκ(ρ)Δρ + 1

2(κ(ρ) + ρκ′(ρ))|∇ρ|2
)
− div

(
κ(ρ)∇ρ⊗∇ρ

)
.

When κ(ρ) = κ
ρ , we have:

divK = κ∇Δρ− κdiv(1
ρ
∇ρ⊗∇ρ). (A.155)

But since:

Δρ = ρΔ ln ρ + 1
ρ
|∇ρ|2,

plugging this expression in (A.155) we get:

divK = κρ∇Δ ln ρ + κ∇ρΔ ln ρ + κ∇(1
ρ
|∇ρ|2) − κdiv(1

ρ
∇ρ⊗∇ρ). (A.156)

Furthermore we have:

κdiv(1
ρ
∇ρ⊗∇ρ) = κΔ ln ρ∇ρ + ∇(1

ρ
|∇ ln ρ|2) − κ

2 ρ∇(|∇ ln ρ|2),

which concludes the first part of the lemma.
We now want to prove that we can rewrite the capillarity tensor under the form of a viscosity tensor. To 

see this, we have:
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div(ρ∇(∇ ln ρ))j =
∑
i

∂i(ρ∂ij ln ρ)

=
∑
i

[∂iρ∂ij ln ρ + ρ∂iij ln ρ]

= ρ(Δ∇ ln ρ)j +
∑
i

ρ∂i ln ρ∂j∂i ln ρ)

= ρ(Δ∇ ln ρ)j + ρ

2(∇(|∇ ln ρ|2))j

= divK.

It gives then:

divK = κdiv(ρ∇∇ ln ρ) = κdiv(ρD(∇ ln ρ)). �
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