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This paper concerns the numerical solution of three-dimensional degenerate 
Kawarada equations. These partial differential equations possess highly nonlinear 
source terms, and exhibit strong quenching singularities which pose severe challenges 
to the design and analysis of highly reliable schemes. Arbitrary fixed nonuniform 
spatial grids, which are not necessarily symmetric, are considered throughout 
this study. The numerical solution is advanced through a semi-adaptive Local 
One-Dimensional (LOD) integrator. The temporal adaptation is achieved via a 
suitable arc-length monitoring mechanism. Criteria for preserving the positivity 
and monotonicity are investigated and acquired. The numerical stability of the 
splitting method is proven in the von Neumann sense under the spectral norm. 
Extended stability expectations are proposed and investigated.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let D = (0, a) ×(0, b) ×(0, c) ⊂ R
3, where a, b, c > 0, and ∂D be its boundary. Denote Ω = D×(t0, T ), S =

∂D × (t0, T ) for given 0 ≤ t0 < T < ∞. We consider the following degenerate Kawarada problem,

s(x, y, z)ut = uxx + uyy + uzz + f(u), (x, y, z, t) ∈ Ω, (1.1)

u(x, y, z, t) = 0, (x, y, z, t) ∈ S, (1.2)

u(x, y, z, t0) = u0(x, y, z), (x, y, z) ∈ D, (1.3)
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Fig. 1. Numerical solution (left) and its temporal derivative (right) immediately before quenching. It is observed that as maxx u(x) →
1−, we have maxx ut � 600. The computed quenching time is T ≈ 0.780265747310047.

where s(x, y, z) =
(
x2 + y2 + z2)q/2 , q ∈ [0, 2]. The nonlinear source function, f(u), is strictly increasing 

for 0 ≤ u < 1 with

f(0) = f0 > 0, lim
u→1−

f(u) = ∞.

In idealized thermal combustion applications [1,4,17], u represents the temperature in the combustion chan-
nel, and the x-, y-, and z-coordinates coincide with the channel walls. The initial temperature 0 ≤ u0 � 1
is typically chosen to be small. The function s(x, y, z) represents certain singularities in the temperature 
transportation speed within the channel, which causes the degeneracy in the differential equation (1.1) [3,
14,18,20]. The solution u of (1.1)–(1.3) is said to quench if there exists a finite time T > 0 such that

sup {|ut(x, y, z, t)| : (x, y, z) ∈ D} → ∞ as t → T−. (1.4)

The value T is then defined as the quenching time [2,1,13]. It has been shown that a necessary condition 
for quenching to occur is

max
{
|u(x, y, z, t)| : (x, y, z) ∈ D̄

}
→ 1− as t → T−. (1.5)

Further, such a T exists only when certain spatial references, such as the size and shape of D, reach their 
critical limits. A domain D∗ is called the critical domain if the solution of (1.1)–(1.3) exists for all time 
when D ⊆ D∗, and (1.5) occurs when D∗ ⊆ D for a finite T [13].

Systematic mathematical investigations of quenching phenomena can be traced back to Kawarada’s
original work involving the one-dimensional model equation [11]. It was observed that for any spatial domain 
[0, a], there exists a unique value a∗ > 0 such that for a < a∗, the solution of the equation exists globally; 
and for a ≥ a∗, there exists a finite time T (a), such that lim

t→T (a)
max

0≤x≤a
u(x, t) = 1. In the latter case, u stops 

existing in finite time and this phenomenon is referred to as quenching [11,13,19].
As an illustration, in Fig. 1, we show the numerical solution and its temporal derivative of a typical one-

dimensional Kawarada problem over the interval [0, π]. The initial function u0(x) = 0.001 sin(x), f(u) =
1/(1 −u), s(x) = xp(π−x)1−p with p = (

√
5−1)/2, and homogeneous Dirichlet boundary condition are uti-

lized. When considering the numerical solution v, it is evident that vt changes dramatically when compared 
with v. This suggests that properly chosen nonuniform steps can be vital in computations. There have been 
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considerable developments in the study of Kawarada equations, although discussions of multidimensional 
problems were extremely limited until recently.

Numerous computational procedures, including moving mesh adaptive methods, have been constructed 
for solving blow-up and Kawarada problems in the past decades (interested readers are referred to [2,6,7,18,
20] and references therein). Though in the former case, adaptations are frequently achieved via monitoring 
functions on the arc-length of the function u; in the latter situation, adaptations are more likely to be built 
upon the arc-length of ut, since it is directly proportional to f(u), which blows up as u quenches [5,13,16].

As reported in several recent investigations, when quenching locations can be predetermined, it is prefer-
able to use nonuniform spatial grids throughout the computations [3,12,20]. To that end, this paper develops 
a temporally adaptive splitting scheme utilizing predetermined nonuniform spatial grids. In this case, key 
quenching characteristics such as the quenching time, critical domain, and important numerical properties 
of underlying algorithms can be more precisely studied. Our discussions will be organized as follows. In the 
next section, the semi-adaptive LOD scheme for solving (1.1)–(1.3) will be constructed and discussed. Then, 
in Section 3, criteria to guarantee the positivity of the numerical scheme will be determined. In Section 4, 
appropriate criteria for guaranteeing the monotonicity will be obtained. These two sections together serve 
as the platform for carrying out investigations of stability. Section 5 is devoted to the stability analysis of 
the semi-adaptive LOD scheme. The analysis will first be carried out for a fully linearized scheme, and then 
a more realistic stability analysis is proposed without freezing the source term. Finally, concluding remarks 
and proposed future work will be given in Section 6.

2. Semi-adaptive LOD scheme

Utilizing the transformations x̃ = x/a, ỹ = y/b, z̃ = z/c, and reusing the original variables for simplicity, 
we may reformulate (1.1)–(1.3) as

ut = 1
a2φ

uxx + 1
b2φ

uyy + 1
c2φ

uzz + g(u), (x, y, z, t) ∈ Ω, (2.1)

u(x, y, z, t) = 0, (x, y, z) ∈ S, (2.2)

u(x, y, z, t0) = u0, (x, y, z) ∈ D, (2.3)

where g(u) = f(u)
φ

, φ = φ(x, y, z) =
(
a2x2 + b2y2 + c2z2)q/2, and D = (0, 1) × (0, 1) × (0, 1) ⊂ R

3.

Let N1, N2, N3 � 1. We inscribe over D̄ the following variable grid: Dh = {(xi, yj , zk) | i = 0, . . . , N1 +1;
j = 0, . . . , N2 + 1; k = 0, . . . , N3 + 1; x0 = y0 = z0 = 0, xN1+1 = yN2+1 = zN3+1 = 1}. Denote 
h1,i = xi+1 − xi > 0, h2,j = yj+1 − yj > 0, and h3,k = zk+1 − zk > 0 for 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 
1 ≤ k ≤ N3. Let ui,j,k(t) be an approximation of the solution of (2.1)–(2.3) at (xi, yj , zk, t) and consider the 
following first-order finite differences [20],

∂2u

∂x2

∣∣∣∣
i,j,k

≈ 2ui−1,j,k

h1,i−1(h1,i−1 + h1,i)
− 2ui,j,k

h1,i−1h1,i
+ 2ui+1,j,k

h1,i(h1,i−1 + h1,i)
,

∂2u

∂y2

∣∣∣∣
i,j,k

≈ 2ui,j−1,k

h2,j−1(h2,j−1 + h2,j)
− 2ui,j,k

h2,j−1h2,j
+ 2ui,j+1,k

h2,j(h2,j−1 + h2,j)
,

∂2u

∂z2

∣∣∣∣
i,j,k

≈ 2ui,j,k−1

h3,k−1(h3,k−1 + h3,k)
− 2ui,j,k

h3,k−1h3,k
+ 2ui,j,k+1

h3,k(h3,k−1 + h3,k)
.

Further, denote v(t) = (u1,1,1, u2,1,1, . . . , uN1,1,1, u1,2,1, u2,2,1, . . . , uN1,2,1, . . . , u1,N2,1, u2,N2,1, . . . , uN1,N2,1,

. . . , u1,N2,N3 , u2,N2,N3 , . . . , uN1,N2,N3)ᵀ ∈ R
N1N2N3 and let g(v) be a discretization of the nonhomogeneous 

term of (2.1). We obtain from (2.1)–(2.3) the following semi-discretized system
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v′(t) =
3∑

σ=1
Mσv(t) + g(v(t)), t0 < t < T, (2.4)

v(t0) = v0, (2.5)

where M1 = 1
a2B(IN3 ⊗ IN2 ⊗ T1), M2 = 1

b2
B(IN3 ⊗ T2 ⊗ IN1), M3 = 1

c2
B(T3 ⊗ IN2 ⊗ IN1), ⊗ stands for 

the Kronecker product, INσ
∈ R

Nσ×Nσ , σ = 1, 2, 3, are identity matrices, and

B = diag
(
φ−1

1,1,1, φ
−1
2,1,1, . . . , φ

−1
N1,1,1, φ

−1
1,2,1, . . . , φ

−1
N1,N2,N3

)
∈ R

N1N2N3×N1N2N3 ,

φi,j,k =

⎡
⎣a2

(
i−1∑
�=0

h1,�

)2

+ b2

(
j−1∑
�=0

h2,�

)2

+ c2

(
k−1∑
�=0

h3,�

)2⎤⎦
q/2

,

Tσ =

⎛
⎜⎜⎜⎜⎜⎝

mσ,1 nσ,1
lσ,1 mσ,2 nσ,2

· · · · · · · · ·
lσ,Nσ−2 mσ,Nσ−1 nσ,Nσ−1

lσ,Nσ−1 mσ,Nσ

⎞
⎟⎟⎟⎟⎟⎠ ∈ R

Nσ×Nσ , σ = 1, 2, 3,

and for the above

lσ,j = 2
hσ,j(hσ,j + hσ,j+1)

, nσ,j = 2
hσ,j(hσ,j−1 + hσ,j)

, j = 1, . . . , Nσ − 1,

mσ,j = − 2
hσ,j−1hσ,j

, j = 1, . . . , Nσ; σ = 1, 2, 3.

The formal solution of (2.4), (2.5) can thus be written as

v(t) = E(tC)v0 +
t∫

t0

E((t− τ)C)g(v(τ))dτ, t0 < t < T, (2.6)

where E(·) = exp(·) is the matrix exponential and C =
3∑

σ=1
Mσ [17].

In principle, different approximation techniques can be used to yield different splitting methods based on 
(2.6) [9,17,16]. Yet, we are particularly interested in approximating (2.6) via a trapezoidal rule and a [1/1] 
Padé approximation, E(tC) = p(t) + O

(
t2
)
, where

p(t) =
3∏

σ=1

(
I − t

2Mσ

)−1(
I + t

2Mσ

)
, t0 < t < T.

The above leads to

v(t) = p(t)
[
v0 + t

2g(v0)
]

+ t

2g(v(t)) + O
(
(t− t0)2

)
, t → t0. (2.7)

The above LOD algorithm provides a highly efficient way to compute numerical solutions of multidimensional 
problems such as (2.1)–(2.3) [9,15,18,20]. Based on (2.7), we obtain the following first-order in space and 
time semi-adaptive LOD scheme:
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v�+1 =
[ 3∏
σ=1

(
I − τ�

2 Mσ

)−1 (
I + τ�

2 Mσ

)](
v� + τ�

2 g(v�)
)

+ τ�
2 g(v�+1), (2.8)

where v� and v�+1 are approximations of v(t�) and v(t�+1), respectively, v0 is the initial vector, t� =

t0 +
�−1∑
k=0

τk, � = 0, 1, 2, . . . , and {τ�}�≥0 is a set of variable temporal steps determined by an adaptive 

procedure. In order to avoid a fully implicit scheme, g(v�+1) may be approximated by g(w�), where w� is 
an approximation to v�+1, such as

w� = v� + τ�(Cv� + g(v�)), 0 < τ� � 1, (2.9)

in practical computations.
Recalling (1.4) and (1.5), we consider the following arc-length monitoring function on vt,

m

(
∂v

∂t
, t

)
=

√
1 +
(
∂2v

∂t2

)2

, t0 < t < T.

Setting the two maximal arc-lengths in neighboring intervals [t�−2, t�−1] and [t�−1, t�] equal [8,12,19,20], 
we acquire the following quadratic equations from the above,

τ2
� = τ2

�−1 +
(
∂v�−1

∂t
− ∂v�−2

∂t

)2

−
(
∂v�
∂t

− ∂v�−1

∂t

)2

, � = 1, 2, 3, . . . ,

with τ0 given.
In the above temporal adaptation procedures, we may consider a minimal temporal step size controller 

τ̃0, 0 < τ̃0 � τ0, to avoid sudden changes in grid movements or unnecessarily large numbers of computa-
tions. Further, in all subsequent discussions, inequalities involving vectors and matrices are considered as 
component-wise.

3. Positivity

The positivity property is one of the most profound characteristics of the solution of the Kawarada 
problem (1.1)–(1.3) or (2.1)–(2.3) [2,1,5,13]. Since positive computational solutions preserve the correct 
physical features of quenching phenomena, it is crucial that our numerical solution also possesses this 
feature.

Lemma 3.1. ‖Tσ‖2 ≤ max
j=1,...,Nσ

{
4/h2

σ,j

}
, σ = 1, 2, 3.

Proof. Due to the similarity in structure, we only consider T1 since the other two cases follow by similar 
arguments. Note that, in general, T1 is not symmetric. However, ‖T1‖2

2 = ρ(T ᵀ
1 T1) and T ᵀ

1 T1 is symmetric 
with a bandwidth of five. Thus,

T ᵀ
1 T1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m̃1,1 ñ1,1 Ñ1,1
l̃1,1 m̃1,2 ñ1,2 Ñ1,2
L̃1,1 l̃1,2 m̃1,3 ñ1,3 Ñ1,3

· · · · · · · · · · · ·
L̃1,N1−4 l̃1,N1−3 m̃1,N1−2 ñ1,N1−2 Ñ1,N1−2

L̃1,N1−3 l̃1,N1−2 m̃1,N1−1 ñ1,N1−1
L̃ l̃ m̃

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
N1×N1 ,
1,N1−2 1,N1−1 1,N1
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where

Ñ1,j = L̃1,j = l1,jn1,j+1, j = 1, . . . , N1 − 2,

ñ1,j = l̃1,j = m1,jn1,j + m1,j+1l1,j , j = 1, . . . , N1 − 1,

m̃1,j =

⎧⎪⎨
⎪⎩

m2
1,1 + l21,1, j = 1,

n2
1,j−1 + m2

1,j + l21,j , j = 2, . . . , N1 − 1,
n2

1,N1−1 + m2
1,N1

, j = N1.

We may determine a bound on the spectral radius of T ᵀ
1 T1 by using Gers̆chgorin’s circle theorem. In fact, 

only rows containing five nontrivial elements, i.e., j = 3, . . . , N1 − 2, need to be considered. To this end, 
|λ1,j − m̃1,j | ≤ |L̃1,j−2| + |l̃1,j−1| + |ñ1,j | + |Ñ1,j |, j = 3, . . . , N1 − 2, which gives

−|m1,j−1n1,j−1 + m1,j l1,j−1| − |m1,jn1,j + m1,j+1l1,j |

− |l1,j−2n1,j−1| − |l1,jn1,j+1| + n2
1,j−1 + m2

1,j + l21,j ≤ λ1,j (3.1)

and

λ1,j ≤ |m1,j−1n1,j−1 + m1,j l1,j−1| + |m1,jn1,j + m1,j+1l1,j |

+ |l1,j−2n1,j−1| + |l1,jn1,j+1| + n2
1,j−1 + m2

1,j + l21,j . (3.2)

Let h1 ≡ min
j=1,...,N1

{h1,j}. From (3.2) we acquire that

λ1,j ≤
2
h2

1
· 2
2h2

1
+ 2

h2
1
· 2
2h2

1
+ 2

h2
1
· 2
2h2

1
+ 2

h2
1
· 2
2h4

1
+ 4

4h4
1

+ 4
4h2

1

+
(

2
2h2

1

)2

+
(

2
h2

1

)2

+
(

2
2h2

1

)2

= 16
h4

1
.

Now, reverse (3.1) and by the same token,

−λ1,j ≤ |m1,j−1n1,j−1 + m1,j l1,j−1| + |m1,jn1,j + m1,j+1l1,j | + |l1,j−2n1,j−1|

+ |l1,in1,j+1| + n2
1,j−1 + m2

1,j + l21,j ≤
16
h4

1
,

where, once again, h1 ≡ min
j=1,...,N1

{h1,j}. Thus, combining the bounds we have ‖T1‖2 ≤ max
i=1,...,N1

{
4/h2

1,j
}
. 

The other bounds follow similarly. �
Lemma 3.2. Let

βmin = h2

2‖B‖2
, h = min

j=1,...,Nσ; σ=1,2,3
{hσ,j},

1
‖B‖2

= min
i,j,k

φi,j,k =
[
a2h2

1,0 + b2h2
2,0 + c2h2

3,0
]q/2

.

If

τ�
< min

{
a2, b2, c2

}
, (3.3)
βmin
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then the matrices I − τ�
2 Mσ, I + τ�

2 Mσ, σ = 1, 2, 3, are nonsingular. Further, I − τ�
2 Mσ, σ = 1, 2, 3, are 

monotone and inverse-positive, and I + τ�
2 Mσ, σ = 1, 2, 3, are nonnegative.

Proof. First, note that ∥∥∥τ�2 M1

∥∥∥
2

= τ�
2a2 ‖B(IN3 ⊗ IN2 ⊗ T1)‖2

≤ τ�
2a2 ‖B‖2‖IN3 ⊗ IN2 ⊗ T1‖2 = τ�

2a2 ‖B‖2‖T1‖2

≤ τ�
a2 ‖B‖2 max

j=1,...,N1

{
2

h2
1,j

}
< 1.

Hence, I + τ�
2 M1 is nonsingular, and also nonnegative. Similar arguments give that I + τ�

2 M2 and I + τ�
2 M3

are nonsingular and nonnegative.
Now, consider A = I − τ�

2 M1. As Aij ≤ 0 for i �= j and the weak row sum criterion is satisfied, A is 
monotone, and hence an inverse exists and is nonnegative. So, A must be inverse-positive [10]. Similar 
arguments can be given for I − τ�

2 M2 and I − τ�
2 M3. This ensures the proof. �

We also need the following lemma as a result of the definitions used.

Lemma 3.3. Let A ∈ R
n×n be nonsingular and nonnegative and β ∈ R

n be positive. Then Aβ > 0.

4. Monotonicity

Another key characteristic which distinguishes a solution to a quenching problem from a solution to 
most blow-up problems is its monotonicity with respect to time t ≥ t0 [2,1,5,13,18]. Thus, it is necessary to 
guarantee that our numerical solution preserves this property strictly while solving the Kawarada equation 
(1.1)–(1.3) or (2.1)–(2.3).

Lemma 4.1. If (3.3) holds for all � ≥ k ≥ 0, and

(a) Cv0 + 1
2g(v0) > 0;

(b)
(
I − τ0

2 gv(ξ0)
)−1

> 0

hold, then v�+1 ≥ v� for all � ≥ 0. That is, the sequence {v�}∞�=0 is monotonically increasing.

Proof. By (3.3) we have 
∥∥∥τk2 Mσ

∥∥∥ < 1, and thus, 
(
I − τk

2 Mσ

)−1
= I + τk

2 Mσ + O
(
τ2
k

)
, σ = 1, 2, 3. From 

(2.8) and the above, we have

vk+1 − vk =
[ 3∏
σ=1

(
I − τk

2 Mσ

)−1 (
I + τk

2 Mσ

)](
vk + τk

2 g(vk)
)

+ τk
2 g(vk+1) − vk

=
[ 3∏
σ=1

(I + τkMσ) + O
(
τ2
k

)](
vk + τk

2 g(vk)
)

+ τk
2 g(vk+1) − vk

= τk
2 g(vk) + τkCvk + τk

2 g(vk+1) + O
(
τ2
k

)
(4.1)

as τk → 0. Note that g(vk+1) = g(vk) + gv(ξk)(vk+1 − vk) for some ξk ∈ L(vk+1; vk), where L(vk+1; vk) is 
the line segment connecting vk+1 to vk in RN1N2N3 . Using this fact, we derive from (4.1) that
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(
I − τk

2 gv(ξk)
)

(vk+1 − vk) = τk

(
Cvk + 1

2g(vk)
)

+ O
(
τ2
k

)
,

and thus, vk+1 − vk = τk

(
I − τk

2 gv(ξk)
)−1

(
Cvk + 1

2g(vk)
)

+ O
(
τ2
k

)
.

We now proceed by induction. Letting k = 0, we have

v1 − v0 = τ0

(
I − τ0

2 gv(ξ0)
)−1

(
Cv0 + 1

2g(v0)
)

+ O
(
τ2
0
)
.

Thus, if τ0 is sufficiently small, we have v1 − v0 > 0 by our assumption and then Lemma 3.3. For the sake 
of induction, assume that the monotonicity holds for k = � − 1. Then we have

v�+1 − v� =
[ 3∏
σ=1

(
I − τ�

2 Mσ

)−1 (
I + τ�

2 Mσ

)]

×
(
v� − v�−1 + τ�

2 (g(v�) − g(v�−1))
)

+ τ�
2 (g(v�+1) − g(v�)).

Note that g(v) is strictly increasing since f(v) is strictly increasing. Utilizing Lemmas 3.2–3.3 we find that 
v�+1 − v� > 0 if v� − v�−1 > 0, which completes the induction. �

It is not uncommon to set v0 ≡ 0 in practical combustion simulations. The following corollary shows that 
in this case conditions in Lemma 4.1 are satisfied for � = 0.

Corollary 4.1. If v0 ≡ 0 and τ0 < min
{
βmin min{a2, b2, c2},min

i,j,k

2φi,j,k

fv(ξ0(xi, yj , zk))

}
, then conditions (a), (b) 

are true.

Proof. We first consider (a). Clearly, Cv0 + 1
2g(v0) =

1
2g(0) > 0, since f(0) = f0 > 0.

We now consider (b), and under these circumstances we need to show 
(
I − τ0

2 gv(ξ0)
)−1

> 0. First, we 

note that gv(ξ0) is diagonal by definition, since

g(v) = (g1,1,1, . . . , gN1,N2,N3)
ᵀ =

(
f(v1,1,1)
φ1,1,1

, . . . ,
f(vN1,N2,N3)
φN1,N2,N3

)ᵀ

and

gv(v) =

⎛
⎜⎜⎝

∂g1,1,1
∂v1,1,1

· · · ∂g1,1,1
∂vN1,N2,N3

...
. . .

...
∂gN1,N2,N3

∂v1,1,1
· · · ∂gN1,N2,N3

∂vN1,N2,N3

⎞
⎟⎟⎠ = diag

(
fv(v1,1,1)
φ1,1,1

, . . . ,
fv(vN1,N2,N3)
φN1,N2,N3

)
.

Let us denote

gv(ξ0) = diag
(
fv((ξ0)1,1,1)

φ1,1,1
, . . . ,

fv((ξ0)N1,N2,N3)
φN1,N2,N3

)
= diag

(
d
(0)
1,1,1, . . . , d

(0)
N1,N2,N3

)
.

It follows readily that 
(
I − τ0

2 gv(ξ0)
)−1

= diag
(

2
2 − τ0d

(0)
1,1,1

, . . . ,
2

2 − τ0d
(0)
N1,N2,N3

)
, and (b) holds if 

τ0d
(0)
i,j,k < 2, 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3. Denote d(0) ≡ max

i,j,k

{
d
(0)
i,j,k

}
, then τ0d(0) < 2, 

which leads to (b). �
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Lemma 4.2. For any τ� > 0 we have

(
I − τ�

2 Mσ

)
x ≥ x, σ = 1, 2, 3,

where x = (1, 1, . . . , 1)ᵀ.

Proof. We only need to show the case with w =
(
I − τ�

2 M1

)
x = (w1,1,1, . . . , wi,j,k, . . . , wN1,N2,N3)ᵀ. First, 

we observe that

w1,1,1 =
(

1 − τ�
2 · −2

a2φ1,1,1h1,0h1,1

)
− τ�

2 · 2
a2φ1,1,1h1,1(h1,0 + h1,1)

= 1 + τ�
a2φ1,1,1

(
1

h1,0h1,1
− 1

h1,1(h1,0 + h1,1)

)
> 1.

Second, for i = 2, . . . , N1 − 1 we have

wi,1,1 = −τ�
2 · 2

a2φi,1,1h1,i−1(h1,i−1 + h1,i)
+
(

1 − τ�
2 · −2

a2φi,1,1h1,i−1h1,i

)

− τ�
2 · 2

a2φi,1,1h1,i(h1,i−1 + h1,i)

= 1 + τ�
a2φi,1,1

[
−h1,i + (h1,i−1 + h1,i) − h1,i−1

h1,i−1h1,i(h1,i−1 + h1,i)

]
= 1.

Third, we have

wN1,1,1 = −τ�
2 · 2

a2φN1,1,1h1,N1−1(h1,N1−1 + h1,N1)
+
(

1 − τ�
2 · −2

a2φN1,1,1h1,N1−1h1,N1

)

= 1 + τ�
a2φN1,1,1

[
1

h1,N1(h1,N1−1 + h1,N1)

]
> 1.

Hence, we conclude that wi,1,1 ≥ 1, i = 1, . . . , N1. Similar arguments may show that all remaining elements 
of w are also bounded below by 1. Therefore we have w ≥ x. Similar discussions may be utilized for the 
cases involving M2 or M3. �

In the next lemma we show that numerical quenching, i.e., one or more components of v� reaching or 
exceeding unity, cannot occur immediately after the first time step under appropriate constraints. To this 
end, we denote h = max

j=1,...,Nσ, σ=1,2,3
{hσ,j}.

Lemma 4.3. If (3.3) holds and h2 <
1

2 min{a2, b2, c2} min
{

1
f0

,
4

f(τ0f0/φmin)

}
, then for given v0 ≡ 0, we 

have that all components of v1 < 1.

Proof. If v0 ≡ 0, then from (2.8) we have v1 =
[ 3∏
σ=1

(
I − τ0

2 Mσ

)−1 (
I + τ0

2 Mσ

)] τ0
2 g(0) + τ0

2 g(v1). Using 

g(v1) ≈ g(w0) = g(v0 + τ0(Cv0 + g(v0))) = g(τ0f0ξ), where ξ =
(
φ−1

1,1,1, . . . , φ
−1
N1,N2,N3

)ᵀ
∈ R

N1N2N3 , we 
have following decomposed connections

(
I − τ0

M1

)
ṽ0 =

(
I + τ0

M1

) τ0
f0ξ, (4.2)
2 2 2
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(
I − τ0

2 M2

)
v̄0 =

(
I + τ0

2 M2

)
ṽ0, (4.3)(

I − τ0
2 M3

)(
v1 −

τ0
2 g(τ0f0ξ)

)
=
(
I + τ0

2 M3

)
v̄0. (4.4)

From (4.2) we observe that

ṽ0 −
1
4x =

(
I − τ0

2 M1

)−1
[(

I + τ0
2 M1

) τ0
2 f0ξ −

1
4

(
I − τ0

2 M1

)
x

]
=
(
I − τ0

2 M1

)−1 (
s+
1 + s−1

)
for which

|s+
1 | =

∣∣∣∣(I + τ0
2 M1

) τ0f0

2 ξ

∣∣∣∣ ≤ τ0f0

2 φ−1
min

∥∥∥I + τ0
2 M1

∥∥∥
2

< τ0f0φ
−1
min <

h2f0

2‖B‖2
min

{
a2, b2, c2

}
φ−1

min ≤ h2f0

2 min
{
a2, b2, c2

}
.

The above indicates that s+
1 ≤ h2f0

2 min
{
a2, b2, c2

}
x. On the other hand, according to Lemma 4.3 we have 

s−1 ≤ −1
4x, and thus, s+

1 + s−1 ≤
(
h2f0

2 min
{
a2, b2, c2

}
− 1

4

)
x. Since we have 

(
I − τ0

2 M1

)−1
is positive 

by (3.3), we wish each component of s+
1 + s−1 to be negative. Thus, we require

h2f0

2 min
{
a2, b2, c2

}
− 1

4 < 0, or h <
1√

2f0 min {a2, b2, c2}
. (4.5)

Now, recall (4.3). It follows that

v̄0 −
1
2x =

(
I − τ0

2 M2

)−1
[(

I + τ0
2 M2

)
ṽ0 −

1
2x
]

=
(
I − τ0

2 M2

)−1 (
s+
2 + s−2

)
.

Note that 
∣∣s+

2
∣∣ = ∣∣∣(I + τ0

2 M2

)
ṽ0

∣∣∣ < 1
4

∥∥∥I + τ0
2 M2

∥∥∥
2
≤ 1

2 , which implies that s+
2 <

1
2x. Therefore we arrive 

at s+
2 + s−2 <

1
2x − 1

2x = 0, and the result follows from the fact that 
(
I − τ0

2 M2

)−1
is positive by (3.3). By 

the same token, based on (4.4) we observe that

v1 − x =
(
I − τ0

2 M3

)−1 [(
I + τ0

2 M3

)
v̄0 +

(
I − τ0

2 M3

)(τ0
2 g(τ0f0ξ) − x

)]
=
(
I − τ0

2 M3

)−1 (
s+
3 + s−3

)
.

It can be seen that
∣∣s+

3
∣∣ = ∣∣∣(I + τ0

2 M3

)
v̄0 +

(
I − τ0

2 M3

) τ0
2 g(τ0f0ξ)

∣∣∣
≤ max

{
|v̄0|,

∣∣∣τ02 g(τ0f0ξ)
∣∣∣} ∥∥∥(I + τ0

2 M3

)
+
(
I − τ0

2 M3

)∥∥∥
2

= max
{

1, h
2f(τ0f0φ

−1
min)

2 min
{
a2, b2, c2

}}
,

and the above indicates that s+
3 ≤ max

{
1, h

2f(τ0f0φ
−1
min)

2 min
{
a2, b2, c2

}}
x. By Lemma 4.2 we conclude 

that s−3 ≤ −x, and therefore,
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s+
3 + s−3 ≤ max

{
1, h

2f(τ0f0φ
−1
min)

2 min
{
a2, b2, c2

}}
x− x

= max
{

0, h
2f(τ0f0φ

−1
min)

2 min
{
a2, b2, c2

}
− 1
}
x.

Since we again wish each component of the above vector to be negative, we need

h2f(τ0f0φ
−1
min)

2 min
{
a2, b2, c2

}
− 1 < 0, or h2 <

2
f(τ0f0/φmin) min {a2, b2, c2} .

Hence, since 
(
I − τ0

2 M3

)−1
is positive, v1 − x ≤ 0 follows immediately from (4.5) and the above. �

Combining above results we obtain the following theorem.

Theorem 4.1. For any beginning step �0 ≥ 0 if τ� is sufficiently small for � ≥ �0 and

(i) (3.3) holds for all � ≥ �0,

(ii) h2 <
1

2 min{a2, b2, c2} min
{

1
f0

,
4

f(τ0f0/φmin)

}
, where h = max

j=1,...,Nσ, σ=1,2,3
{hσ,j},

(iii) Cv�0 + 1
2g(v�0) > 0 and 

(
I − τ�0

2 gv(ξ�0)
)−1

> 0,

then the sequence {v�}�≥�0
produced by the semi-adaptive LOD scheme (2.8) increases monotonically until 

unity is reached or exceeded by one or more components of the solution vector, i.e., until quenching occurs.

5. Stability

When the numerical solution varies relatively slowly, that is, before reaching a certain neighborhood of 
quenching, instability may be detected through a linear stability analysis of the nonlinear scheme utilized 
[6,12,21]. Although the application of such an analysis to nonlinear problems cannot be rigorously justified, 
it has been found to be remarkably informative in practical computations. In the following study, we will 
first carry out a linearized stability analysis in the von Neumann sense for (2.8) with its nonlinear source 
term frozen. The analysis will then be extended to circumstances where the nonlinear term is not frozen. In 
the later case, the boundedness of the Jacobian of the source term, ‖gv(v)‖2, which is equivalent to assuming 
that we are some neighborhood away from quenching, is assumed.

In the following, let A ∈ C
n×n and again denote E(·) = exp(·) for n > 1.

Definition 5.1. Let ‖ · ‖ be an induced matrix norm. Then the associated logarithmic norm μ : Cn×n → R

of A is defined as

μ(A) = lim
h→0+

‖In + hA‖ − 1
h

,

where In ∈ C
n×n is the identity matrix.

Remark 5.1. If the matrix norm being considered is the spectral norm, then μ(A) = max{λ : λ is an
eigenvalue of (A + A∗)/2} = 1

2λmax(A + A∗).

Lemma 5.1. (See [10].) For α ∈ C we have

‖E(αA)‖ ≤ E(αμ(A)).
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For the semi-adaptive LOD method (2.8) with its nonlinear source term frozen, regularity conditions 
need to be imposed upon the nonuniform spatial grids for a linear stability analysis. For this purpose, let 
us denote hσ = min

j=1,...,Nσ

{hσ,j}, σ = 1, 2, 3.

Lemma 5.2. If

1
h2

1φi−1,j,k
− 1

h1,i−1h1,iφi,j,k
≤ K

2 , (5.1)

1
h2

2φi,j−1,k
− 1

h2,j−1h2,jφi,j,k
≤ K

2 , (5.2)

1
h2

3φi,j,k−1
− 1

h3,k−1h3,kφi,j,k
≤ K

2 , (5.3)

where the constant K > 0 is independent of hσ,j, j = 1, . . . , Nσ, σ = 1, 2, 3, then

μ(Mσ) ≤ K, σ = 1, 2, 3.

Proof. We only need to consider the case involving M1 since the other cases are similar. Note that μ(M1) =
1
2λmax (M1 + Mᵀ

1 ) and

1
2 (M1 + Mᵀ

1 ) = diag(X1,1, . . . , XN2,1, X1,2, . . . , XN2,N3) ∈ R
N1N2N3×N1N2N3 ,

where

(Xj,k)n,p =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m1,n/φn,j,k, if n = p,

n1,n−1/2φn−1,j,k + l1,n−1/2φn,j,k, if n− p = 1,
n1,n/2φn,j,k + l1,n/2φn+1,j,k, if p− n = 1,

0, otherwise.

We apply Gers̆chgorin’s circle theorem to an arbitrary Xj,k, j = 1, . . . , N2, k = 1, . . . , N3. Further, notice 
that we only need to consider circumstances where the bandwidth of M1 + Mᵀ

1 is three. Thus,

∣∣∣∣λ1,i −
m1,i

φi,j,k

∣∣∣∣ ≤
∣∣∣∣ n1,i−1

2φi−1,j,k
+ l1,i−1

2φi,j,k

∣∣∣∣+
∣∣∣∣ n1,i

2φi,j,k
+ l1,i

2φi+1,j,k

∣∣∣∣ ≤ 2
h2

1φi−1,j,k
,

i = 2, . . . , N1 − 1, j = 1, . . . , N2, k = 1, . . . , N3.

We then see that (5.1) follows immediately from the above and the fact that

2
h2

1φi−1,j,k
− 2

h1,i−1h1,iφi,j,k
≤ K, i = 2, . . . , N1 − 1, j = 1, . . . , N2, k = 1, . . . , N3. �

Lemma 5.3. If (5.1)–(5.3) hold then

∥∥∥∥(I − τ�
2 Mσ

)−1 (
I + τ�

2 Mσ

)∥∥∥∥
2
≤ 1 + τ�K + O

(
τ2
�

)
, � ≥ 0, σ = 1, 2, 3, (5.4)

for sufficiently small τ� > 0.
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Proof. Recalling the [1/1] Padé approximation utilized in Section 2, we have

(
I − τ�

2 Mσ

)−1 (
I + τ�

2 Mσ

)
= E(τ�Mσ) + O

(
τ3
�

)
, σ = 1, 2, 3.

Now, based on Lemmas 5.1 and 5.2,
∥∥∥∥(I − τ�

2 Mσ

)−1 (
I + τ�

2 Mσ

)∥∥∥∥
2
≤ E(τ�μ(Mσ)) + O

(
τ3
�

)
≤
[
1 + τ�K + O

(
τ2
�

)]
+ O

(
τ3
�

)
,

which yields the desired bound. �
Combining the above results gives the following theorem.

Theorem 5.1. If (3.3) and (5.1)–(5.3) hold, then the semi-adaptive LOD method (2.8) with the source term 
frozen is unconditionally stable in the von Neumann sense under the spectral norm, that is,

‖z�+1‖2 ≤ c‖z0‖2, � ≥ 0,

where z0 = v0 − ṽ0 is an initial error, z�+1 = v�+1 − ṽ�+1 is the (� + 1)th perturbed error vector, and c > 0
is a constant independent of � and τ�.

Proof. When the nonlinear source term is frozen, z�+1 takes the form of

z�+1 =
3∏

σ=1

(
I − τ�

2 Mσ

)−1 (
I + τ�

2 Mσ

)
z�, � ≥ 0. (5.5)

Recall that 
�∑

k=0
τk ≤ T, � > 0. It follows by taking the norm on both sides of (5.5) that

‖z�+1‖2 ≤
3∏

σ=1

∥∥∥∥(I − τ�
2 Mσ

)−1 (
I + τ�

2 Mσ

)∥∥∥∥
2
‖z�‖2

≤
(
1 + 3τ�K + c2τ

2
�

)
‖z�‖2 ≤

�∏
k=0

(
1 + 3τkK + c3τ

2
k

)
‖z0‖2

≤
(

1 + 3KT + c4

�∑
k=0

τ2
k

)
‖z0‖2 ≤ c‖z0‖2,

where c1, c2, c3, c4 and c are positive constants independent of �, τk, 0 ≤ k ≤ �. Therefore the theorem is 
clear. �

We now consider the case without freezing the nonlinear source term in (2.8). In this situation, restrictions 
upon the Jacobian matrix gv(v) become necessary.

Theorem 5.2. Let τk, 0 ≤ k ≤ �, be sufficiently small and (3.3), (5.1)–(5.3) hold. If there exists a constant 
G < ∞ such that

‖gv(ξ)‖2 ≤ G, ξ ∈ R
N1N2N3 , (5.6)
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then the semi-adaptive LOD method (2.8) is unconditionally stable in the von Neumann sense, that is,

‖z�+1‖2 ≤ c̃ ‖z0‖2, � > 0,

where z0 = v0 − ṽ0 is an initial error, z�+1 = v�+1 − ṽ�+1 is the (� + 1)th perturbed error vector, and c̃ > 0
is a constant independent of � and τ�.

Proof. By definition we have

v�+1 =
3∏

σ=1

(
I − τ�

2 Mσ

)−1 (
I + τ�

2 Mσ

)(
v� + τ�

2 g(v�)
)

+ τ�
2 g(v�+1)

= Φ�

(
v� + τ�

2 g(v�)
)

+ τ�
2 g(v�+1),

where Φ� =
3∏

σ=1

(
I − τ�

2 Mσ

)−1 (
I + τ�

2 Mσ

)
. It follows that

z�+1 = Φ�z� + τ�
2 Φ�(g(v�) − g(ṽ�)) + τ�

2 (g(v�+1) − g(ṽ�+1))

= Φ�z� + τ�
2 Φ�gv(ξ�)z� + τ�

2 gv(ξ�+1)z�+1,

where ξk ∈ L(vk, ̃vk), k = �, � + 1. Rearranging the above equality, we have
(
I − τ�

2 gv(ξ�+1)
)
z�+1 = Φ�

(
I + τ�

2 gv(ξ�)
)
z�.

Further, recall (5.6). When τk is sufficiently small we may claim that

(
I − τk

2 gv(ξ)
)−1

, I + τk
2 gv(ξ) = E

(τk
2 gv(ξ)

)
+ O

(
τ2
k

)
.

Thus,

z�+1 =
(
I − τ�

2 gv(ξ�+1)
)−1

Φ�

(
I + τ�

2 gv(ξ�)
)
z�

=
{

�∏
k=0

[
E
(τk

2 gv(ξk+1)
)

+ O
(
τ2
k

)]
Φk

[
E
(τk

2 gv(ξk)
)

+ O
(
τ2
k

)]}
z0.

It follows therefore

‖z�+1‖2 ≤
{

�∏
k=0

‖Φk‖2

∥∥∥E (τk2 gv(ξk+1)
)∥∥∥

2

∥∥∥E (τk2 gv(ξk)
)∥∥∥

2
+ c1,kτ

2
k

}
‖z0‖2

≤
(

1 + 3KT + c

�∑
k=0

τ2
k

)(
eGT + c1

�∑
k=0

τ2
k

)
‖z0‖2 ≤ c̃ ‖z0‖2,

where c1,k, k = 1, 2, . . . , �, are positive constants and c, c1, ̃c are positive constants independent of � and 
τ�, � > 0. Thus giving the desired stability. �

The above theorem provides further insight as to why the standard linear analysis can be useful in 
estimating the nonlinear stability. The extra cost paid, however, is assuming the boundedness of ‖gv(ξ)‖2. 
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Nevertheless, this is an improvement upon the traditional methodology of having the nonlinear source 
term frozen. In fact, the aforementioned bound is well-maintained in numerical experiments until certain 
neighborhoods of quenching are reached. This serves as an indication that the new analysis is valid and 
effective.

6. Conclusions

A semi-adaptive LOD scheme is developed for solving degenerate Kawarada equations possessing a strong 
quenching nonlinearity and singularity. While a temporal adaptation is performed via an arc-length mon-
itoring mechanism of the temporal derivative of the solution, fixed nonuniform spatial grids are adopted. 
The novel splitting method is implicit and the impact of the degeneracy is found to be limited. Rigorous 
analysis is given for key computational features, including the positivity, monotonicity, and stability, of the 
numerical solution. Important criteria to guarantee these properties, which depend upon the variable steps 
and degenerate function, are obtained.

Under much weaker requirements (see the latest results in [3]), the temporal step restriction for guar-
anteeing monotone numerical solutions of our LOD scheme has been reduced to only one-half of those in 
uniform spatial mesh cases [18]. Furthermore, a realistic method of targeting the realization of nonlinear 
stability analysis is proposed and shown to be successful. Though this new strategy needs the boundedness 
of ‖gv(ξ)‖2, the requirement is well-justified before quenching is reached. This improved methodology not 
only provides further insight into the stability, but also offers explanations as to why the linear stability 
analysis must be valid before quenching. On the other hand, simulations of real three-dimensional solutions 
still remain as one of the most challenging tasks. In anticipated future work we plan to utilize the latest 
High Performance Computing tools with large data computations for this purpose. More rigorous and gen-
eralized analysis, as well as non-exponential splitting based higher order splitting methods [17,16] will also 
be investigated, studied, and experimented with.
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