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In the present paper we prove lower bounds for L-functions from the Selberg 
class, by this means improving earlier results obtained by the second author 
together with Jörn Steuding. We formulate two theorems which use slightly different 
technical assumptions, and give two totally different proofs. The first proof uses the 
“resonance method”, which was introduced by Soundararajan, while the second 
proof uses methods from Diophantine approximation which resemble those used by 
Montgomery. Interestingly, both methods lead to roughly the same lower bounds, 
which fall short of those known for the Riemann zeta function and seem to be 
difficult to be improved. Additionally to these results, we also prove upper bounds 
for L-functions in the Selberg class and present a further application of a theorem 
of Chen which is used in the Diophantine approximation method mentioned above.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that the absolute value of the Riemann zeta function ζ(σ + it) takes arbitrarily large 
and arbitrarily small values when t runs through the real numbers and σ ∈ [1/2, 1) is a fixed real number. 
However, the growth of the Riemann zeta function as a function of t (for fixed σ) cannot be too fast, since 
its absolute value is bounded by a power of t. More precisely, if μζ(σ) denotes the infimum over all c ≥ 0
satisfying ζ(σ + it) � tc for sufficiently large t, then one can show that μζ(σ) ≤ (1 − σ)/2 for 0 ≤ σ ≤ 1. 
Although the upper bound for μζ(σ) has been improved by many mathematicians, especially for σ = 1/2, it 
is yet unproved (but widely believed) that μζ(σ) = 0 for σ ≥ 1/2 (for more details we refer to [10] or [20]). 
As evidence for the truth of this conjecture one can regard the Riemann hypothesis, which implies that

log ζ(σ + it) � (log t)2−2σ

log log t , for 1
2 ≤ σ < 1.
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Therefore, it is natural to ask for omega results on ζ(σ + it). The first answer was given by Titchmarsh 
(see [20, Theorem 8.12]), who proved that for any σ ∈ [1/2, 1) and every ε > 0 the inequality |ζ(σ + it)| >
exp

(
(log t)1−σ−ε

)
holds for arbitrarily large values of t. In 1977, Montgomery [12] improved this result for 

σ ∈ (1/2, 1) by proving that for any fixed σ ∈ (1/2, 1) and every sufficiently large T there exists t such that 
T (σ−1/2)/3 ≤ t ≤ T and

|ζ(σ + it)| ≥ exp
(

1
20

(
σ − 1

2

)1/2 (log T )1−σ

(log log T )σ

)
. (1)

Moreover, he showed that under the Riemann Hypothesis the above inequality can be extended to σ ∈
[1/2, 1) with a slightly better constant and better range of t.

The first unconditional proof of Montgomery’s theorem for σ = 1/2 was given by Balasubramanian and 
Ramachandra [4]. The best result currently known is due to Bondarenko and Seip [5], who very recently 
achieved a breakthrough by proving that

max
T 1/2≤t≤T

∣∣∣∣ζ
(

1
2 + it

)∣∣∣∣ ≥ exp
((

1√
2

+ o(1)
)√

log T log log log T
log log T

)
.

Their proof is based on the so-called resonance method, which was introduced by Soundararajan [17], and 
on a connection between extreme values of the Riemann zeta function and certain sums involving greatest 
common divisors (GCD sums). This connection was discovered by Hilberdink [9]. Recently, the first author [1]
succeeded in applying the resonance method with an extremely long resonator such that he could recapture 
Montgomery’s results by the resonance method, off the critical line, an idea which also plays a crucial role 
in the omega result of Bondarenko and Seip.

Similar problems of finding extreme values were also investigated for other zeta and L-functions, and 
it was shown that Montgomery’s approach can be applied to some generalizations of the Riemann zeta 
function. For example, Balakrishnan [3] showed that Dedekind zeta functions take large values of order 
exp(c(log T )1−σ/(log log T )σ), and Sankaranarayanan and Sengupta [16] generalized Montgomery’s theorem 
to a wide class of L-functions defined by Dirichlet series with real coefficients under some natural analytic 
and arithmetic conditions.

Recently, the second author and Steuding [15] investigated further refinements of Montgomery’s reasoning 
and proved that for every L-function L(s) =

∑
n≥1 aL(n)n−s from the Selberg class which satisfies L(s) �= 0

for σ > 1/2 we have

max
t∈[T,2T ]

|L(σ + it)| ≥ exp
(
c

(log T )1−σ

(log log T )2−σ

)
(2)

for some explicitly given constant c > 0 and sufficiently large T , under the additional assumption that the 
coefficients of L satisfy a prime number theorem with remainder term in the form

∑
p≤x

|aL(p)| = κ
x

log x + O
(

x

log2 x

)
, (κ > 0). (3)

Note that Montgomery’s argument requires a prime number theorem in order to get a lower bound for the 
sum of |aL(p)| over primes in some interval, which might be estimated from below by the sum of |aL(p)|2, 
provided |aL(p)| � 1. Hence, the condition (3) can be replaced by the more natural assumption that L has 
a polynomial Euler product and satisfies the Selberg normality conjecture in the stronger form

∑
|aL(p)|2 = κ

x

log x + O
(

x

log2 x

)
, (κ > 0). (4)
p≤x
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The main difference between Montgomery’s proof and the proof in [15] is that due to the appearance of 
non-real coefficients aL(n) one requires an inhomogeneous Diophantine approximation theorem (which is 
used in an effective form due to Weber [21]), while in the case of the Riemann zeta function one has positive 
real coefficients and can use classical results from homogeneous Diophantine approximation. This difference 
also explains the fact why (2) has a worse exponent of the log log term inside the exponential function than 
the one appearing in (1).

Recall that the Selberg class S consists of those functions L(s) defined by a Dirichlet series ∑∞
n=1 aL(n)n−s in the half-plane Re s > 1 which satisfy the following axioms:

(i) Ramanujan hypothesis: aL(n) �ε n
ε for every ε > 0;

(ii) analytic continuation: there exists a non-negative integer m such that (s −1)mL(s) is an entire function 
of finite order;

(iii) functional equation: L(s) satisfies the following functional equation

Λ(s) = θΛ(1 − s),

where

Λ(s) := L(s)Qs
k∏

j=1
Γ(λjs + μj),

|θ| = 1, Q ∈ R, λj ∈ R+, and μj ∈ C with Reμj ≥ 0;
(iv) Euler product: for prime powers pj there exist complex numbers b(pj) such that for Re s > 1 we have

L(s) =
∏
p

Lp(s), where Lp(s) = exp

⎛
⎝ ∞∑

j=1

b(pj)
pjs

⎞
⎠ ,

and such that b(pj) � pjδ for some δ < 1/2.

Some of our results will be for the Selberg class with polynomial Euler product denoted by S ′, for which 
axiom (iv) in the list above is replaced by axiom (iv′) below:

(iv′) polynomial Euler product: for Re s > 1 we have

L(s) =
∏
p

m∏
j=1

(
1 − αj(p)

ps

)−1

, (5)

where αj(p) are complex numbers.

It is easy to notice that under axiom (iv′) for any positive integers βj we have

aL

⎛
⎝ n∏

j=1
p
βj

j

⎞
⎠ =

n∏
j=1

∑
k1,...,km≥0

k1+...+km=βj

m∏
i=1

αi(pj)kj .

Hence (see [19, Lemma 2.2]) under axiom (iv′) the axiom (i) is equivalent to the assumption that |αj(p)| ≤ 1
for j = 1, 2, . . . , m and every prime p. Moreover, one can easily observe that in this case
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|aL(p)| < m for all primes p,

where m is closely related to the degree dL = 2 
∑m

j=1 λj , since it is widely believed that most important 
L-functions satisfy a functional equation with k = m and λj = 1/2. We will need to work with S ′ instead 
of the original Selberg class S only in the application of the resonance method, which requires bounded 
coefficients aL(p). However, it seems that this restriction does not exclude any important L-function in 
number theory, since so far all known examples of L-functions like the Riemann zeta function, Dirichlet 
L-functions, Hecke L-functions, as well as the (normalized) L-functions of the holomorphic modular form and 
general automorphic L-functions have polynomial Euler products and, at least under some widely believed 
conjectures, are elements of S ′. Moreover, it should be noted that although other results in the paper are 
stated under the assumption L ∈ S and some version of (3) holds, one can easily show that they can be 
proved in a slightly weaker form if we replaced these assumptions by assuming that L ∈ S ′ and some variant 
of (4) is true, which seems to be a slightly more natural requirement than (3).

It is well known that using the Phragmén–Lindelöf principle one can show (see, for example, [19, The-
orem 6.8]) that, similarly to the case of the Riemann zeta function, all L-functions from the Selberg class 
have polynomial order of growth inside the critical strip, namely

L(σ + it) � t
dL
2 (1−σ)+ε, 0 ≤ σ ≤ 1, t ≥ t0 > 0, (6)

where dL denotes the degree of L and the numbers λj are defined by the functional equation satisfied by 
L(s). Moreover, it is conjectured that all elements of the Selberg class satisfy an analogue of the Riemann 
Hypothesis, which can be used to give the upper bound on the maximal values taken by L(s) stated below.

Proposition 1.1. Assume that S � L(s) �= 0 in the half-plane Re s > 1/2 and satisfies

∑
p≤x

|aL(p)| = (κ + o(1)) x

log x (κ > 0). (7)

Then for every fixed σ ∈ [1/2, 1) there exists a constant c > 0 such that

L(σ + it) � exp
(
c
(log t)2−2σ

log log t

)
.

Moreover, if we assume (3), we have

L(1 + it) � (log log t)κ.

The main results of the present paper are the following two theorems on lower bound for large values 
of L-functions. We will first state both of them, and then comment on their relation to each other and on 
their proofs.

Theorem 1.2. Assume that L =
∑

n≥1 aL(n)n−s ∈ S ′ satisfies the following Selberg’s normality conjecture,

∑
p≤x

|aL(p)|2 = (κ + o(1)) x

log x (κ > 0). (8)

Then for every fixed σ ∈ [1/2, 1) and sufficiently large T we have

max |L(σ + it)| ≥ exp
(

(CL(σ) + o(1)) (log T )1−σ

θ(σ)

)
,

t∈[T,2T ] (log log T )
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where θ(1/2) = 1/2 and θ(σ) = 1 otherwise, and where

CL(σ) =

⎧⎨
⎩κσm1−2σ (3−2σ)3/2−σ

2(2σ−1)1/2 if 1
2 < σ < 1;

√
κ if σ = 1

2 .

In the statement of the following theorem, we write N0(σ, T ) for the number of non-trivial zeros ρ = β+iγ

which have real part β > σ and imaginary part γ ∈ (0, T ].

Theorem 1.3. Let L(s) be an element of the Selberg class, which for Re s > 1 is defined by the Dirichlet 
series 

∑
n≥1 aL(n)n−s. Let real numbers θ and σ ∈ [1/2, 1) be given. Assume that there exists a number 

η > 0 such that

N0(σ, T ) � T 1−η, (9)

and that
∑
p≤x

|aL(p)| = (κ + o(1)) x

log x (κ > 0). (10)

Then for every sufficiently large T we have

max
t∈[T,2T ]

Re e−iθ logL(σ + it) ≥ cκ,η
(log T )1−σ

log log T ,

where

cκ,η = (1 − e−1)κ
4

(
η

4
√
e

)1−σ

.

Theorem 1.2 is proved using the resonance method in the spirit of [17], while Theorem 1.3 is proved using 
a variant of Montgomery’s method using Diophantine approximation as in [15]. The necessary assumptions 
reflect the strong and weak points of each of these respective methods. For the application of the resonance 
method we need a strong upper bound on the size of the coefficients, but no information on the zeros of the 
L-function. Furthermore, the resonance method gives a better result for σ = 1/2, which is quite natural given 
the observations in [9,17]. On the other hand, for the application of the method using Dirichlet approximation 
no bound on the size of the coefficients is necessary, but (since one changes from L to logL) some knowledge 
on the zeros of the L-function is required. It should be noted that proving the kind of zero-density estimate 
which is assumed in Theorem 1.3 is usually extremely difficult for a generic L-function unless σ is very close 
to 1. This problem is closely related to the problem of giving upper bounds for the order of magnitude of 
L-functions, which as we have seen in (6) depends on dL and is known to be small (even in the mean-square 
sense) only when σ is close to 1.

It is quite remarkable that both methods mentioned above come to their limit at exp
(
c (log T )1−σ

(log log T )

)
for 

σ ∈ (1/2, 1), and that in both cases it seems to be a very difficult problem to get beyond this barrier. We 
conjecture that for σ ∈ (1/2, 1) under assumptions such as those in the statements of Theorem 1.2 and 1.3
one should actually be able to achieve roughly the same lower bounds as in the case of the Riemann zeta 
function (1), that is, with the power of the log log term in the denominator of the exponential function 
reduced from 1 to σ. However, as noted, this seems to be very difficult. In both proofs it is clearly visible 
why it is not possible to go significantly beyond the result obtained in Theorems 1.2 and 1.3. In the case 
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of the resonance method the restriction essentially comes from the requirement of keeping the length of 
the resonator well below T , and the problem corresponds to successfully implementing the “extremely long 
resonator” in this setting, which is prohibited by the fact that the coefficients are not necessarily positive 
real numbers and thus a certain “positivity” property, which plays a crucial role in [1,5], fails to hold. In 
the case of the method using Diophantine approximation, the problem corresponds to bounding away linear 
forms of logarithms of primes from the origin; instead of the general Diophantine approximation results 
used in the current proof of Theorem 1.3 one would need to use a Diophantine approximation tool which 
is tailor-made for dealing with logarithms of primes, and take into account the Diophantine properties of 
these logarithms of primes.

The precise relation between the resonance method and the Diophantine approximation method seems 
to be not really understood yet, which is the reason for including both proofs in the present paper, even if 
they come to rather similar conclusions. It is interesting to compare the restrictions which prevent further 
improvements of the proofs of Theorems 1.2 and 1.3 given below. In the case of the proof of Theorem 1.2, the 
restriction comes from the requirement of keeping the length of the resonator well below T , to make sure that 
the contribution of the off-diagonal terms is negligible. These off-diagonal terms contain quotients (m/n)it, 
where m and n have non-zero coefficients in the representation of the resonator as a Dirichlet polynomial, 
and it is important that these quotients are bounded away from 1 to make sure that 

∫ 2T
T

(m/n)it dt is 
small. In the case of Theorem 1.3, the restriction comes from the quantity Λ which appears in Lemma 3.1
below, and which is defined as the minimal value of a linear form in logarithms of primes. Thus in a 
sense the restriction is of a similar nature in both proofs, just that it appears once in multiplicative form 
(as the quotient of terms in the resonator which has to be bounded away from 1) and once, after taking 
logarithms, in additive form (as a linear form of logarithms of primes which has to be bounded away from 0). 
What is furthermore striking is the fact that the lemma from inhomogeneous Diophantine approximation, 
which plays the crucial role in our proof of Theorem 1.3, is itself proved (see [6]) using a probabilistic 
method which has some resemblance of a “resonance” argument. A further remark concerns the paper of 
Balasubramanian and Ramachandra [4], whose method at first glance looks very different from the other 
two methods mentioned here so far. However, on second thought one is tempted to read their method as a 
kind of resonance argument where a high moment of ζ plays the role of the resonator. This would fit together 
with the way how the resonators are constructed in [17] and in subsequent papers, namely as multiplicative 
functions which are supported on numbers having many small prime factors. The bottom line is that the 
connections between all these methods are not well understood, and that there would be some merit in 
clarifying these connections.

The results obtained in Theorems 1.2 and 1.3 should be compared to the earlier result in (2). Note that 
in both cases the exponent of the log log term inside the exponential function is reduced from 2 − σ to 1 
for σ ∈ (1/2, 1), and that in Theorem 1.2 it is reduced from 1 to 1/2 for σ = 1/2. Note again that for 
Theorem 1.2 no analogue of the Riemann Hypothesis has to be assumed; for Theorem 1.3 the assumption 
of an analogue of the Riemann hypothesis in [15] is reduced to the assumption of a zero density estimate. 
Furthermore, for both theorems the conditions (3) and (4) have been relaxed to the assumption of the 
Selberg normality conjecture and a prime number theorem for the coefficients aL(n), respectively, without 
an upper bound on the order of the error term. The proof of Theorem 1.2 is inspired by the proofs given 
in [17]. The proof of Theorem 1.3 follows the one in [15], but instead of using an �∞ (maximal error) result 
from inhomogeneous Diophantine approximation it uses an �2 (average error) result of Chen [6].

Chen’s theorem can also be used to improve the lower bound for extreme values on the line σ = 1. 
The Riemann zeta-function case is well-investigated and the best known result is due to Granville and 
Soundararajan [8], who showed that

max |ζ(1 + it)| ≥ eγ(log log T + log log log T − log log log log T + O(1)),

T≤t≤2T
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which is the expected order of magnitude under the Riemann Hypothesis; here γ denotes the Euler constant. 
As we showed in Proposition 1.1 above a similar order of magnitude is expected for L-functions, whereas the 
best known result concerning Dirichlet L-functions L(s, χ) is due to Steuding [18]. Using an effective version 
of Kronecker’s theorem, he proved the existence of infinitely many s = σ+it with σ → 1+ and t → +∞ such 
that |L(σ+ it, χ)| is of size at least log log log t/ log log log log t, which, by the Phragmén–Lindelöf principle, 
leads to

|L(1 + it, χ)| = Ω
(

log log log t
log log log log t

)
.

An application of Chen’s lemma allows to prove the following refinement of Steuding’s result, which for 
σ = 1 gives the expected order of magnitude.

Theorem 1.4. Let L(s) ∈ S be defined by the Dirichlet series 
∑

n≥1 aL(n)n−s for Re s > 1. Assume that (3)
holds and that θ is an arbitrary given real number. Then for every sufficiently large T , there is σ > 1 and 
t ∈ [T, 2T ] such that

Re e−iθ logL(σ + it) ≥ κ log log log T + O(1). (11)

In particular,

|L(1 + it)| = Ω((log log t)κ).

The remaining part of this paper is organized as follows. In Section 2 we give the proof of Theorem 1.2
using the resonance method. In Section 3 we prove Theorem 1.3 using methods from inhomogeneous Dio-
phantine approximation. In Section 4 we comment on possible further improvements of the method from 
Section 2, and we prove the upper bound given in Proposition 1.1. Finally, in Section 5, we give the proof 
of Theorem 1.4.

2. Approximation of L-function by a Dirichlet polynomial and the resonance method

Throughout this section, we assume that the assumptions of Theorem 1.2 are satisfied. In particular we 
assume that L(s) =

∑
n≤1 aL(n)n−s denotes a fixed element of the Selberg class with polynomial Euler 

product, and that σ is a fixed real number from the interval [1/2, 1).
First we will show that a given L-function can be approximated by a corresponding Dirichlet polynomial 

with an extra smoothing factor e−(n/X), which will be negligible for small n. In order to do that, let us put 
X = T dL+ε for some small positive ε. From the well-known formula for the Mellin transform of the gamma 
function we get

∞∑
n=1

aL(n)
ns

e−(n/X) = 1
2πi

2+i∞∫
2−i∞

L(s + w)Γ(w)Xwdw. (12)

Note that, by Stirling’s formula, the integration over | Im(w)| > T
2 is bounded if t ∈ [T, 2T ]. Thus it suffices 

to consider

1
2πi

2+ i
2T∫

i

L(s + w)Γ(w)Xwdw. (13)

2− 2T
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Now we move the contour of integration in (13) to the line Rew = −σ. Since Imw + t > T/2, we pass 
only the simple pole of Γ(w) at w = 0 where the residue of the integrand is L(s). Moreover, (6) implies that 
L(i(t + w)) � T (dL+ε)/2. Therefore, by the choice of X, we have

1
2πi

−σ+iT
2∫

−σ−iT
2

L(s + w)Γ(w)Xwdw � T (dL+ε)(1/2−σ) � 1,

and, in consequence, for t ∈ [T, 2T ],

L(σ + it) =
∞∑

n=1

aL(n)
ns

e−(n/X) + O(1).

Let us observe that for n > X(logX) we have exp(−n/X) ≤ n−2/3, so the series 
∑

n≥X(log X)
aL(n)
ns e−(n/X)

is bounded and we obtain

L(σ + it) =
∑

n≤TdL+2ε

aL(n)
ns

e−(n/X) + O(1). (14)

Now we use (14) for the resonance method as introduced by Soundararajan [17]. Following his notation, let 
Φ be a smooth function compactly supported on the interval [1, 2] and satisfying 0 ≤ Φ(t) ≤ 1 and Φ(t) = 1
for t ∈ (5/4, 7/4). Then the Fourier transform of Φ satisfies Φ̂(y) =

∫
R

Φ(t)e−itydt � |y|−v for any fixed 
positive integer v. One can show (see (2) in [17]) that for any Dirichlet polynomial R(t) =

∑
n≤N r(n)n−it

we have

M1 = M1(R, T ) :=
∫
R

|R(t)|2Φ(t/T )dt = T Φ̂(0) (1 + O(1/T ))
∑
n≤N

|r(n)|2,

provided that N ≤ T 1−ε.
Now let us consider

M2 = M2(R, T, σ) :=
∫
R

L(σ + it)|R(t)|2Φ(t/T )dt.

Obviously,

max
t∈[T,2T ]

|L(σ + it)| � |M2(R, T, σ)|
M1(R, T ) . (15)

In order to estimate M2 we notice that (14) implies

M2 = T
∑

n,m≤N

∑
k≤TdL+2ε

aL(k)r(m)r(n)
kσ

e−(k/X)Φ̂ (T log(mk/n)) + O(M1(R, T )),

and that the contribution from off-diagonal terms mk �= n is

� N

T

∑
|r(n)|2

∑
d +ε

|aL(k)|
kσ

� T
∑

|r(n)|2 = O(M1(R, T )),

n≤N k≤T L n≤N



C. Aistleitner, Ł. Pańkowski / J. Math. Anal. Appl. 446 (2017) 345–364 353
since Φ̂(T log(mk/n)) � T−dL/2−1 for mk �= n, N ≤ T 1−ε, and since aL(n) � nε′ for any (arbitrarily small, 
fixed) ε′ > 0. Hence

M2 = T Φ̂(0)
∑

mk=n≤N

aL(k)r(m)r(n)
kσ

e−(k/X) + O(M1(R, T )), (16)

and it remains to prove that there is a resonator R(t) such that∣∣∣∣∣∣
∑

mk=n≤N

aL(k)r(m)r(n)
kσ

e−(k/X)

∣∣∣∣∣∣
/ ∑

n≤N

|r(n)|2 ≥ exp
(
CL(σ) (logN)1−σ

log logN

)
.

Let us put r(n) = aL(n)f(n), where f is a non-negative real multiplicative function supported only on 
the square-free numbers. Then, for mk = n ≤ N ,∣∣∣∣∣∣

∑
mk=n≤N

aL(k)r(m)r(n)
kσ

e−(k/X)

∣∣∣∣∣∣ ≥ 1
2

∑
mk=n≤N

aL(k)r(m)r(n)
kσ

,

since aL(k)r(m)r(n) = |aL(k)|2|aL(m)|2f(m)2f(k) ∈ R≥0, and exp(−k/X) ≥ 1/2 for k < T 1−ε and 
sufficiently large T . Thus Theorem 1.2 follows easily from the following lemma, whose proof follows the 
proof of [17, Theorem 2.1] with the application of (8) instead of the classical prime number theorem.

Lemma 2.1. For every σ ∈ [1/2, 1) and every sufficiently large N there is a real multiplicative function f(n)
supported on the square-free numbers such that

∑
mk≤N

|aL(k)|2|aL(m)|2f(k)f(m)2

kσ

/ ∑
n≤N

|aL(n)|2f(n)2 ≥ exp
(
CL(σ) (logN)1−σ

(log logN)θ(σ)

)
,

where θ(σ) and CL(σ) are the same as in Theorem 1.2.

Proof. Since f(n) is supported only on the square-free numbers and since both functions aL(n) and f(n)
are multiplicative, we have∣∣∣∣∣∣

∑
mk=n≤N

aL(k)r(m)r(n)
kσ

∣∣∣∣∣∣
=

∑
k≤N

f(k)|aL(k)|2
kσ

∑
m≤N/k

gcd(k,m)=1

f(m)2|aL(m)|2

≥
∑
k≤N

f(k)|aL(k)|2
kσ

∑
m≤N/k

gcd(k,m)=1

f(m)2|aL(m)|2

=
∑
k≤N

f(k)|aL(k)|2
kσ

∏
p�k

(1 + f(p)2|aL(p)|2) (17)

+ O

⎛
⎜⎜⎝∑

k≤N

f(k)|aL(k)|2
kσ

∑
m>N/k

gcd(k,m)=1

f(m)2|aL(m)|2

⎞
⎟⎟⎠ .



354 C. Aistleitner, Ł. Pańkowski / J. Math. Anal. Appl. 446 (2017) 345–364
Applying the so-called Rankin’s trick for α > 0 we get that the error term above is

� 1
Nα

∑
k≤N

f(k)|aL(k)|2
kσ−α

∏
p�k

(1 + pαf(p)2|aL(p)|2)

� 1
Nα

∏
p

(
1 +

(
f(p)2 + f(p)

pσ

)
pα|aL(p)|2

)
.

Moreover the main term in (17) is

∏
p

(
1 +

(
f(p)2 + f(p)

pσ

)
|aL(p)|2

)
+ O

(
1
Nα

∏
p

(
1 +

(
f(p)2 + f(p)pα

pσ

)
|aL(p)|2

))
.

Therefore

∑
mk=n≤N

aL(k)r(m)r(n)
kσ

=
∏
p

(
1 +

(
f(p)2 + f(p)

pσ

)
|aL(p)|2

)
(18)

+ O
(

1
Nα

∏
p

(
1 +

(
f(p)2 + f(p)

pσ

)
pα|aL(p)|2

))
.

Note that ∑
n≤N

|aL(n)|2f(n)2 ≤
∏
p

(
1 + f(p)2|aL(p)|2

)
,

so our main purpose is to find suitable f(n) such that the ratio between the error term and the main term 
in (18) is o(1) and

∏
p

(
1 +

(
f(p)2 + f(p)

pσ

)
|aL(p)|2

)/∏
p

(
1 + f(p)2|aL(p)|2

)
(19)

is large.
First, let us consider the case σ > 1/2. For any L, M depending on N and satisfying L = o(M) we put

f(p) =
{

(L/p)σ �= 0 if p ∈ [cL,M ],
0 otherwise,

where the choice of the positive constant c will be optimized later. From (8) we know that there exits E(x)
tending to 0 as x → ∞ such that

∑
p≤x

|aL(p)|2 = κ
x

log x (1 + E(x)).

Then, taking

M = L

(
min

(
1

maxx>L

√
|E(x)|

,
logL

log logL

))1/(2σ−1)

=: Lg(L)1/(2σ−1),

one can easily get
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∑
p

f(p)2|aL(p)|2 log p = L2σ
∑

cL≤p≤X

|aL(p)|2 log p
p2σ

= κc1−2σ

2σ − 1L− κ

2σ − 1
L

g(L) + o

(
L

g(L)

)
.

Therefore, for α = (logL)−3, the ratio of the error term to the main term in (18) is

≤ N−α
∏
p

(
1 +

(
f(p)2 + f(p)

pσ

)
(pα − 1)|aL(p)|2

)

≤ exp
(

− α logN + α
∑
p

f(p)2|aL(p)|2 log p + α
∑
p

f(p) log p
pσ

|aL(p)|2

+ O
(
α2

∑
p

f(p)2(log p)2|aL(p)|2
))

≤ exp
(
−α

κ

2σ − 1
L

g(L) + o

(
α

L

g(L)

))
= o(1),

where the last inequality holds if

L = (2σ − 1)c2σ−1

κ
logN. (20)

Now, in order to estimate the ratio in (19) it suffices to observe that f(p)2|aL(p)|2 ≤ c−2σm2 and 
f(p)|aL(p)|2/pσ = o(1). Then the ratio in (19) is

≥ exp
(

1 + o(1)
1 + c−2σm2

∑
p

f(p)|aL(p)|2
pσ

)

= exp
((

κc

(2σ − 1)(c2σ + m2) + o(1)
)

L1−σ

logL

)

= exp
((

κσ(2σ − 1)−σ c
2σ(3/2−σ)

c2σ + m2 + o(1)
)

(logN)1−σ

log logN

)

= exp
((

κσm1−2σ (3 − 2σ)3/2−σ

2(2σ − 1)1/2
+ o(1)

)
(logN)1−σ

log logN

)

since the optimal choice for c is

c =
(
m2 3 − 2σ

2σ − 1

) 1
2σ

.

This completes the proof in the case σ > 1/2.
Now we assume that σ = 1/2, and we define

f(p) =
{ √

L√
p log p , if p ∈ [L,M ];

0 otherwise,

where, as before, L and M depend on N and L = o(M). As in the case σ > 1/2 one can show that the 
ratio of the error term to the main term in (18) is o(1), provided that M/L has sufficiently small order of 
growth depending on E(x) and
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L = κ−1 logN log logN.

For this choice of L, by the fact that f(p)2|aL(p)|2 = o(1), the ratio in (19) is

≥ exp
(

(1 + o(1))
√
L

∑
p

|aL(p)|2
p log p

)
= exp

(
(1 + o(1))

√
κN

log logN

)
,

and the proof is complete. �
3. Inhomogeneous Diophantine approximation. Proof of Theorem 1.3

The classical Kronecker approximation theorem states that for real numbers α1, . . . , αn and for real 
numbers λ1, . . . , λn which are linearly independent over the rationals, for every given ε > 0 there exists a 
real number t such that

‖λkt− αk‖ ≤ ε,

where ‖ ·‖ denotes the distance to the nearest integer. A quantitative form of this theorem in the homogeneous 
case α1 = · · · = αn = 0 is at the core of Montgomery’s proof of (1), and similarly a quantitative form in the 
inhomogeneous case, due to Weber, is at the core of the argument of Pańkowski and Steuding. However, 
when carefully examining the argument in [15] it turns out that what is required is not necessarily an 
approximation result for the �∞ distance (which is represented by the norm ‖ ·‖), but that an approximation 
result which holds “on average” in a certain sense is also suitable for this purpose. The following lemma, 
which is due to Chen [6], provides such a result for the �2-error in inhomogeneous Diophantine approximation. 
The result is stated in a multidimensional form in Chen’s paper, but we only require it in the one-dimensional 
setting. In the statement of the lemma, M denotes a positive integer.

Lemma 3.1 ([6, Theorem 1 (i)]). Let λ1, . . . , λn and β1, . . . , βn be real numbers, and assume that they have 
the property that for all integers u1, . . . , un with |uj | ≤ M the fact that

u1λ1 + · · · + unλn = 0

implies that

u1β1 + · · · + unβn is an integer.

Then for all positive real numbers δ1, . . . , δn and for all real numbers T1 < T2 we have

inf
t∈[T1,T2)

n∑
j=1

δj‖λjt− βj‖2 ≤ Δ
4 sin2

(
π

2(M + 1)

)
+ ΔMn

4πΛ(T2 − T1)
,

where

Δ =
n∑

j=1
δj

and
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Λ = min
{
|u1λ1 + · · · + unλn| : uj are integers with

|uj | ≤ M, 1 ≤ j ≤ n, and u1λ1 + · · · + unλn �= 0.
}

The next lemma follows from a combination of [15, Corollary 4.2] with equation (7) of [15]. In the 
statement of the lemma and in the sequel, δ denotes the number from axiom (iv) of the definition of the 
Selberg class (where it is assumed that δ < 1/2) and the numbers ωp are such that aL(p) = |aL(p)|eiωp .

Lemma 3.2. Let s0 = σ+it0, and assume that σ ∈ [1/2, 1) and t0 ≥ 15. Furthermore, assume that L(σ′+it) �=
0 for σ′ > σ and |t − t0| ≤ 2(log t0)2. Then for x > 2 we have

Re e−iθ logL(s0 + it1) ≥
1
2

∑
∣∣log p

x

∣∣≤1

|aL(p)|
pσ

cos(t0 log p− ωp)
(
1 −

∣∣∣log p

x

∣∣∣) (21)

+ O
(
2x(log t0)−2) + O

(
x2δ−2σ+1/2 log x

)
for some t1 ∈

[
−(log t0)2, (log t0)2

]
.1

Proof of Theorem 1.3. Throughout the rest of this section we assume that all the conditions required for 
the validity of Theorem 1.3 are satisfied. Let T be given, and assume that T is “large”. We will apply 
Lemma 3.2 with

x = B log T,

where B is a positive number that will be chosen later. Let p1, . . . , pn denote the primes in the interval 
[x/e, ex]. Then we can write the sum in (21) as

n∑
j=1

|aL(pj)|
pσj

cos(t0 log pj − ωpj
)
(
1 −

∣∣∣log pj
x

∣∣∣) + O
(
2x(log t0)−2) + O

(
xδ−σ+1/2 log x

)

1 The second error term, which contains the contribution of the numbers n = pl for l ≥ 2, is given as xδ/(log x) in [15]. However, 
this is not necessarily smaller than the main term, which we will show to be of size roughly x1−σ. Still, some calculations show 
that the error term can actually be bounded by O

(
x2δ−2σ+1/2 log x

)
. Since by assumption δ < 1/2 we have 2δ−2σ+1/2 < 1 −σ, 

as necessary. In the following lines we show how to obtain this upper bound. We have to give an upper bound for

∑
| log n

x
|≤1,

n=pl, l≥2

|b(n)|
nσ

.

Obviously we can assume that l � log x. We know (axiom (iv)) that |b(pk)| � pkδ. Let’s start with l = 2. The contribution is at 
most

∑
e−1x≤p2≤ex

|b(p2)|
(p2)σ

� x
1/2 x2δ

x2σ � x
2δ−2σ+1/2

.

In a similar way, for l = 3 we get a contribution of at most

x
3δ−3σ+1/3 � x

2δ−2σ+1/2
,

since δ < σ. We get similar bounds for the contribution for larger values of l, and, as noted, we can assume that l � log x. Thus 
the total error is at most

x
2δ−2σ+1/2 log x.
.
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We will use Lemma 3.1 with M = 4,

λj = log pj
2π , βj = ωj

2π ,

and

δj = |aL(pj)|
pσj

(
1 −

∣∣∣log pj
x

∣∣∣) .

Then the first condition of the lemma is satisfied due to the linear independence of the logarithms of the 
primes. For the number Λ we get the lower bound

e2πΛ ≥

(∏n
j=1 pj

)4
+ 1(∏n

j=1 pj

)4 ,

which implies that

Λ � e−(1+ε)ex = e−(1+ε)4eB log T (22)

by the prime number theorem (for any fixed ε > 0). Thus by Lemma 3.2 for any two numbers T1 < T2 we 
have

inf
t∈[T1,T2)

n∑
j=1

δj

∥∥∥∥ t log pj − ωj

2π

∥∥∥∥2

≤ Δ
4 sin2

( π

10

)
+ 4nΔ

4πΛ(T2 − T1)
,

where Δ =
∑n

j=1 δj . Note that

cos y ≥ 1 − 2π2
∥∥∥ y

2π

∥∥∥2
, y ∈ R.

Thus we obtain

n∑
j=1

δj cos(t0 log pj − ωpj
) ≥ Δ

(
1 − π2

2 sin2
( π

10

))
︸ ︷︷ ︸

>0.52

− 4nΔ
4πΛ(T2 − T1)

,

and, if we can guarantee that

4n

4πΛ(T2 − T1)
≤ 1

100 , (23)

then we have

n∑
j=1

δj cos(t0 log pj − ωpj
) ≥ 0.51Δ. (24)

Choose μ < η, where η is the number from (9), and assume that B satisfies 4eB < μ. Furthermore, define

T (r) = [T + (r − 1)Tμ, T + rTμ) , 1 ≤ r ≤ T 1−μ.
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Then by (22) and since n � (log T )/(log log T ) for sufficiently large T we have

Tμ ≥ 100 4n

4πΛ ,

which means that (23) holds for T1 and T2 being the left and right endpoints of an interval T (r), respectively. 
Furthermore, by (9), for sufficiently large T there exists an index r ∈ [2, T 1−μ − 1] such that L(σ′ + it) �= 0
for σ′ > σ and t ∈

(
T r−1 ∪ T r ∪ T r+1). Thus by Lemma 3.2 and (24) we have

Re e−iθ logL(s0 + it1) ≥ 0.51Δ + O
(
2x(log t0)−2) + O

(
xδ−σ+1/2 log x

)
for some t0 ∈ T r and t1 ∈

[
−(log t0)2, (log t0)2

]
. In particular we have

max
T≤t≤2T

Re e−iθ logL(σ + it) ≥ 0.505Δ, (25)

provided that T is sufficiently large.
It remains to give a lower bound for Δ. We have

Δ =
∑

∣∣∣log p
B log T

∣∣∣≤1

|aL(p)|
pσ

(
1 −

∣∣∣∣log p

B log T

∣∣∣∣
)
.

In this sum everything is non-negative. Thus a lower bound for Δ is

∑
| log p

B log T |≤1/2

|aL(p)|
pσ

(
1 −

∣∣∣∣log p

B log T

∣∣∣∣
)

︸ ︷︷ ︸
≥1/2

≥
∑

| log p
B log T |≤1/2

|aL(p)|
2(e1/2B log T )σ

. (26)

By (10) we have

∑
| log p

B log T |≤1/2

|aL(p)| ∼
(
e1/2 − e−1/2

)
κ
B log T
log log T .

Combining this with (25) and (26) and choosing μ and B such that B is only slightly smaller than η/(4e)
we obtain

max
T≤t≤2T

Re e−iθ logL(σ + it)

≥ 0.505
(
e1/2 − e−1/2

)
(1 + o(1))κ B log T

log log T
1

2(e1/2B log T )σ

≥
(
1 − e−1)κ

4

(
η

4
√
e

)1−σ (log T )1−σ

log log T ,

for sufficiently large T , which proves Theorem 1.3. �
4. Upper bounds

This section deals with upper bounds for possible large values of L-functions. First, we will discuss what 
one can possibly gain by adopting our method from Section 2 and using a different resonator function r(n). 
It will turn out that by doing so we may only improve the constant CL(σ) in Theorem 1.2. In other words, we 
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cannot expect to get a lower bound greater than maxt∈[T,2T ] |L(σ + it)| ≥ exp
(
c(log T )1−σ/(log log T )θ(σ)), 

unless we carry out some significant modifications of the proof. We shall focus only on the case σ > 1/2, 
for which it is more reasonable to ask for possible improvements. Nevertheless, one can easily adopt this 
argument for σ = 1/2 to get similar conclusion.

Indeed, using the notation from Section 2 it suffices to estimate the ratio∣∣∣∣∣∣
∑

mk=n≤N

aL(k)r(m)r(n)
kσ

∣∣∣∣∣∣
/ ∑

n≤N

|r(n)|2. (27)

Note that for every positive real function g(k) we have 2|r(m)r(mk)| ≤ |r(mk)|2/g(k) + g(k)|r(m)|2. 
Thus for any such function g the numerator of (27) is bounded above by

1
2

∑
n≤N

|r(n)|2
⎛
⎝ ∑

k≤N/n

g(k)|aL(k)|
kσ

+
∑
k|n

|aL(k)|
kσg(k)

⎞
⎠ . (28)

Now let us put

g(k) =
{
|aL(k)|f(k), aL(k) �= 0,
f(k) otherwise,

where f(k) is a multiplicative function such that f(pk) = min(1, (L/pk)β) with 1 −σ < β < σ and L = logN .
Then, noticing that f(pk) ≤ f(p) for every prime p and any positive integer k, the assumption of the 

Selberg normality conjecture (8) gives

∑
k≤N/n

g(k)|aL(k)|
kσ

≤
∏
p

⎛
⎝1 +

∑
k≥1

|aL(pk)|2f(pk)
pkσ

⎞
⎠

≤ exp

⎛
⎝∑

p≤L

|aL(p)|2
pσ

+ Lβ
∑
p>L

|aL(p)|2
pσ+β

+ O(1)

⎞
⎠

� exp
(

(κ + o(1))
(

L1−σ

(1 − σ) logL + L1−σ

(σ + β − 1) logL

))

� exp
(

(κ + o(1)) β(logN)1−σ

(1 − σ)(σ + β − 1) log logN

)
. (29)

Next, from the definition of f(k), we have for n ≤ N that

∑
k|n

|aL(k)|
kσg(k) ≤

∏
pa||n

⎛
⎝1 +

∑
1≤j≤a

1
Lβp(σ−β)j

⎞
⎠∏

p|n

(
1 + 1

pσ − 1

)

≤ exp

⎛
⎝L−β

∑
p|n

1
p(σ−β) − 1

+
∑
p|n

1
pσ − 1

⎞
⎠

= exp
(

(1 + o(1)) (2 − 2σ + β)(logN)1−σ

(1 − σ)(1 − σ + β) log logN

)
.

Therefore, from (28), (29), and the definitions of M1 and M2 we see that this method can ensure the 
existence of large values of L-functions of size at most
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exp
(
c
(log T )1−σ

log log T

)
.

Thus our resonator function was already chosen in a way which is essentially optimal; this is also in ac-
cordance with the results in [9]. The only possibility for a significant improvement seems to be to increase 
the value of N far beyond T 1−ε, as in [1,5] in the context of large values of the Riemann zeta function. 
However, the method of constructing a “sparse” extremely long resonator cannot be transferred from the 
Riemann zeta function to general L-functions, since it depends crucially on the fact that all coefficients in 
the Dirichlet series representation of ζ are positive reals.

Now let us prove Proposition 1.1, which states that, in general, it is impossible to find large values greater 
than exp

(
c(log T )2−2σ/(log log T )

)
as long as we assume the truth of an analogue of the Riemann hypothesis 

for a given L-function.

Proof of Proposition 1.1. We closely follow the proof of [20, Theorem 14.5], where it is shown that our 
assertion holds for the Riemann zeta-function. Hence we shall be very sketchy (see also [7, pp. 74–75]).

It is easy to see that using the Borel–Carathéodory theorem one has

max
|z−2−it|<3/2−δ′

| logL(z)| � 1
δ′

log t,

since Re logL(z) � log t if |z − 2 − it| < (3 − δ′)/2. Moreover, since aL(p) = b(p) and b(pk) � pkδ for some 
δ < 1/2, assumption (7) implies that

max
x>1+η

| logL(x + it)| ≤
∑
p

∑
k≥1

|b(pk)|
pk(1+η) ≤

∑
p

|aL(p)|
p1+η

+
∑
p

∑
k≥2

1
pk(1−δ)

≤ (1 + η)
∞∫
2

∑
p≤u |aL(p)|
u2+η

+ O(1) � 1
η
,

provided η is sufficiently small. Hence, using Hadamard’s three-circles theorem and taking δ′ = η =
(log log t)−1 we obtain that

logL(σ + it) � (log t)2−2σ log log t for 1
2 + 1

log log t ≤ σ ≤ 1. (30)

Now, recall that Kaczorowski and Perelli [11] proved that

NL(T ) = dL
2 T log T + cLT + O(log T ) for some cL > 0,

where NL(T ) counts the non-trivial zeros ρ = β + iγ of L(s) with |γ| ≤ T . Moreover, as it was shown in [2, 
Lemma 4] or [13, Lemma 5], for −5/2 ≤ σ ≤ 7/2,

L′(s)
L(s) =

∑
|t−γ|≤1

1
s− 1/2 − iγ

+ O(log |t|).

Since the number of terms in the sum is � log t, we obtain

L′(s)
L(s) � log t if σ �= 1

2 ,

and
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L′(s)
L(s)

� log t
min{|t− γ} + log t uniformly for −5

2
≤ σ ≤ 7

2
.

Hence, for each interval (n, n + 1) we can find tn such that

L′(s)
L(s) � (log t)2 uniformly for −5

2 ≤ σ ≤ 7
2 , t = tn.

Now let ΛL(n) denote the coefficients of −L′(s)/L(s). Then, using a method of contour integration one 
can show that ∑

n

ΛL(n)
ns

e−δn = − 1
2πi

∫
(2)

Γ(z − s)L
′(z)

L(z) δ
s−zdz (31)

= − 1
2πi

∫
(1/4)

Γ(z − s)L
′(z)

L(z) δ
s−zdz

− L′(s)
L(s) −

∑
ρ

Γ(ρ− s)δs−ρ + O(e−ct).

Hence, short calculations give

−L′(s)
L(s) =

∑
n

ΛL(n)
ns

e−δn +
∑
ρ

Γ(ρ− s)δs−ρ + O(δσ−1/4 log t). (32)

Applying again the fact that NL(T + 1) −NL(T ) � log T gives that the second sum on the right-hand side 
of (32) is � δσ−1/2 log t. In order to estimate the first sum on the right-hand side of (32) we use again (31)
and move the path of integration to Re(z) = σ. Then we have

∑
n

ΛL(n)
ns

e−δn � δσ−1.

Taking δ = (log t)−2 gives

L′(s)
L(s) � (log t)2−2σ,

which, together with (30), easily implies that

logL(s) � (log t)2−2σ

log log t .

In order to get the upper bound for σ = 1 it suffices to integrate (32) over the interval [1, 7/2] with 
δ = (log t)−2. Then, by Ramanujan’s conjecture and the fact that aL(p) � pε, we have

logL(1 + it) ≤
∑
n≤N

|aL(p)|
p

+ O

(∑
n>N

e−δn

)
+ O(1)

≤
∑
n≤N

|aL(p)|
p

+ O

(
1

δeδN

)
+ O(1).

From partial summation and (3), one can easily see that the first sum is ≤ κ log logN +O(1). Thus taking 
N = 1 + [log3 t] completes the proof. �
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5. Further application of Chen’s theorem. Proof of Theorem 1.4

First note that for σ > 1 we have

Re e−iθ logL(s) ≥
∑
p≤x

|aL(p)|
pσ

cos (t log p + θ − ωp) −
∑
p>x

|aL(p)|
pσ

+ O(1),

since b(pj) � pjδ for some δ < 1/2.
Now, let p1, . . . , pn denote all primes not exceeding x. Then, as in the proof of Theorem 1.3, we use 

Lemma 3.1 with M2 = log log log T , T1 = T , T2 = 2T ,

λj = log pj
2π , βj =

ωpj
− θ

2π and δj = |aL(pj)|
pσj

.

Then, for B = 1/(2M), we get MnΛ−1/T = O(T−1/4) and

max
T≤t≤2T

∑
p≤x

|aL(p)|
pσ

cos (t log p + θ − ωp) ≥ (1 + O(M−2))
∑
p≤x

|aL(p)|
pσ

.

Next, one can easily get from (3) and the classical second mean value theorem that

∑
p>x

|aL(p)|
pσ

≤ lim
y→∞

(1 + σ)
y∫

x

∑
p≤u |aL(p)|
u1+σ

du + O(1)

� 1
log x

∞∫
x

u−σdu � x1−σ

(σ − 1) log x,

which is O(1) if σ ≥ 1 + 1
2 log x and σ � 1.

Moreover, by partial summation, we get

∑
p≤x

|aL(p)|
pσ

≥
x∫

2

∑
p≤u |aL(p)|
uσ+1 du + O(1),

and again (3) yields

∑
p≤x

|aL(p)|
pσ

=
x∫

2

κ

uσ+1 log udu + O

⎛
⎝ x∫

2

du

u log2 u

⎞
⎠ + O(1)

= κ li(x1−σ) − κ li(21−σ) + O(1) = −κ li(21−σ) + O(1),

where the last equality is fulfilled for σ ≥ 1 + 1
2 log x .

Now, recall that it is well known (see for example [14, Eq. (9)]) that

li(ξ) = C + log(− log ξ) +
∞∑
j=1

logj ξ
j!j

for some positive constant C and any ξ with 0 < ξ < 1. Therefore, − li(21−σ) = log log 2
σ−1 +O(1), and taking 

σ = 1 + log 2 leads to
log x
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Re eiθ logL(s) ≥ (κ + O(M−2)) log log x + O(1),

which proves (11) by recalling that x = log T
2
√

log log log T
.

In order to show the second assertion, let us write f(s) = L(s)/(log log s)κ and assume that f(1 + it) =
o(1). Obviously f(2 + it) = o(1). Therefore, by the Phragmén–Lindelöf principle, we get a contradiction 
with (11).
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