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1. Introduction

The main purpose of this article is to introduce and to investigate the martingale weak Orlicz—Karamata—
Hardy spaces defined on a probability space 2. The family of weak Orlicz—Karamata spaces is a general-
ization of weak Lebesgue spaces and weak Orlicz spaces. They are defined via the slowly varying functions.
The most typical spaces defined via the slowly varying functions are the Lorentz—Karamata spaces. These
spaces, generalizing Lorentz spaces and Lorentz—Zygmund spaces, were studied in [21,2,3]. We also refer the
reader to [1, Chapter I] for a detailed study of the Karamata theory.

Very recently, there are some works which extend Karamata theory into martingale theory. Atomic
decompositions and duality results of martingale Lorentz—Karamata—Hardy spaces were studied by Ho [9].
Jiao et al. [14] introduced the generalized BMO martingale spaces and improved some results of [9]. Inspired
by [14], Weisz [25] obtained a duality result of multi-parameter martingale Hardy space. Liu and Zhou [16]
proved the dual spaces of the weak Karamata—Hardy spaces.
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It is well-known that the classical weak Hardy spaces in harmonic analysis appear naturally in critical
cases of the study on the boundedness of the operators. Indeed, the classical weak Hardy space wH ! (R"™) was
originally introduced by Fefferman and Soria [4] when they tried to find out the biggest space from which the
Hilbert transform is bounded to weak Lebesgue space wL!(R™) by establishing the atomic decomposition
of wH'(R™). In martingale theory, Weisz [24] first introduced weak martingale Hardy spaces and studied
several martingale inequalities and duality theorems. Recently, some new weak-type martingale spaces have
attracted a lot of attention. Liu et al. [15] introduced weak Orlicz—Hardy space with convex function ®. Jiao
[11] obtained some embeddings between vector-valued weak Orlicz martingale spaces. Lately, Jiao et al. [12]
established the atomic decomposition of weak Orlicz—Hardy space with concave function ®. As applications,
they obtained martingale inequalities and duality theorems. Liu et al. [17] improved some results of [12]
and gave an equivalent characterization of wl, 4 defined in [12]. Yu [27] investigated the dual space of weak
Orlicz—Hardy spaces for Banach space valued martingale. Yang [26] proved the atomic decompositions of
weak Musielak—Orlicz martingale spaces and several martingale inequalities for vector-valued martingales.

Our proofs mainly depend on the establishment of atomic decompositions of weak Orlicz—Karamata—
Hardy spaces. Recall that atomic decompositions were first introduced by Herz [8], generalized by Weisz
[22,23] and developed in [13,9,10,18,20,7] and so on.

The paper is organized as follows. In Section 2, we recall some notation and state some basic properties
about weak Orlicz—Karamata spaces. The weak Orlicz—Karamata—Hardy spaces are also defined in this
section via slowly varying functions. Section 3 is devoted to establishing the atomic decompositions of weak
Orlicz—Karamata—Hardy spaces. Applying the atomic decompositions obtained in Section 3, we prove several
martingale inequalities among weak Orlicz—Karamata spaces in Section 4. In the last section, we show a
duality result.

Throughout this paper, the sets of integers, non-negative integers and complex numbers are always
denoted by Z, N and C, respectively. We use C' to denote a positive constant which may vary from line
to line, and denote by Cg the constant depends only on ®. The symbol A < B stands for the inequality
A < CB or A < CgB. The positive function f is said to be equivalent to the positive function g if f < g
and g < f. The symbol C means the continuous embedding.

2. Preliminaries
2.1. Weak Orlicz—Karamata spaces

Let (Q2, F,P) be a complete probability space. We denote by Lo(€2, F,P), or simply Lo(2), the space of
all measurable functions on (2, F,P).

Definition 2.1. ([2]) A Lebesgue measurable function b : [1,00) — (0,00) is said to be a slowly varying
function, if for any given ¢ > 0, the function tb(t) is equivalent to a non-decreasing function and the
function ¢~¢b(t) is equivalent to a non-increasing function on [1, c0).

Let b be a slowly varying function on [1, c0). Define v, on (0, 00) by
Y(t) = b(max{t,1/t}), t>0.

Remark 2.2. ([2, Proposition 3.4.33]) (1) If b is a non-decreasing function, by the definition of ~,, we know
that v, is non-increasing on (0, 1]. For any given € > 0, the function ¢, () is equivalent to a non-decreasing
function and the function t~y,(t) is equivalent to a non-increasing function on (0, 00). (2) Let 7 > 0. Then
Yo (rt) = (t) for all ¢ > 0. (3) In the paper, we always assume that b is non-decreasing. We refer the reader
to [2, p. 108] for some examples of non-decreasing slowly varying function.
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Let G be the set of all increasing functions @ : [0, 00) — [0, o) satisfying ®(0) = 0. The Orlicz space Lo
is defined as follows:

Lo ={f € Lo(Q) : [flLs < o0},

where

1fllLe = inf{t >0: /@(%)dﬁ” < 1}.

Q

Now we introduce the weak Orlicz—Karamata spaces.

Definition 2.3. Let ® € G and b be a slowly varying function. The weak Orlicz—Karamata space consists of
those functions f € Lo(f2) such that || f||wLs, < oo, where

I fllwLe, = iggt||X{|f\>t}||Lq>'7b(P(|f| > t)).

Note that

1
Peas=oles = g=mmm=10)

By a simple calculation, one can check that

P
lhares = int {5 > 0 supa(ELZ Dy gy <1},

If b=1, then wLe = wLe (see [12] for the definition of wLg). It is also obvious that for any ¢ > 0,

o (D0(BUS1> 1)

Tl JRfl >0 <1

Let ® € G. The lower index and upper index of ® are respectively defined by

L0 %0,

Pe=iS0 a0 0 T o0

It is well known that 1 < pg < g¢ < 0o if @ is convex and 0 < pp < gp < 1 if ® is concave.

Lemma 2.4. ([12, Lemma 1.6]) Let ® € G be concave with go—1 < 0o. Denote p = pg-1, ¢ = qp-1. Then

() Bt . () et . :
—tp( ), % are non-decreasing on (0,00) and t—q(), ﬁ are non-increasing on (0,00).

Example 2.5. Let ®(¢) = t? for 0 < p < 1. Then & satisfies the condition in the lemma above.

Proposition 2.6. Let b be a non-decreasing slowly varying function. For a concave function ® € G with

g1 < 0o, the functional || - ||wr,., i a quasi-norm, i.e., it satisfies the following properties:

(i) Hwach,b >0, and ||fH'lUL<I>,b =0 if and only if f =0;
(i) ICfllwre, = ICll[fllwLe,, VO € C;
(iii) Hf + g||UJLq>‘b < C‘I)(HfHU)L@,b + Hg||IUL<1>,b)'
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Proof. We only show (iii) here. Denote p = pg-1, ¢ = gp-1. Set A = {|f| > t} and B = {|g| > t}. So
{If +g| > 2t} € AU B. Then, by Remark 2.2,

WP f + 9l >2t)) > % ([P(AU B)).

Without loss of generality, we let || f|lwry, = [|9/lwLs, = 1. Applying Lemma 2.4 for ¢ > 0, we have the
following estimate

St (P(1f + gl > 20)))P(|f + g] > 2¢)
< ®(ty(P(AUB))1(P(AUB)) "7 - w(P(If + g| > 20))P(If + g| > 2t)
< Co®(ty,(P(AU B)))w(P(AU B)) ™7 - 3(P(AU B))rP(AU B)

< Ca(@(t(P(A)))P(A) + B(t7,(P(B)))P(B))

<20y,

where the second “<” is because t¢y,(t) is equivalent to a non-decreasing function for any € > 0 and the
third “<” is due to Remark 2.2 (1). Using Lemma 2.4 again, we deduce that

(Qt%(P(If +g| > 2t))
2- (20@)‘1

P(f + gl > 2t)

= (@)%(m(perm > 20)P(|f +g| > 2t) <1,

which implies Hf +gHqu>,b <2 (QC‘I’)q(”fHWch,b + ||g||7UL'1>,b)' g

Remark 2.7. Let ® € G be concave with gg-1 < 0o and b be a non-decreasing slowly varying function. By
the Aoki-Rolewicz theorem ([6, Exercise 1.4.6]), we find that there exists a positive constant v € (0, pp A 1)

such that, for all R € N and {f;}/L,,

I Zf] whe, < 42 [

Proposition 2.8. Let ® € G be concave and b be a non-decreasing slowly varying function. If 0 < ro < pg <
qe <11 < 00, then

L, CwL, CwLsy CwL,,.

Proof. The first inclusion is well-known. Note that t¢y,(¢) is equivalent to a non-decreasing function and
t~y,(t) is equivalent to a non-increasing function for any € > 0. Then, by the Holder inequality, we have,
for any t > 0,

txq s lLew @A > 1) S tixgrsellae v (B(F] > 1)
11
< tixqpselln PAfI > )5ty (P f| > 1))
S txqi1> 63l (1),

which implies that

[fllwre, S NfllwL,., -
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Similarly, we have for any ¢t > 0,

txqs >0 e ®ULT > 8) 2 txqr150 lpe s BUF] > )
— tP(|f| > )= P(f] > t)7= 72y (P(If] > 1)
> (| f] > )7z p(1).

If ro = pg, then we may apply Remark 2.2 (1) to show the second “>” in the above inequalities. Thus, we
deduce that

”waer ~ ||f||qu> pe O

Proposition 2.9. Let ® € G be concave and b be a non-decreasing slowly varying function. Then wLe is
complete.

Proof. To prove the completeness, we take a Cauchy sequence (f;);>1 C wLg . We choose a subsequence
(which we denote by (fi)i>1 C wLs again) with

1
I fiv1 = fillwre, < GOk

For notational reason, we set fy = 0. We consider the function

w) =Y |fira(w) = filw)], weQ.
=0

For A > 0, we find that
X{g>A} < ZX{\le—fzb)\/QHl}‘
1=0

Let v be the same as in Remark 2.7. Then, by Proposition 2.8, we get||fll, < [[fllwLs, for f € wLap (in
fact, wLe, C wL,, C L, for v < 79 < ps). Then

o0 (o)
2(l+1)v
X oo 15 <D I piisazzey s <> o M = filly
=0 =0
e l +1)v e 2(l+1)v o
Z Ifie1 = filloro., SZ— T < oo,
—0 1=0

This implies that || X{g>r}llv = 0 as A — oo and g is finite almost everywhere. Therefore, the series

F=>(fin—f) and f=>(fin—f)=f-h
=0 =1

converge almost everywhere.
According to Remark 2.7, we have

||f||qu,b = 42 | fiyr — fl”qu)b < 422 2l

which deduces that f € wLg ;. Hence, I fllwrs, S [ fllwre, + [ fillwLe, and f € wLley.
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For | € N, consider

o0

f - fl = Z(fm—‘rl - fm)-

m=l

By a similar argument as above, we obtain

2—2[1)

WE

If = fillors, S

3
I

Thus ||f = fillwLs, — 0 as I = oo. The proof is complete. O

2.2. Weak martingale Orlicz—Karamata—Hardy spaces

Now we introduce some standard notations from martingale theory. We refer to books [19,23,5] for the
classical martingale space theory. Let (F,,),>0 be a non-decreasing sequence of o-subalgebras of F such that
0(Up>0Fn) = F. Let E and E,, denote the expectation operator and the conditional expectation operator
with respect to F,,, respectively. For a martingale f = (f5,)n>0 adapted to {Fy, }n>0, we denote its martingale
difference by df,, = fn — fn—1 (n > 0, with convention f_; = 0). Then the maximal function, the square
function and the conditional quadratic variation of martingale f are defined respectively by

My (f)= sup |fil,  M(f) =sup|fil;
0<i<n >0
n 1/2 0o 1/2
Sul(f) = (Z |dfi|2> ., S(f) = (Ddfﬁ) :
i=0 =0

oo

n 1/2 1/2
o) = (Do Bealdfi?) " s() = (D Ealani?)
i=0 i=0
The martingale f = (f,)n>0 is wLg p-bounded if f,, € wLg p for all n > 0 and
Hwach,b = sup anHchp,b < 0.
n>0

We now introduce the martingale weak Orlicz—Karamata—Hardy spaces. Denote by A the collection of all

sequences (A, ), >0 of non-decreasing, non-negative and adapted functions with As = lim,,_,00 Ap,. As usual,
our martingale spaces are defined as follows:

wHa p ={f = (fa)nz0 : [fllwrs y = [M(F)llwee, <00}
wHg = {f = (fa)nzo : Iflwng, = IS(H)lwLs, < ook
wHg p ={f = (fa)nz0 : [fllwrs , = [s(F)llwrs, < o0};
wQpp = {f = (fr)nz20:3An)nz0 € A, st Su(f) < A1, Ao € WL},

1Flu@es = jinf  IAsclhora

wPs = {f = (fa)n>0 : I An)nz0 € A, s.t. |[fu] < A1, Ao € WLlap},

1F s = jind [ Aoclluras

Please cite this article in press as: D. Zhou et al., Martingale weak Orlicz—Karamata—Hardy spaces associated with concave
functions, J. Math. Anal. Appl. (2017), http://dx.doi.org/10.1016/j.jmaa.2017.07.022




Doctopic: Functional Analysis YJMAA:21553

D. Zhou et al. / J. Math. Anal. Appl. ese (sese) eee—see 7

In the end, we recall the definition of regularity. We refer the reader to [19, Chapter 7] for more details.
The stochastic basis (Fy,)n>0 is said to be regular, if for n > 0 and A € F,,, there exists B € F,,_1 such
that A C B and P(B) < RP(A), where R is a positive constant independent of n. A martingale is said to be
regular if it is adapted to a regular o-algebra sequence. This amounts to saying that there exists a constant
R > 0 such that

for all non-negative martingales (f,,)n>0 adapted to the stochastic basis (F,)n>0.
3. Atomic decompositions

In this section, we establish the atomic decompositions of martingale weak Orlicz—Karamata—Hardy
spaces.

Let T be the set of all stopping times with respect to (F,),>0. For a martingale f = (fy)n>0 and 7 € T,
we denote the stopped martingale by f* = (f})n>0 = (fnav)n>0, Where a A b = min(a,b). We recall the
definition of an atom.

Definition 3.1. Let ® € G be concave and 1 < r < co. A measurable function a is called a (1, Lg, r)-atom
(or (2, Lg,r)-atom, (3, Lg, r)-atom, respectively) if there exists a stopping time v € T such that

(1) En(a) =
(2) lls(a)l(

0,Vn<v,

or [|S(a)|l-, ||M(a)||,, respectively) < %

Theorem 3.2. Let ® € G be concave, 1 <1 < oo and b be a slowly varying function. If f € wHg ,, then there
exist a sequence (a¥)rez of (1, Lo, 7)-atoms associating with stopping times vi, and a sequence (uy)rez of
non-negative real numbers satisfying pr = 3 - 2k||X{Vk<OO} L, such that for all n >0,

fn= ZEnak, a.e. (3.1)

kEZ

and

2k~ (P
inf{t>0:sup¢>( (P < 00))

- t JP(k < 00) <1} S |l ,-

Proof. It suffices to show the result for (1, Lg, 00)-atoms. Let us consider the following stopping times for
all k € Z,

v = inf{n € N:s,,1(f) > 2"}.

The sequence of these stopping times is obviously non-decreasing. For each stopping time v, denote f} =
fnnav- It is easy to see that

fu =Y (f1er = f0).

keZ
Forall k € Z,n € N, let

A X T‘L’k+1 _fuk
fie =32 HX{Vk<OO}HLq, and  a, = Tn
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If py = 0, then set a® = 0. Then (a¥),,>¢ is a martingale for each fixed k € Z. Since s(f*) = s,, (f) < 2%,
by the sublinearity of the operator s, we get

() + s

S ((alfl)nzo) < m

) .
< <ol -

Hence (aﬁ)nzo is a bounded Lg-martingale. Consequently, there exists an element a* € L, such that
E,a* = ak. If n < vy, then a¥ = 0. Thus we conclude that a* is really a (1, Lg, o0)-atom. Since {v}, < oo} =
{s(f) > 2*} for any k € Z, we have

[ fllwng, 1w,

q)(z%m(vk < °°>>>p(yk < o0) = q><2’“%(IP’(s(f) > 2”))1[»(5( 52 <1

Thus

(2’“%(@(1/;c < 0))

inf{t>0:sup<1> ;

)P(uk <o) < 1} < ||fllwmz, < oo O
kEZ ’

Theorem 3.3. Let ® € G be concave with gp-1 < 00, 1 <1 < 00 and b be a non-decreasing slowly varying
function. Assume that martingale f has a decomposition (3.1) with a sequence (a*)rez of (1, Le,r)-atoms
and a sequence (pig)kez of nonnegative real numbers satisfying pr = 3 - 2%||X{vp<oo} | Lo, where vy is the
stopping time associated with a*. Then f € wHg ,, and

2k, (P
I fllwrg , < inf {t > 0:sup®( W (P(vp < 00))

P(vy < 00) < 1}.
oo~ vl L ) (Vk OO) =

In order to prove Theorem 3.3, we firstly present several lemmas. Set

2k, (P
B :=inf {t >0: SupCI)( Y (P(vg < 00))

; VP(vg < 00) < 1} < 0.
kEZ

For an arbitrary integer kg, set

f=> mat = B+ B,

kez
where
ko—1 0o
F, = Z ,ukak and Fp = Z ukak.
k=—00 k=ko
Note that
ko—1 o)
s(F) < Y ws(a®), s(Fo) <) pgs(a®).
k=—o0 k=ko

The symbols B, kg, F1 and Fy will be used in the following lemmas.
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Lemma 3.4. Let ® € G be concave with qp—1 < 0o and b be a non-decreasing slowly varying function. Then

¢<2k0ryb(]}p(8(F;) >3- QkO)))P(s(FQ) > 3.2k < (3.2)
> 2k, (P(vp < 00)
C. O ———F5—)P(v < 00).
‘bk_zko ( B ) g

Proof. Since s(a*) = 0 on the set {7, = oo}, we have {s(a*) > 0} C {vx < co}. Then,

{s(Fy) > 3-2F} c {s(F) >0} C kUk {s(a®) >0} kUk {ve < o0} (3.3)
We get that
P(s(Fy) > 3-2k) < P(kg {vp < o0})
and

’}/b(P(S(Fg) >3- 2k0 > ’)/b U {Vk < OO} )
k=ko

®(1)

9 tl/p

since 7p(+) is decreasing on (0, 1] (see Remark 2.2). Denote p = pg-1. According to Lemma 2.4 is

decreasing on (0, 00). Thus we have the following estimate

<I><2k°7b(]ID(S(F2) >3- 2k0)))P(8(F2) > 3. 2%0)

B
< (I)(Qk“%(IP’(UZ“igO{Vk < 00}))) (2k°7b(P(Uz?ig){Vk < OO})))—%
. (2 O’Yb(P( (F;) >3-2 ))) P( (Fz) > 3. 2k0)
250 (P(Upe 1 < 001)) (2709 (U, {vk < 00}))\ =5
= C‘Pq)( B )( B )

ko o0 v 00 b
'(2 ’Yb(MUk:EJ{ k < 00})) )p U {vp < o0})

k=ko

<Cs Z (2 7 Vk<oo)))[?’(1/k<oo),
k=ko

where the second “<” is because t“y;,(t) is equivalent to a non-decreasing function for any € > 0. O

Lemma 3.5. Let ® € G be concave with ge-1 < 00 and b be a non-decreasing slowly varying function. Then
s(Fy) € wLgp and

[s(F2)llwLs, < B-

Proof. By the definition of B, P(v; < 00) < 1/®(2%7,(P(v), < 00))/B) for each k € Z. Denote ¢ = qg-1.

Then, by Lemma 2.4, ﬁ is increasing on (0, 00). Then we obtain
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i (I)(Qko%(ﬂm(yk < oo)))lp(yk <)

k=ko B
> 20y, (P I/k < 00)) 1
= kzko (p( ) ® (28, (P(vi < 00))/B)
< kz; (2 (P Vk < oo))) (2’“%(19’(? < OO)))‘i
. (2’“0%(?’(% < OO))>% 1
B O 2k, (P(vy, < o0))/B)

_ (ko—k)g _
kzkz T = O
0

Applying Lemmas 2.4 and 3.4, we have

. 9ko s(Fy . 9ko
N

1 Va_ 2kory (P(s(Fy) > 3 - 2F0))
(o) "5

)P(S(Fz) >3.2k) <1,
which implies that
[s(F2)llwie, <3(CeCh)?B. O

Lemma 3.6. Let & € G be concave with qp—1 < 00, 1 < r < 00 and b be a non-decreasing slowly varying
function. Then

q>(2ko~yb(P<S(FQ >3- 2%) DVB(s(r) > 3-2%) < .

ko—1

C¢( Z ®<2k0%(2<kfkol>;m>(uk < Oo)))%Q’“*’“OP(uk _ OO)%)T'

k=—o0

Proof. Assume that a* is a (1, Ly, r)-atom for each k € Z. By Chebychev’s inequality, we have

ko—1

1 T
P(s(F) > 3-2%) < H3 2ko TS <3~2ko by ”’CHS(ak)”T)
ko—1 r ko—1 r
<<2k0 Z PPy < 00)F ) g( - 2’“*’60) <1
k= k=—oc0
Denote
1 ko—1
1
1= (2k0 Z 2k l/k<oo)?) .
k=—o00

Since 7, (+) is decreasing on (0, 1], we find that ~,(P(s(Fy) > 3 - 2%0)) > ~,(I). It follows from Lemma 2.4

that tl(/p is decreasing on (0, 00) with p = pg-1. Taking similar argument as Lemma 3.4, we get
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ko s(Fy . 9ko
NEILELTEL L S

<o (R0 (5
. (2’%%(1?(5(1?1) > 3. 2k0))
B

)%P(S(FQ) > 3. 2ko)

ko—1

< C@( 3 (I)(2ko’yb(2(kfk0;]P’(1/k < OO»)%z’“*kop(yk B OO)%)T’

=—00

where the second “<” is because t¢v,(t) is equivalent to a non-decreasing function and the third one is due
to Remark 2.2. The proof is complete. O

Lemma 3.7. Let ® € G be concave with ge-1 < 0o and b be a non-decreasing slowly varying function. Then
s(F1) € wLg, and

[s(FD)llwLa, < B-

Proof. The proof is similar to Lemma 3.5. We give some main calculation. For 1 < r < oo, set J =
2(k=ko)rP(1, < 00). Then, for k < ko,

J <Pk <o00), w(J) = w(P(vg < 00)).

Take 0 < e < L(1— %) Using Lemma 2.4 for the decreasing function %, we obtain

ko—1

3 @(72%2(‘])) " kR, < o0)}

koo
< ’%Z—f @(2kvb(P(g < oo))>% (2k,yb(]P)(g€ _ 00)))—,%,

k=—o0

2k07b(<]) % k—ko 1
. (T) 2 P(v, < 00)
ko—1

4§ Vg < 00))\ ¥ L
= 3 At (PR (e < o)

k=—o00

(W ()77 I TPy, < 00)

<

Since v, (t) is equivalent to a non-decreasing function for any € > 0, we have

((J)) 77 J < Cly(P(ve < 0))) 77 P(v < 00)°.

So, for K, we deduce that

ko—1 k 1
ko) (1— L 259, (P(vg < 00))\ = 1
< (k—ko)(1— & —er) g0 ) L
K< Ck_g_ 2 <I>( 7 P(v < 00)
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Note that » > 1 and p > 1. We find that 1— % —er > 0. Then, it follows from ® (2%, (P(1, < 00))/B)P(v; <
o0) < 1 that
ko—1
K<C Y obk)lomma) 2 0 < oo,

k=—o00

Applying Lemmas 2.4 and 3.6, we have

(¥ 20, (P(s(Fy) > 3 - 2%0))
3(CsC%)91B

t/q ko S . 9ko
< (@) / <I>(2 ¥ (IP( (F;) >3.2 )))]P’(s(Fl) S 3oy <1

)]P’(s(Fl) > 3. k)

which implies that

[s(FD)lwLs, <3(CeC3)?B. O

Remark 3.8. Assume that f = f,%o + f,fo. Combining Lemmas 3.5 and 3.7, we also have shown that if f,%o
satisfies (3.2) and f satisfies (3.4) (replacing s(Fy), s(F») by fi, f7 ), then f € wLgp and || fllwL,, S B-
This observation will be used to prove martingale inequalities between various weak Orlicz—Karamata—Hardy
spaces.

Proof of Theorem 3.3. Assume that a martingale f has the decomposition as (3.1). We use the symbols

mentioned before Lemma 3.4. Let us firstly deal with r = co. Since a* is a (1, Lg ), 00)-atom for every k € Z,

we find that

ko—1

ls(FD) e < D mnlis(a®)los

k=—o0
ko—1
< D mlixgre<ooyllzy <3-2%.

k=—o00

Thus we can deduce that
{5(f) > 62"} c {s(F,) > 3-2M}
and
[ f oz, S Ns(F2)lwLs -

Then, by Lemma 3.5, we prove the conclusions of theorem.
For the case r < 0o, note that

[ fllwerg , S NsFD)lwes s + [15(F2) lwis -
We apply Lemmas 3.5 and 3.7 to complete the proof. O

Theorem 3.9. In Theorems 3.2 and 5.3, if we replace wHg , and the (1, Ly, r)-atoms by wQae, and
(2, Ly, 00)-atoms (or by wPg and (3, Ly, 00)-atoms, respectively), then the conclusions still hold.
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Proof. The proof is similar to Theorems 3.2 and 3.3, so we only give it in sketch. Let f = (fn)n>0 € wQa b
(or wPy ). The stopping times v’s are defined by

v =inf{n € N: \, > 2"}, (inf = c0),

where (A, )n>0 € A. Let a¥ and py (k € Z) be the same as in the proof of Theorem 3.2. Then we get (3.1),
where (a*)ez is a sequence of (2, Lg, 00)-atoms (or (3, Lg, o0)-atoms). Moreover,

(2’“%(11”(% <))

inf{t>0:sup<1) r

)P < 0) <1} < [ fllwgas (0 11 lors,s)
keZ

still holds.
To prove the converse part, let

An = ZMkX{VkSn}HS(ak)”oo (or Ay = ZMkX{ngn}HM(ak)Hoo)-
kEZ keZ

Then (A)n>0 is a non-decreasing, non-negative and adapted sequence with Sp,4+1(f) < Ay (or |frnt1] < An)
for any n > 0. For any given integer kg, let

Moo = A + 20,

where
ko—1 ko—1
A = 3 fix s 19@)lloo 08 AD = 3 pixqcoe M (@)]10),
k=—o00 k=—o0
and

AD = X (<o} [18(a") oo (0 A = >~ X (v o0} 1M (a¥) | )-
k=ko k=ko

By replacing s(Fy) and s(F3) in Lemmas 3.5 and 3.7 with AL and A2, we obtain f € wQayp (or f €
’U)Pq>7b). O

Proposition 3.10. Let ® € G be concave with qp-1 < 0o and b be a non-decreasing slowly varying function.
If (Fu)n>o is regular, then

5
wHg ), CwQap, wHep CwPyp.

Proof. We only give the proof for wHe C wPs . The other one can be shown in a similar way. Take
f € wHg . It follows from the regularity of (F,)n>0 that there exists a sequence of stopping times v such
that

(M(f) > 2"} c {up <00}, M, (f) <2F, P(uy, < 00) < RP(M(f) > 2F)

and vg < vg41, vk T oo according to [19, Definition 7.1.1]. Then we have the following decomposition

Fu =D (Fmer = f10).

kEZ
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Also, define

Vi+1 Vi
T R i

U =3 ok ||X{l/k<00}||Lq> , and a, = i

Then a* = (ak),>0 is a (3, Ly, 00)-atom for each k € Z.
Now we know that f has a decomposition of (3.1) with a sequence (ux)rez of non-negative real numbers
satisfying pur = 3 - 2’“||X{,,k<oo}||Lq>. Applying Theorem 3.9, we get that

f S UJP@,[).

The proof is complete. O
4. Martingale inequalities

As an application of the atomic decompositions, we obtain a sufficient condition for a o-sublinear operator
to be bounded from the martingale Hardy spaces to wLg p.
An operator T : X — Y is called a o-sublinear operator if for any o € C it satisfies

()

where X is a martingale space and Y is a measurable function space. For 0 < r < oo, the martingale Hardy
space H: is defined as HS = {f : || fllu: = ||s(f)|l» < oc}. Similarly, we may define H? and H, with respect
to the operators S and M.

<D IT(f)l and |T(af) = lallT(f)],
k=1

Theorem 4.1. Let ® € G be concave with ge—1 < 00, 1 <1 < 00 and b be a non-decreasing slowly varying
function. If T : H? — L, is a bounded o-sublinear operator and

{|Ta| >0} C {v < oo} (4.1)
for all (1, Ly, 00)-atoms a, where v is the stopping time associated with a, then
||Tf||'lUL<I>‘b S HfHWHgyba f € wH%,b‘

Proof. The proof is similar to Lemmas 3.4-3.7. So we only give it in sketch. Let a martingale f € wHg ;.
By Theorem 3.2 we know that f has the decomposition as (3.1) such that a* is a (1, Lg, 0o0)-atom and
te = 3+ 2%||X{rp <oo} | Lo - For an arbitrary integer ko, we set again

f= Zﬂkak = F1 + Iy,
k

where
ko—1 oo
F; = Z ,ukak and F5 = Z ykak.
k=—o0 k=kq

Note that, by the o-sublinearity of the operator T', we have

ko—1 oo
T(F) < D mlT(@")], [T(F) < Y mlT(ab)]. (4.2)
k=—o00 k=kq

We need to estimate | T'(F1)||wLy., and [|[T(F2)|lwLy ,, separately.
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We first estimate ||T(F1)|lwLy,- Since a¥ is a (1, Lg,00)-atom for each k € Z, we have |s(a”)[o <

X (<00} ||Zi It follows from the boundedness of T" that ||T'f||, < Cy||f| zs. Then, by Chebychev’s inequal-
ity, we have

T(F) | ey "
Br(F) > 3-2%) < || TOD | < (Lo S rad)),)
k=—o00
1 ko—1 r
<Co(5m O mlsta)l)
k=—o00
= -
<G(53m X mls@)lalxom< )
| ol , ko—1 -
<G5 X 2Pu<oo)) <c( Y 20) <c.
k=—o00 k=—o0

By Remark 2.2(2), we have

W(B(T(Fy) > 3-2%)) < Cs%(ciﬂj’(T(Fl) > 3-2%)).

r

Then, by using the same argument of Lemma 3.6, we obtain

(I)(Qko’yb(P(T(Fl) >3- Qk‘J))

B JBET(F) > 3-2%) < Cacya( O

B
where [ is same to the one appeared in Lemma 3.6. Following the line of Lemma 3.7, we get

IT(F)lwLs, S B-

Now we start to estimate ||T'(F2)||wr,,- According to condition (4.1),

{T(Fy) > 2%} c {T(Fy) >0} C [j {T(a*) >0} C [j {v, < o0}
k=ko k=ko

So, repeating the calculation of Lemmas 3.4 and 3.5, we easily obtain

IT(F)l[wras S N fllwe,,-

The proof is complete now. O
Remark 4.2. Compared with [12; Theorem 3.1], we do not need the condition p(}%l < 7 any more.
Similar to Theorem 4.1, we obtain the following theorem by applying Theorem 3.9.
Theorem 4.3. Let & € G be concave with ge-1 < 00, 1 < r < 0o and b be a non-decreasing slowly vary-
ing function. If T : HY — L, (or H, — L,) is bounded o-sublinear operator and (4.1) holds for all

(2, Ly, 00)-atoms (or (3, Ly, 00)-atoms), then

||Tf||wL<1>,b S ||f||wQ<1>,b> f € wQ@,bv

(OT ||Tf||7ULq>,b S ||f||wpq>,b? f € wP‘T",b>‘
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Theorem 4.4. Let & € G be concave with qp—1 < 0o and b be a non-decreasing slowly varying function. Then
the following inequalities hold:

[ llwrre, S W llweg o W fllwmg, S 1fllwmg (4.3)
[ llwre, < W fllwpass 1 llwmg, < 1flloQs.; (4.4)
1 lzg, S W llwpsss 1 flwrs, S 1Fllwes,; (4.5)
[ llwrg, S W llwpsys 1 llwms , S 1 lo@s (4.6)
1 llwpe S 1 llw@e, S I llwps- (4.7)

Moreover, if {F,}n>0 is regular, then
s
wH<I>7b = U}Qq>7b = U)Pq;.’b = qu>7b = wH;b
with equivalent quasi-norms.

Proof. First we show (4.3). Let f € wHg ;. The maximal operator 7' = M is o-sublinear and [[M fl|2 <
IIs(f)]l2 (see [23, Theorem 2.11(i)]). If a is a (1, L, 00)-atom and 7 is the stopping time associated with a,
then {|Ta|] > 0} = {M(a) > 0} C {v < oo} and hence (4.1) holds. Thus it follows from Theorem 4.1 that

[ lwrs, = 1T lwrs, S 1 llwe,

Similarly, considering T'f = S f, we get the second inequality of (4.3) by Theorem 4.1.

(4.4) comes easily from the definitions of these martingale spaces.

Next we show (4.5). Consider T'f = Mf or Sf. Then (4.5) follows from the combination of the
Burkholder—-Gundy (see [23, Theorem 2.12]), Doob’s maximal inequalities

SOl = IMflle = Fll- (<7 <o0)

and Theorem 4.3.
(4.6) can be deduced by applying the inequalities (see [23, Theorem 2.11(ii)])

[s(Hllr S NMfllrs Ms(HI- S NS, 2 <7 <00,

and Theorem 4.3.
To prove (4.7), we use (4.5). Assume that f = (f,)n>0 € wQa,p, then there exists an optimal control
(M) nzo such that S, (f) < A with A& € wLg . Since

|fn| S Mn—l(f) +)\ n—1°

by the second inequality of (4.5) we have

Hf”wpé,b < C(Hf||IUHq>,b + ”)‘&)HUJJ@,I;) S ||waQ<1>,b'

On the other hand, if f = (fn)n>0 € wPpp, then there exists an optimal control ()\512))”20 such that
[ful < A 2) , with /\( € wLg . Notice that

Su(f) < Sna(f) + 222

Using the first inequality of (4.5), we get the rest of (4.7).
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Further, assume that {F, },>¢ is regular. Then according to [23, p. 33], we have

Su(£) < RVZsu(f) and | fllwms, S I fllwmg,,
Since s, (f) € Fn—1, by the definition of wQg¢  we have
1 llw@ss S N5 lwes s = 1flwrg ,
Hence, by (4.6) we obtain
wQap = wHE .
Combining Proposition 3.10, the inequalities (4.5) and (4.7), we get
ngyb =wQap =wPsp =wHgp.

Consequently, we conclude that these five kinds of weak Orlicz—Karamata—Hardy martingale spaces are
equivalent. O

5. Duality result

In order to deal with the duality, we define, strongly inspired by [13, Definition 1.1] (see also [14]), the
following generalized weak BMO martingale spaces associated with slowly varying functions.

Definition 5.1. Let b be a slowly varying function. For a function ¢ : (0,00) — (0, 00), the generalized weak
BMO martingale space for 1 < r < oo is defined by

wBMOT,qs,b = {f €L, : ||waBM0r,¢,b < OO}’
where

5 2P <o) LS = S
c

21212 2k~ (P(vg, < 00))P(vg < 00)p(P(vg, < 00))’

Hf||wBMOr,¢,b = sup
where the supremum is taken over all stopping time sequences {vj}rez C T such that {2Fq,(P(vy <
00))P(v < 00)p(P(ve < 00))} ez € loo-

Definition 5.2. (/12, Definition 1./]) Let ® € G be concave with gg—1 < oo and b be a non-decreasing slowly
varying function. Denote by wLs ; the set of all f € wLsp having the absolute continuous quasi-norm

defined by

Loy = Lep: Ui w =0t.
WL b {f€w d.b ]P’(flll)ILOHfXA“ Ly }

Note that wLs  is a linear closed subspace of wLg . Moreover, Ly C wLg p, for concave ® € G. Now we
define a closed subspace of wHg, ;, as follows

erfI),b = {f = (fn)nzo : S(f) € w‘C‘I’,b}-

Similarly, we can define wHe , which is also a linear closed subspace of wHg .
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Remark 5.3. Using similar argument as in [12, Remark 2.2], one can check that the space HS = Ly is dense
in wHg ;. Moreover, if the stochastic basis {7, }n>0 is regular, then Lo is dense in wHg ;.

The following duality theorem is the main result of the section.

Theorem 5.4. Let & € G be concave with qg—1 < 00 and b be a non-decreasing slowly varying function. Let
#(s) =1/(s®71(1/s)) for s € (0,00). Then

(w”HfI,’b)* = wBMOQ,d;,b.

Proof. Let g € wBMO3 4 C Lo. Define

ly(f) ZE(dekdgk>, f € L.

kEZ

By Remark 5.3, Ly C wHg ;. Then according to the Theorem 3.2, there exists a sequence (a*) ez of
(1, Lg, 00)-atoms and a sequence (i )kez of non-negative real numbers satisfying px = 3+ 2¥||x {1 <ot | Lo
such that

fn = ZukEnak a.e. VneN.
kEZ

By the definition of || - [|wBaro0, ,, We have
1) = [E(f9)l < > pxlE(a*(g = g"))
k
<> ulla®lallg = g7 12
k
< 3llglwpro, sup 2k 4, (P(1 < 00))P(1p < 00)d(P(vg < 00))

< 3|lgllwBros 40l fllwrg ,-

Since Ly is dense in wHg ;, (see Remark 5.3), [ can be uniquely extended to a continuous linear functional
on wHg, .

Conversely, let [ € (w?-[;b)*. Since Ly can be embedded continuously in wHg, ,, there exists g € Lo such
that

I(f)=E(fg)  [€ Lo
Let {v;}rez be a sequence of stopping times satisfying
{289, (P( < 00))P (1, < 00)d(P(vg < 00)) }rez € oo

For k € Z and arbitrary non-negative N, we define

N
— g”*|sign(g — g"* v
By = |9 g |_g l,E,g g )’ fN _ Z Qk(hk _ hkk)P(Vk < 0)7.
PR 2

[NIE

Set

1% 1 —
a* = (hy — hi* )Pk < 00)2 X (s <oot Iz,
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It is obvious that a* is a (1, Lg,2)-atom for each k € Z. Then
| X
=53 ma,

k=—N

where p =3 - 2k||x{,,k<oo}||L¢. Thus, applying Theorem 3.3, we obtain that f~ € wH§ , and
1N N, < CSl;p 25y, (P(v, < 00))P(vg < 00)p(P(1 < 0)).
So we obtain

N
3" 2P < 00)' R lg — g%
k=—N

N
— Z 26P(1 < oo)%E(hk(g —9"))
k=N

N
> 2"P(1y < 00)E((hy — h*)g)
k=—N

E(fNg) = 1(N) < 15N w111
< CSI;ID 2%y, (P(vg < 00))P(vi < 00)¢(P(vy, < 00))]l1]].

By the definition of || - [|wBnrO,,4.,, We get [|9llwBro, 4, < CIlI. O

Remark 5.5. Let ® € G be concave with ¢p-1 < 0o and b be a non-decreasing slowly varying function. Let
#(s) = 1/(s®71(1/s)) for all s € (0,00). Moreover, assume that the stochastic basis {F,}n>0 is regular.
Taking similar argument as above, we may prove that for 1 < r < oo,

(WHaop)" =wBMO; 4, and (wHaep)" = wBMO, 4.
Hence we have the following John—Nirenberg theorem.

Corollary 5.6. Let ® € G be concave with qp—1 < 00 and b be a non-decreasing slowly varying function. Let
#(s) = 1/(s®1(1/s)) for all s € (0,00). If the stochastic basis {Fy, }n>o is reqular and 1 <r < oo, then

wBMOl,(b,b = wBMOM),b
with equivalent norms.
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