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ON THE NORM ATTAINMENT SET OF A BOUNDED LINEAR

OPERATOR

DEBMALYA SAIN

Abstract. In this paper we explore the properties of a bounded linear oper-
ator defined on a Banach space, in light of operator norm attainment. Using
Birkhoff-James orthogonality techniques, we give a necessary condition for a
nonzero bounded linear operator to attain norm at a particular point of the
unit sphere. We prove four corollaries to establish the importance of our study.
As part of our exploration, we also obtain a characterization of smooth Banach
spaces in terms of operator norm attainment and Birkhoff-James orthogonal-
ity. Restricting our attention to l2p(p ∈ N \ {1}) spaces, we obtain an upper
bound for the number of points at which any linear operator, which is not a
scalar multiple of an isometry, may attain norm.

1. Introduction.

The principal aim of this paper is to explore the structure and properties of
the norm attainment set of a nonzero bounded linear operator on a Banach space.
Regarding the existential question of the norm attainment of a bounded linear op-
erator, it is well known that a compact linear operator on a reflexive Banach space
must attain norm at some point of the unit sphere. Furthermore, if the Banach
space is strictly convex then any nonzero continuous linear functional defined on the
space can not attain maximum at more than one point of the unit sphere. However,
to the best of our knowledge, no analogous result is available in the literature for
bounded linear operators on Banach spaces. On the other hand, information regard-
ing many important properties of a bounded linear operator, including smoothness
of the operator [6], can be deduced from the norm attainment set of the operator.
In the present paper, using Birkhoff-James orthogonality techniques, we strive to
obtain a computable necessary condition for a bounded linear operator on a Banach
space to attain norm at a particular point of the unit sphere.
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Let us first fix our notations and terminologies. In this paper, letters X,Y denote
Banach spaces. Throughout the paper, we consider the Banach spaces to be real.
Let BX = {x ∈ X : ‖x‖ ≤ 1} and SX = {x ∈ X : ‖x‖ = 1} be the unit ball and
the unit sphere of the Banach space X respectively. Let L(X,Y)(K(X,Y)) denote
the set of all bounded (compact) linear operators from the Banach space X to the
Banach space Y. We write L(X,Y) = L(X) and K(X,Y) = K(X), if X = Y.

For any two elements x, y ∈ X, x is said to be orthogonal to y in the sense of
Birkhoff-James, written as x ⊥B y, if

‖x‖ ≤ ‖x+ λy‖ for all λ ∈ R.

Likewise, for any two elements T,A ∈ L(X,Y), T is said to be orthogonal to A in
the sense of Birkhoff-James, written as T ⊥B A, if

‖T‖ ≤ ‖T + λA‖ for all λ ∈ R.

We refer the readers to the classic works [2, 3, 4], for more information on Birkhoff-
James orthogonality. For a bounded linear operator T ∈ L(X,Y), let MT denote
the collection of all unit vectors in X at which T attains norm, i.e.,

MT = {x ∈ SX : ‖Tx‖ = ‖T‖}.
In this paper, given T ∈ L(X,Y), we first obtain a necessary condition for x ∈
SX to be such that x ∈ MT . The condition can be expressed in a particularly
convenient form, if the Banach spaces X,Y are smooth. Let us recall that an
element (0 �=)x ∈ X is said to be a smooth point if there is a unique hyperplane
H supporting B(0, ‖x‖) at x, where B(0, ‖x‖) is the closed ball with center at 0
and radius ‖x‖. Equivalently, x is said to be a smooth point if there is a unique
linear functional f ∈ X

∗ such that ‖f‖ = 1 and f(x) = ‖x‖. From [3] it follows
that x is a smooth point if and only if x⊥By and x⊥Bz implies x⊥B(y + z), i.e.,
if and only if Birkhoff-James orthogonality is right additive at x. We say that X is
smooth if for each nonzero x ∈ X, x is a smooth point. Let us also observe that the
concept of smoothness is applicable for bounded linear operators between Banach
spaces by treating the bounded linear operators as elements of the operator space,
which itself is a Banach space. As it turns out, a particular concept, introduced
in [8], plays a very significant role in the whole scheme of things. For the sake of
completeness, let us mention the relevant definitions here:
For any two elements x, y in X, let us say that y ∈ x+ if ‖x + λy‖ ≥ ‖x‖ for all
λ ≥ 0. Accordingly, we say that y ∈ x− if ‖x + λy‖ ≥ ‖x‖ for all λ ≤ 0. Basic
properties related to this notion have been explored in Proposition 2.1 of [8]. Let
x⊥ = {y ∈ X : x ⊥B y}. Using these concepts, we obtain a necessary condition for
a nonzero T ∈ L(X,Y) to attain norm at x ∈ SX. We prove four corollaries to our
main result, Theorem 2.3, in order to illustrate its importance and strength. Let
us recall the relevant definitions in this context.
For an element x ∈ X, let us say that x is left symmetric (with respect to Birkhoff-
James orthogonality) if x ⊥B y implies y ⊥B x for any y ∈ X. Similarly, let us say
that x is right symmetric (with respect to Birkhoff-James orthogonality) if y ⊥B x
implies x ⊥B y for any y ∈ X. T ∈ L(X) is said to satisfy the Daugavet equation if
‖I + T‖ = 1 + ‖T‖, where I is the identity operator on X. We apply Theorem 2.3
to obtain various interesting properties of a bounded linear operator on a smooth
Banach space. First, we obtain an expression for the kernel of a nonzero bounded
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linear operator defined on a Banach space. Next, we prove that if the underlying
Banach space is finite dimensional, strictly convex and smooth, then every linear
operator, satisfying the Daugavet equation, must have an invariant subspace of
codimension one. We also prove that in a finite dimensional smooth Banach space
X, if the kernel of a nonzero linear operator T contains a nonzero right symmetric
point, then span MT is a proper subspace of X. As the last corollary, we prove that
in smooth Banach spaces, image of a left symmetric point under an onto isometry
must be a left symmetric point.
It is easy to observe that T ∈ L(X) is a scalar multiple of an isometry if and only
if MT = SX. It was proved in [5] that a norm one linear operator T ∈ L(X) is an
isometry if and only if T preserves Birkhoff-James orthogonality, i.e., x ⊥B y ⇒
Tx ⊥B Ty. Motivated by this characterization of isometries on Banach spaces, it is
natural to ask whether every bounded linear operator must preserve Birkhoff-James
orthogonality at some point of the unit sphere. It was indeed a pleasant surprise to
us that this question can be answered in the affirmative for nonzero compact linear
operators defined on reflexive and smooth Banach spaces. In this connection, we
also obtain a characterization of smooth Banach spaces in terms of operator norm
attainment and Birkhoff-James orthogonality.
As another potential application of Theorem 2.3, we explore the possible norm
attainment set of a bounded linear operator defined on l2p spaces. For a bounded
subset A of a Banach space X, let |A| denote the cardinality of A. If A is finite
then |A| is the number of elements in A. Let T ∈ L(l2p)(p ∈ N \ {1}) be such

that T is not a scalar multiple of an isometry on l2p. Using Theorem 2.3, we prove
that |MT | ≤ 2(8p − 5). To the best of our knowledge, such an estimation is being
presented for the very first time. It should be noted that our estimation may not
be optimal and there remains the scope to obtain better estimations by using other
geometric and analytic arguments. Moreover, we strongly expect that such a result
would open up the possibilities of obtaining analogous results for bounded linear
operators defined on classical Banach spaces of higher dimensions.

2. Main Results.

Let us begin this section with an easy proposition.

Proposition 2.1. Let X,Y be Banach spaces, T ∈ L(X,Y) be nonzero and x ∈ MT .
Then for any y ∈ X, Tx ⊥B Ty ⇒ x ⊥B y.

Proof. If possible suppose that x �⊥B y. Clearly, y is nonzero. Now, since x �⊥B y,
there exists a nonzero scalar λ0 ∈ R such that ‖x+ λ0y‖ < ‖x‖ = 1. Without loss
of generality, we may and do assume that λ0 < 0. Using the convexity property of
the norm function, it is easy to show that for any λ ∈ [λ0, 0), ‖x+ λy‖ < ‖x‖ = 1.
We also note that ‖x+λy‖ can not be zero for two different values of λ. Therefore,
without loss of generality, we may and do assume that ‖x+ λ0y‖ > 0. This proves

that it is legitimate to consider the element z = x+λ0y
‖x+λ0y‖ . Clearly, z = αx + βy,

where α = 1
‖x+λ0y‖ > 1, β = λ0

‖x+λ0y‖ < 0. We note that ‖Tx‖ > 0, since T is

nonzero and x ∈ MT . Now, we have,
‖Tz‖ = ‖αTx + βTy‖ = |α|‖Tx + β

αTy‖ ≥ |α|‖Tx‖ > ‖Tx‖ = ‖T‖, since |α| >
1, Tx ⊥B Ty, x ∈ MT . However, this is clearly a contradiction, since ‖z‖ = 1. This
completes the proof of the proposition. �
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In fact, the converse to Proposition 2.1 is also true if both X,Y are smooth
Banach spaces. To this end, let us prove a more general result that also gives a
necessary condition for the norm attainment of a nonzero bounded linear operator
on a Banach space, at a particular point of the unit sphere. In order to prove the
desired result, we make use of the following easy proposition, stated in [8].

Proposition 2.2. Let X be a real normed linear space and x, y ∈ X. Then the
following are true:
(i) Either y ∈ x+ or y ∈ x−.
(ii) x ⊥B y if and only if y ∈ x+ and y ∈ x−.
(iii) y ∈ x+ implies that ηy ∈ (μx)+ for all η, μ > 0.
(iv) y ∈ x+ implies that −y ∈ x− and y ∈ (−x)−.
(v) y ∈ x− implies that ηy ∈ (μx)− for all η, μ > 0.
(vi) y ∈ x− implies that −y ∈ x+ and y ∈ (−x)+.

Now we are ready to prove the following necessary condition for the norm at-
tainment of a nonzero bounded linear operator.

Theorem 2.3. Let X,Y be Banach spaces, T ∈ L(X,Y) be nonzero and x ∈ MT .
Then
(i) T (x+ \ x⊥) ⊆ (Tx)+ \ (Tx)⊥,
(ii) T (x− \ x⊥) ⊆ (Tx)− \ (Tx)⊥.
If in addition, both X and Y are smooth then T (x⊥) ⊆ (Tx)⊥.

Proof. Let us first prove (i). Let u ∈ x+ \ x⊥ be chosen arbitrarily. Since x �⊥B u,
there exists a nonzero scalar λ0 such that ‖x+λ0u‖ < ‖x‖ = 1. Clearly, u is nonzero.
Since u ∈ x+, we must have λ0 < 0. Once again, applying the convexity property of
the norm function, it is easy to observe that for any λ ∈ [λ0, 0), ‖x+λu‖ < ‖x‖ = 1.
We also note that if T (x + λu) = 0 for two different values of λ ∈ [λ0, 0), then by
the linearity of T, we obtain Tx = 0. Since x ∈ MT , this implies that ‖T‖ = 0,
i.e., T is the zero operator, a contradiction to our hypothesis. Therefore, without
loss of generality we may and do assume that ‖T (x+ λ0u)‖ > 0. In particular, this
implies that ‖x+ λ0u‖ > 0.
Following the same motivation, as in the proof of Proposition 2.1, consider the el-
ement z = x+λ0u

‖x+λ0u‖ = αx+ βu, where α = 1
‖x+λ0u‖ > 1, β = λ0

‖x+λ0u‖ < 0. Now, we

have,
‖Tz‖ = ‖αTx + βTu‖ = |α|‖Tx + β

αTu‖ > ‖Tx + β
αTu‖, since |α| > 1 and

‖Tx+ β
αTu‖ = 1

α‖T (αx+ βu)‖ = 1
α‖x+λ0u‖‖T (x+ λ0u)‖ > 0.

We claim that Tu /∈ (Tx)−. Suppose, Tu ∈ (Tx)−. Since β
α < 0, it follows from

(iii) and (vi) of Proposition 2.2 that β
αTu ∈ (Tx)+. Therefore, we have,

‖Tz‖ > ‖Tx+ β
αTu‖ ≥ ‖Tx‖ = ‖T‖, since x ∈ MT . Clearly, this is a contradiction

as ‖z‖ = 1. Thus, we must have, Tu /∈ (Tx)−. It now follows from (i) and (ii) of
Proposition 2.2 that Tu ∈ (Tx)+ \ (Tx)⊥. Since u ∈ x+ \x⊥ was chosen arbitrarily,
this completes the proof of (i).
The proof of (ii) can now be completed using similar arguments.
Let us now assume that in addition, X,Y are smooth Banach spaces. Then there
exists a unique hyperplane of support x+H0 to BX at x, where H0 is a subspace of
X, having codimension one. Clearly, H0 ≡ x⊥. H0 divides X into two closed half-
planes whose intersection is H0. Let H1 denote the closed half-plane containing x
and let H2 denote the other closed half-plane. Then it is easy to see that H1 ≡ x+
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and H2 ≡ x−. Furthermore, every element of H0 can be approximated by elements
exclusively from either of the sets H1 \H0 and H2 \H0.
Let w ∈ x⊥ be arbitrary. Let {yn} be a sequence in H1 \H0 such that yn −→ w. It
now follows from (i) and the respective identifications of x⊥, x+ with H0, H1 respec-
tively, that T (yn) ∈ (Tx)+ \ (Tx)⊥. Since T is continuous and yn −→ w, we must

have, Tw ∈ (Tx)+ \ (Tx)⊥. Now, considering a sequence in H2 \H0 that converges

to w and using similar arguments, it is easy to show that Tw ∈ (Tx)− \ (Tx)⊥.
Thus, we have,

Tw ∈ (Tx)+ \ (Tx)⊥ ∩ (Tx)− \ (Tx)⊥.
However, since Y is smooth, (Tx)+ \ (Tx)⊥ ∩ (Tx)− \ (Tx)⊥ = (Tx)⊥. This proves
that Tw ∈ (Tx)⊥ for each w ∈ x⊥, thereby completing the proof of the theorem. �

Remark 2.1. Theorem 2.3 can be interpreted geometrically in a nice way. Let X
be a smooth Banach space and let T ∈ L(X) be nonzero. If x ∈ MT then the image
of the hyperplane x⊥ under T is a subset of the hyperplane (Tx)⊥. In particular,
this implies that some information regarding MT may be obtained, even without
knowing the action of T on the whole space X. For instance, if x, y ∈ SX are such
that x ⊥B y and Tx �⊥ Ty then Theorem 2.3 ensures that x /∈ MT , irrespective of
the action of T on other vectors.

In the following diagram, let us pictorially illustrate the necessary condition for
the norm attainment of a nonzero linear operator, when the underlying Banach
space is two dimensional and smooth. Without loss of generality we assume that
‖T‖ = 1.

In the diagram, x⊥ ≡ L1 and (Tx)⊥ ≡ L2. Theorem 2.3 states that if x ∈ MT

then T (L1) ⊆ L2. Of course, if T is invertible then T (L1) = L2.

O x

Tx

L1
L2

SX

Figure 1. Necessary condition for operator norm attainment

We now obtain a number of corollaries to our main result, Theorem 2.3, in
order to establish its significance. We would also like to remark that the varying
applications of Theorem 2.3 betray its strength and importance in the study of
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the geometry of Banach spaces. First, we obtain an expression for the kernel of a
nonzero bounded linear operator defined on a Banach space, in terms of the norm
attainment set.

Corollary 2.3.1. Let X be a Banach space and let T ∈ L(X) be nonzero. Then

ker T ⊆
⋂

x∈MT

x⊥.

In particular, if X is a two dimensional strictly convex Banach space, then any
linear operator attaining norm at more than one pair of points must be invertible.

Proof. We first note that if T does not attain norm, i.e., MT = ∅, then the first
part of the theorem follows trivially. Let us assume that MT �= ∅. Let z ∈ ker T be
chosen arbitrarily. For any x ∈ MT , we have, Tz ∈ (Tx)⊥, since Tz = 0. Theorem
2.3 implies that z /∈ x+\x⊥ and z /∈ x−\x⊥. Since X = (x+\x⊥)∪(x−\x⊥)∪x⊥, it
now follows that, z ∈ x⊥. As this is true for every z ∈ ker T and for every x ∈ MT ,
we must have:

ker T ⊆
⋂

x∈MT

x⊥.

Let us now assume that X is a two dimensional strictly convex Banach space
and let T ∈ L(X). Let x1, x2 ∈ MT be such that x1 �= ±x2. We first claim that
x⊥1 ∩x⊥2 = {0}. Let z ∈ x⊥1 ∩x⊥2 . Since X is a two dimensional strictly convex Banach
space, Birkhoff-James orthogonality is left additive in X. Therefore, we have:

(αx1 + βx2) ⊥B z, for any scalars α, β.

In particular, this implies that z ⊥B z. Therefore, we must have, z = 0. Now,
the second part of the corollary follows directly from the first part, since ker T ⊆
(x⊥1 ∩ x⊥2 ) = {0} ⊆ ker T. �

In the next corollary, we prove that any linear operator defined on a finite di-
mensional smooth and strictly convex Banach space X, that satisfies the Daugavet
equation, must have an invariant subspace of codimension one.

Corollary 2.3.2. Let X be a finite dimensional smooth and strictly convex Banach
space and let T ∈ L(X) satisfies the Daugavet equation ‖I +T‖ = 1+ ‖T‖. Then X

has a T−invariant subspace of codimension one.

Proof. We first note that if T is the zero operator then the theorem is trivially true.
Let us assume that T is nonzero. We also observe from Lemma 2.1 of [1] that for
any nonzero bounded linear operator T on X, T satisfies the Daugavet equation if
and only if αT satisfies the Daugavet equation, where α > 0 is any scalar. Thus,
without loss of generality, we may and do assume that ‖T‖ = 1. The next thing to
observe is that since X is finite dimensional, there exists a unit vector x0 such that
‖I + T‖ = ‖(I + T )x0‖. We claim that Tx0 = x0. Indeed,

2 = ‖I + T‖ = ‖(I + T )x0‖ = ‖x0 + Tx0‖ ≤ ‖x0‖+ ‖Tx0‖ ≤ 1 + ‖T‖ = 2.

Since X is strictly convex, ‖x0 + Tx0‖ < ‖x0‖ + ‖Tx0‖, if Tx0 /∈ {kx0 : k ≥ 0}.
Therefore, we must have, Tx0 = k0x0, for some k0 ≥ 0. On the other hand, 2 =
‖x0 + Tx0‖ ≤ ‖x0‖ + ‖Tx0‖ = 1 + ‖Tx0‖ ≤ 2 implies that k0 = ‖Tx0‖ = 1. This
proves our claim.
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Thus, we have, 1 = ‖T‖ = ‖Tx0‖. This proves that x0 ∈ MT . Since X is smooth
and x0 ∈ MT , applying Theorem 2.3, we have,

T (x⊥0 ) ⊆ (Tx0)
⊥ = x⊥0 .

Since X is smooth, x⊥0 is a subspace of X, having codimension one. Thus, x⊥0 is a
T−invariant subspace of X, having codimension one. �

Remark 2.2. In particular, it follows from the method used in the proof of Corol-
lary 2.3.2 that if T is a norm one linear operator on a finite dimensional strictly
convex Banach space X such that T satisfies the Daugavet equation then T has a
fixed point on SX.

Next, we prove that in a finite dimensional smooth Banach space X, if the kernel
of a nonzero linear operator T contains a nonzero right symmetric point, then
span MT is a proper subspace of X.

Corollary 2.3.3. Let X be a finite dimensional smooth Banach space and let
T ∈ L(X) be a nonzero linear operator such that ker T contains a nonzero right
symmetric point. Then span MT is a proper subspace of X. In particular, if
T ∈ L(lnp ) is such that for some i ∈ {1, 2, . . . , n}, T (ei) = 0, where ei denotes
the unit vector whose i−th component is 1 and all other components are 0, then
min {‖Txj‖ : j ∈ {1, 2, . . . , n}} < ‖T‖, for any basis {x1, x2, . . . , xn} of lnp , con-
sisting of unit vectors.

Proof. Suppose, on the contrary, spanMT = X. ThenMT contains a basis {x1, x2, . . . , xn}
of X. Let z ∈ ker T be a nonzero right symmetric point. Without loss of generality,
we may and do assume that ‖z‖ = 1.

Let z =
∑i=n

i=1 cixi, for some scalars c1, c2, . . . , cn. Applying Corollary 2.3.1, we see
that, xi ⊥B z, for each i = 1, 2, . . . , n. Since z is right symmetric, we conclude that
z ⊥B xi, for each i = 1, 2, . . . , n. As X is smooth, Birkhoff-James orthogonality is

right additive in X. Therefore, we must have, z ⊥B

∑i=n
i=1 cixi = z. This implies

that z = 0, a contradiction to our assumption that z is nonzero. This contradiction
completes the proof of the first part of the corollary.
The second part of the corollary now follows directly from the first part by observing
that each ei is a right symmetric point in lnp . �

As the final corollary, we prove that in smooth Banach spaces, image of a left
symmetric point under an onto isometry must be a left symmetric point.

Corollary 2.3.4. Let X be a smooth Banach space and let T ∈ L(X) be an onto
isometry. If x ∈ X is a left symmetric point then Tx is also a left symmetric point.

Proof. We first note that MT = SX, as T is an isometry. Let Tx ⊥B y, for some
y ∈ X. If y = 0 then y ⊥B Tx. Let y �= 0. Since T is an onto isometry, there
exists z( �= 0) ∈ X be such that y = Tz. Since Tx ⊥B Tz and x ∈ MT , applying
Proposition 2.1, we have, x ⊥B z. This implies that z ⊥B x, as x is a left symmetric
point in X. Since X is smooth and z

‖z‖ ∈ MT , applying Theorem 2.3, we have,

T ( z
‖z‖ ) ⊥B Tx. Using the homogeneity property of Birkhoff-James orthogonality, it

is now easy to see that y = Tz ⊥B Tx. This completes the proof of the corollary. �

It is interesting to observe that the smoothness condition in the last part of
Theorem 2.3 is indeed required. We give the next example to illustrate our point.
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Example 2.3.1. Consider the linear operator T ∈ L(l∞2 ) given by T (1, 1) = (1, 0)
and T (1,−1) = ( 12 ,

1
2 ). Then it is easy to check that (1, 1) ∈ MT . We also note

that (1, 1) ⊥B (− 1
2 , 1). However, we have, T (− 1

2 , 1) = (− 1
8 ,− 3

8 ) /∈ (T (1, 1))⊥ =

(1, 0)⊥ = {(0, β) : β ∈ R}.
Combining Proposition 2.1 and Theorem 2.3, we have the following tractable

necessary condition for the norm attainment of a nonzero bounded linear operator
on a smooth Banach space:

Theorem 2.4. Let X be a smooth Banach space, T ∈ L(X) be nonzero and x ∈ MT .
Then for any y ∈ X, x ⊥B y ⇔ Tx ⊥B Ty.

Koldobsky proved in [5] that an isometry on X preserves Birkhoff-James orthog-
onality at every point of X. The next theorem may be regarded as a “local” version
of this fact, which is valid for any nonzero compact linear operator defined on a re-
flexive and smooth Banach space. Apart from applying Theorem 2.3, the only thing
that we need to observe is that a compact linear operator on a reflexive Banach
space must attain norm.

Theorem 2.5. Let X be a reflexive, smooth Banach space. Let T ∈ K(X) be
nonzero. Then there exists x ∈ SX such that T preserves Birkhoff-James orthogo-
nality at x, i.e., for any y ∈ X, x ⊥B y ⇔ Tx ⊥B Ty.

In Example 2.3.1, we have illustrated the fact that the smoothness condition in
the last part of Theorem 2.3 cannot be relaxed. In fact, in this context it is possible
to obtain a nice geometric characterization of smooth Banach spaces in terms of
operator norm attainment and Birkhoff-James orthogonality. To this end, we first
prove the following theorem:

Theorem 2.6. Let X be a Banach space. If for every nonzero T ∈ L(X) and for
every x ∈ MT , we have, T (x⊥) ⊆ (Tx)⊥, then X is smooth.

Proof. X is smooth if and only if given any x ∈ SX, there exists a unique hyperplane
Hx of codimension one such that x ⊥B Hx. Suppose on the contrary, there exists
a x0 ∈ SX such that x0 ⊥B Hx1 and x0 ⊥B Hx2 , where Hx1 , Hx2 are two different
hyperplanes of codimension one. Clearly, any element z ∈ X can be written as
z = αx0 + h, where α ∈ R, h ∈ Hx1

. Let us define an operator T on X in the
following way:

T (αx0 + h) = αx0, for each α ∈ R and for each h ∈ Hx1 .

Clearly, T is well-defined and linear. Since x0 ⊥B Hx1
, it is easy to check that T

is bounded and x0 ∈ MT . Let us now choose a y ∈ Hx2
\Hx1

. Let y = α0x0 + h0,
where α0 ∈ R and h0 ∈ Hx1

. Since y ∈ Hx2
\Hx1

, we must have, y ∈ x⊥0 and α0 �= 0.
Therefore, according to the condition stated in the theorem, we have :

Tx0 = x0 ⊥B Ty = α0x0.

However, this clearly leads to a contradiction as x0 ∈ SX and α0 �= 0. This completes
the proof of the theorem. �

Thus, we have the following characterization of smooth Banach spaces, the proof
of which follows from the last part of Theorem 2.3 and Theorem 2.6:

Theorem 2.7. A Banach space X is smooth if and only if for every nonzero T ∈
L(X) and for every x ∈ MT , we have, T (x⊥) ⊆ (Tx)⊥.
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As another potential application of Theorem 2.3, let us now explore the possible
norm attainment set of a linear operator T on X = l2p(p ∈ N \ {1}) spaces. If
T is a scalar multiple of an isometry, then evidently MT = SX. So let us restrict
our attention to linear operators which are not scalar multiples of an isometry. It
seems natural to ask what we can say about |MT |, in that case. We once again
apply Theorem 2.3 to answer this question.

Theorem 2.8. Let X = l2p(p ∈ N \ {1}) and let T ∈ L(X) be such that T is not a
scalar multiple of an isometry. Then |MT | ≤ 2(8p− 5).

Proof. Without loss of generality, we may and do assume that ‖T‖ = 1. We first
note that if |MT | ≤ 6 then we have nothing to prove, since |MT | ≤ 6 < 2(8p−5) for
each p ∈ N \ {1}. Let |MT | > 6. Since X is a two dimensional smooth and strictly
convex Banach space, it follows from Corollary 2.3.1 that T must be invertible.
In particular, T (x1, y1) = T (x2, y2) = ±(1, 0) implies that (x1, y1) = ±(x2, y2).
Since |MT | > 6, we can choose (x, y) ∈ MT such that (x, y) �= ±(1, 0),±(0, 1) and
T (x, y) �= ±(1, 0).

Let T =

(
a b

c d

)
be the matrix representation of T with respect to the standard

ordered basis of l2p. Since (x, y) �= ±(0, 1), there exists k ∈ R such that y = kx.
Since (x, y) �= ±(1, 0), we have, k �= 0. Using elementary calculus, it is easy to check

that either (x, y) ⊥B (1,−xp−1

yp−1 ) or (x, y) ⊥B (1, (−x)p−1

yp−1 ). Let us first assume that

(x, y) ⊥B (1,−xp−1

yp−1 ). Since (x, y) ∈ MT , applying Theorem 2.3, we have,

T (x, y) ⊥B T (1,−xp−1

yp−1
), i.e., (ax+ by, cx+ dy) ⊥B (a− b

xp−1

yp−1
, c− d

xp−1

yp−1
).

We note that (ax+ by, cx+ dy) = T (x, y) �= ±(1, 0). Therefore, if (ax+ by, cx+

dy) ⊥B (z, lz), where z, l ∈ R, then either l = − (ax+by)p−1

(cx+dy)p−1 or l = (−(ax+by))p−1

(cx+dy)p−1 . Let

us first assume that l = − (ax+by)p−1

(cx+dy)p−1 .

We claim that T (1,−xp−1

yp−1 ) �= (0, γ) for any γ ∈ R. Suppose, on the contrary,

T (1,−xp−1

yp−1 ) = (0, γ) for some γ ∈ R. Since (x, y) ⊥B (1,−xp−1

yp−1 ) and (x, y) ∈ MT ,

it follows from Theorem 2.3 that T (x, y) ⊥B T (1,−xp−1

yp−1 ), i.e., T (x, y) ⊥B (0, γ).

Since ‖T‖ = 1 and (x, y) ∈ MT , we must have T (x, y) = ±(1, 0), a contradiction to
our initial choice of (x, y). This proves our claim.
Therefore, it is legitimate to write the following equation:

− (ax+ by)p−1

(cx+ dy)p−1
=

c− dxp−1

yp−1

a− bx
p−1

yp−1

.

Recalling that y = kx, where k �= 0, the above equation reduces to:

(a+ bk)p−1

(c+ dk)p−1
=

−ckp−1 + d

akp−1 − b
.

It is easy to see that the above equation can be written in the form of a polynomial
equation in k, of degree at most 2p−2, with the coefficients coming from R. There-
fore, this equation can have at most 2p− 2 number of different solutions for k. It is
easy to see that each real value of k gives rise to exactly two points on the unit sphere
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SX, which are antipodal. It is at this point of the proof that we remember that
we have chosen (x, y) ∈ MT such that (x, y) �= ±(1, 0),±(0, 1), T (x, y) �= ±(1, 0)
and have also ignored some possible cases along the course of the proof. Therefore,
taking all possible cases into consideration, we must have,

|MT | ≤ 8(2p− 2) + 6 = 2(8p− 5).

�

Remark 2.3. We do not expect the upper bound 2(8p− 5) obtained in Theorem
2.8 to be an optimal upper bound for |MT |. In fact, it seems to us that using
stronger geometric and algebraic techniques, it might be possible to improve upon
the bound 2(8p− 5). In view of this, we pose the following open question:

Open Question: For the Banach space X = l2p, find an optimal bound for |MT |,
where T ∈ L(X) is not a scalar multiple of an isometry.

Remark 2.4. The case p = 2 deserves special mention, since in this case X is
the two dimensional Euclidean plane. It follows from Theorem 2.2 of [7] that if
T ∈ L(l22) then either MT = SX or MT is a doubleton. In the first case, T is a
scalar multiple of an isometry and in the second case, T is a smooth point of the
closed ball {S ∈ L(l22) : ‖S‖ ≤ ‖T‖}.
Remark 2.5. We would like to comment that in light of the results obtained
in the present paper, finding a characterization of the norm attainment set of a
bounded linear operator defined on a Banach space turns out to be a particularly
significant and nontrivial question in the study of the geometry of Banach spaces.
It is not difficult to obtain a sufficient condition for a bounded linear operator T on
a smooth Banach space X to attain norm at x ∈ SX. In fact, Tx = x, T |x⊥ = αI, for
some α ∈ (0, 1), is one such condition. However, such a condition is certainly not
necessary. It is perhaps befitting that we end the present paper with the following
open question:

Open Question: Let T be a bounded linear operator defined on a Banach space
X. Find a necessary and sufficient condition for x ∈ SX to be such that x ∈ MT .
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