
JID:YJMAA AID:21677 /FLA Doctopic: Real Analysis [m3L; v1.221; Prn:12/09/2017; 15:58] P.1 (1-16)
J. Math. Anal. Appl. ••• (••••) •••–•••
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

The question on characteristic endpoints for iterative roots
of PM functions ✩

Lin Li a, Weinian Zhang b,∗

a Department of Mathematics, Physics and Information Engineering, Jiaxing University, Jiaxing, 
Zhejiang 314001, PR China
b Yangtze Center of Mathematics and Department of Mathematics, Sichuan University, Chengdu, 
Sichuan 610064, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 April 2017
Available online xxxx
Submitted by Y. Huang

Keywords:
Iterative root
Piecewise monotone function
Characteristic interval
Nonmonotonicity height

Iterative roots of mappings are of special interests because it defines fractional 
iteration, displays middle procedure of evolution and proposes a weak version of the 
embedding flow problem. For PM functions of height 1, the class of 1-dimensional 
mappings having the simplest nonmonotonicity, the existence of continuous iterative 
roots of any order was obtained under the characteristic endpoints condition and 
the condition was proved to be necessary for those orders greater than the number 
of forts plus 1. This suggests an open question about iterative roots without that 
condition, called the question on characteristic endpoints. In this paper, the question 
is answered completely in the case that the number of forts is equal to the order. 
Although results of nonexistence are also obtained for the case that the number of 
forts is greater than the order, a full description is still open.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In the theory of dynamical systems, it has been concerned for a long time whether a mapping can be 
embedded into a flow ([1,4,5,11,13,14]). A weak version of the embedding flow problem is the problem of 
iterative roots. Given a nontrivial topological space X and an integer n > 0, the n-th iterate of a continuous 
self-mapping F : X → X, denoted by Fn, is defined inductively by Fn(x) := F (Fn−1(x)) and F 0(x) := x
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for all x ∈ X. An iterative root of order n of a given continuous self-mapping F : X → X is a continuous 
self-mapping f : X → X such that

fn(x) = F (x), ∀x ∈ X. (1.1)

Iterative root, which defines a fractional iterate F 1/n, attracts extensive interests ([6,7,12]).
The iterative root theory was set up well for 1-dimensional monotone mappings (see e.g. [6,7,12]), but 

there are less results on iterative roots of nonmonotonic mappings. Difficulties with nonmonotonic mappings 
mainly come from those points which break the monotonicity and their orbits. Those points are the so-called 
nonmonotonic points or forts ([15,16]), each of which is an interior point c in I := [a, b] such that the 
continuous function F : I → I is not monotone on any neighborhood of c. A nonmonotonic continuous 
mapping F : I → I having a finite set S(F ) of forts is referred to a PM function, an abbreviation of strictly 
piecewise monotone continuous function, which plays an important role in the study of dynamical systems 
(see e.g. [2,15,16]). Let PM(I, I) denote the set of all PM functions mappings from I into itself. For each 
F ∈ PM(I, I), one can easily prove that the number N(F ) of forts satisfies the ascending relation

0 = N(F 0) ≤ N(F ) ≤ N(F 2) ≤ ... ≤ N(F k) ≤ N(F k+1) ≤ ...

and that if N(F k) = N(F k+1) then N(F k) = N(F k+i) for all i ≥ 1. Thus, the least number k such that 
N(F k) = N(F k+1), called the nonmonotonicity height or height simply and denoted by H(F ) in ([9]), 
is an important index to describe the complexity of F under iteration. Clearly, F is strictly monotone if 
H(F ) = 0. In this paper we focus on functions of H(F ) = 1.

Each PM function F admits a partition: The interval I is divided by its forts into finitely many subinter-
vals, called laps. One can prove that exact one of those laps, called the characteristic interval of F , covers 
the range of F if and only if H(F ) = 1. The characteristic interval is useful in finding iterative roots. In 1983 
Jingzhong Zhang and Lu Yang ([16]) gave the following in Chinese:

Theorem A. (Theorem 4 in [15]). Let F ∈ PM(I, I) be of height 1. Suppose that (K+) F is strictly increasing 
on its characteristic interval K(F ) = [a′, b′] and, additionally, (K+

0 ) F on I cannot reach a′ and b′ unless 
F (a′) = a′ or F (b′) = b′. Then, for any integer n > 1, F has continuous iterative roots of order n. 
Conversely, conditions (K+) and (K+

0 ) are necessary for n > N(F ) + 1.

The converse part of this theorem suggests an open question (see [16] or [15]): Does a function F ∈
PM(I, I) with H(F ) = 1 have an iterative root of an order n ≤ N(F ) + 1 if condition (K+

0 ), called the 
‘characteristic endpoints condition’, is not satisfied? For convenience, we simply call it the ‘question on 
characteristic endpoints’.

This question can be discussed in the three cases:

(CEQ1) a′ = m < M = b′ and either F (a′) > a′ or F (b′) < b′,
(CEQ2) a′ = m < M < b′ and F (a′) > a′, and
(CEQ3) a′ < m < M = b′ and F (b′) < b′,

where m denotes minF := min{F (x) : x ∈ I} and M denotes maxF := max{F (x) : x ∈ I}. In 2008 Li, 
Yang and Zhang ([8, Theorem 3]) investigated (CEQ1) and gave a negative answer: F has no continuous 
iterative roots f of order n = N(F ) such that H(f) = n. Clearly, most of those cases are unsolved yet. 
Although Liu and Zhang ([10]) gave min{n, N(F )} modes of extension, which extend a monotone iterative 
root from the characteristic interval to the whole I, and proved that all continuous iterative roots of F of 
order n can be given with those modes, those results obtained in ([10]) cannot be applied immediately to 
answer the question in the above cases.
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In this paper we study with the question on characteristic endpoints. For n = N(F ), we discuss the 
above cases (CEQ2) and (CEQ3) and, including the negative answer of ([8]) to case (CEQ1), we answer this 
question completely. For n < N(F ) or = N(F ) + 1, we only need to consider n-th order iterative roots f of 
height H(f) < n or = n because none of n-th order iterative roots is of H(f) > n by Lemma 2 of [8] (or 
the following Lemma 2.3). For n < N(F ), we prove that no roots f of H(f) < n exist in all the three cases 
but still leave the existence of roots f of H(f) = n open. For n = N(F ) + 1, we prove in all the three cases 
that F has neither a continuous iterative root which is increasing on [a′, b′] nor a continuous iterative root f
which is decreasing on [a′, b′] and of height H(f) < n − 1, but leave the question of existence of continuous 
iterative roots f which are decreasing on [a′, b′] and of height H(f) = n − 1 open.

2. PM functions of height 1

When H(F ) = 1, as mentioned in ([15,16]) and the Introduction, the mapping F has a characteristic 
interval of F , denoted by K(F ). This interval is bounded by two consecutive forts (or an endpoint) and covers 
the range of F . Therefore, K(F ) is a positively invariant interval and F restricted to K(F ) is monotone. 
The idea of finding iterative roots of such PM functions used in ([10,15,16]) is to find an iterative root on 
K(F ) for a monotone function and then extend it to the whole interval I. Therefore, the following result 
on iterative roots of monotone functions is useful and can be found in ([3,17]).

Lemma 2.1 (Bödewadt Theorem). Let CI(I, I) := {f : I → I| f is continuous and strictly increasing, 
f(a) = a, f(b) = b}. Then for any integer n ≥ 2, every F ∈ CI(I, I) has iterative roots f of order n in 
CI(I, I).

This result remains true if an endpoint is not a fixed point.

Proposition 2.1. Let F : I → I be continuous and strictly increasing, n > 1 be an arbitrarily given integer, 
and A, B be real constant such that either a < A < B < b and F (a) �= a, F (b) �= b, or F (a) = a and 
a = A < B < b, or F (b) = b and a < A < B = b. Then equation (1.1) has strictly increasing continuous 
solutions f on I satisfying

F (a) ≤ f(A) < f(B) ≤ F (b). (2.1)

Additionally, if f, F ∈ CI(I, I) satisfy fn(x) = F (x) for all x ∈ I, then there is h ∈ CI(I, I) such that 
h(f(x)) = F (h(x)) for all x ∈ I.

Proof. Without loss of generality, we assume that F has no fixed points in (a, b). Since the case that 
F (a) = a and F (b) = b is done in Lemma 2.1, it suffices to consider either a or b is not a fixed point of F .

Firstly, suppose that F (a) = a and F (b) < b. Choose c > b and an arbitrary strictly increasing and 
continuous function F̂ : [b, c] → [F (b), c] such that F̂ (b) = F (b), F̂ (c) = c. Let

F1(x) :=
{

F (x), ∀x ∈ [a, b),
F̂ (x), ∀x ∈ [b, c].

Clearly, F1 ∈ CI(I1, I1) where I1 := [a, c]. By Lemma 2.1, there is an f1 ∈ CI(I1, I1) such that fn
1 (x) = F1(x)

for any x ∈ I1. Then the restriction f := f1|I is a continuous iterative root of F of order n.
In order to prove inequality (2.1), it suffices to verify f1(B) ≤ F (b) because f1(A) ≥ a = F (a). In fact, 

we infer from F1(c) = c that F1(x) < x for all x ∈ (a, c). In particular, since f1 is strictly increasing on I1, 
it follows that f1(x) < x for all x ∈ (a, c). Hence, (2.1) holds if B ≤ F (b). If B > F (b), the result can 
be established by using the property that the initial function in Bödewadt’s Theorem is not unique. More 
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precisely, for every h0 defined on [F1(x0), x0], ∀x0 ∈ (a, b], such that h0 is continuous, strictly increasing, 
and

h0(x0) = F1(x0), h0(F1(x0)) = Fn+1
1 (x0), (2.2)

it has an extension h to I satisfying F (x) = h−1(Fn
1 (h(x))) for all x ∈ I. Thus, f(x) = h−1(F1(h(x))) is an 

iterative root of F1 of order n. Now we choose a suitable h0 as follows. Let x0 = b and h0 be any function 
on [F1(b), b] such that

h0(B) = Fn
1 (b) − ε, 0 ≤ ε < (Fn

1 (b) − Fn+1
1 (b))/2. (2.3)

Note that the above definition is fine. Indeed, it follows from (2.2)–(2.3) that

h0(F1(b)) = Fn+1
1 (b) < Fn

1 (b) − ε = h0(B) < F1(b) = h0(b).

Furthermore, since F1 is strictly increasing, we have

F1(h(B)) = F1(Fn
1 (b) − ε) ≤ Fn+1

1 (b) = Fn
1 (h(b)) = h(F1(b)),

which implies that f1(B) = h−1(F1(h(B))) ≤ F1(b) = F (b), and thus inequality (2.1) holds.
Similar arguments can be applied to prove the other cases that F (a) > a, F (b) = b and F (a) > a, 

F (b) < b. This completes the proof. �
In latter sections we discuss PM functions and consider the number of forts for their iterates. The following 

lemmas are useful.

Lemma 2.2. (Lemma 2.3 in [9]) Let F : [a, b] → R and G : [α, β] → R be continuous functions such that 
F ([a, b]) ⊂ [α, β]. Then

S(G ◦ F ) = S(F ) ∪ {c ∈ (a, b) : F (c) ∈ S(G)}.

Lemma 2.3. (Lemma 2 in [8]) Let F ∈ PM(I, I) be of height 1. Then F has no continuous iterative roots f
of order n > 1 such that H(f) > n.

Lemma 2.4. (Theorem 3 in [8]) Let F ∈ PM(I, I) be of height 1. Suppose that F is strictly increasing on 
its characteristic interval [a′, b′], N(F ) = n > 1, and that minF = a′ and maxF = b′. Then F has no 
continuous iterative roots f of order n such that H(f) = n.

Note that, for each F ∈ PM(I, I) with H(F ) = 1, Lemma 2.3 asserts that we only need to verify 
the existence of its iterative roots f with H(f) ≤ n and Lemma 2.4 gives corresponding results when 
H(f) = N(F ) = n under some assumptions.

The following result is Theorem 3 of [15], which gives a method of extension and will be used in the 
proofs of our Theorems.

Lemma 2.5. (Theorem 3 in [15]) Suppose F ∈ PM(I, I) with height 1. Let [a′, b′] be the characteristic 
interval, let m and M the minimum and maximum of F on [a, b], and m′ and M ′ those on [a′, b′]. If, 
restricted to [a′, b′], equation (1.1) has a continuous solution f1 which maps [a′, b′] into itself and maps 
[m, M ] into [m′, M ′], then there exists a continuous function f from I into I such that (i) f(x) = f1(x) for 
all x ∈ [a′, b′], and (ii) f satisfies equation (1.1) on the whole interval I.
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Having these knowledges, in what follows, we always assume that F ∈ PM(I, I) with H(F ) = 1 such that 
F is strictly increasing on its characteristic interval [a′, b′], as considered in Theorem A in the Introduction. 
As known from the theory of monotone iterative roots ([6,7]), F has two classes of continuous iterative 
roots: roots increasing on [a′, b′] and roots decreasing on [a′, b′]. We separately discuss the two classes in the 
following two sections.

3. Roots increasing on characteristic interval

In this section we discuss the first class, i.e., iterative roots which are increasing on the characteristic 
interval [a′, b′].

Theorem 3.1. Suppose that F ∈ PM(I, I) with H(F ) = 1 such that (K+) holds but condition (K+
0 ) is not 

true. Then for any integer n > 1 mapping F has no continuous iterative roots f of order n such that f
is strictly increasing on [a′, b′] and H(f) < n. In particular, for n = N(F ) mapping F has no continuous 
iterative roots f of order n such that f is strictly increasing on [a′, b′] and H(f) ≤ n.

Remind that the case H(f) > n does not exist by Lemma 2.3, as mentioned in the Introduction. Besides, 
this theorem covers more than [8] even in case (CEQ1) because [8] only deals with roots f of height H(f) = n

but this theorem works for H(f) ≤ n.

Proof. Let F satisfy all conditions given in the theorem. As mentioned in the Introduction, we need to 
consider the three cases (CEQ1)–(CEQ3). For an indirect proof to the result, suppose that F has a continuous 
iterative root f of order n = N(F ) > 1 such that f is strictly increasing on [a′, b′] and satisfies H(f) ≤ n. 
By Lemma 1 of [10], we know that f maps [a′, b′] into itself.

First, we consider case (CEQ1). Since roots f of height H(f) = n = N(F ) was discussed in Theorem 3 
of [8] as indicated in Lemma 2.4, it suffices to consider those roots f of H(f) < n. We divide the case into 
the following three subcases:

(CEQ1A): a′ = m < M = b′, F (a′) = a′ and F (b′) < b′;
(CEQ1B): a′ = m < M = b′, F (a′) > a′ and F (b′) = b′; and
(CEQ1C): a′ = m < M = b′, F (a′) > a′ and F (b′) < b′.

In subcase (CEQ1A), we have f(b′) < b′. The inequality H(f) < n yields that N(fn−1) = N(fn), implying 
that fn−1 and fn being equal to F , have a common fort. Moreover, the interval [a′, b′] is also the character-
istic interval of fn−1 because [minfn, maxfn] ⊆ [minfn−1, maxfn−1]. Let x0 ∈ I satisfy F (x0) = b′, being 
equal to M . Since fn−1(x0) ∈ [a′, b′], we have

b′ = F (x0) = f ◦ fn−1(x0) ≤ f(b′) < b′, (3.1)

which is a contradiction. Thus F has no continuous iterative roots f of order n > 1 such that H(f) < n. In 
subcase (CEQ1B), we have f(a′) > a′. The same arguments as given in subcase (CEQ1A) show that fn−1

and fn have both a common fort and the same characteristic interval [a′, b′]. Let y0 ∈ I satisfy F (y0) = a′, 
being equal to m. Since fn−1(y0) ∈ [a′, b′], we obtain

a′ = F (y0) = f ◦ fn−1(y0) ≥ f(a′) > a′, (3.2)

a contradiction. Thus F has no continuous iterative roots f of order n > 1 such that H(f) < n. In subcase 
(CEQ1C), we have F (b′) < b′ and F (a′) > a′, which lead to contradictions (3.1) and (3.2) respectively, 
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as done in subcases (CEQ1A) and (CEQ1B). Hence, it is proved in case (CEQ1) that mapping F has no 
continuous iterative roots f of order n which are strictly increasing on [a′, b′].

Next, we consider case (CEQ2). If H(f) < n, the result can be given as in subcase (CEQ1B). In what 
follows, we consider the situation that H(f) = n = N(F ), in which

N(fk) = k, 0 ≤ k ≤ n. (3.3)

By Lemma 2.2, f is not monotone on [minfn−1, maxfn−1]. Let ξ ∈ (minfn−1, maxfn−1) be a fort of f . 
By (3.3), ξ is the unique fort of f on I. On the other hand, let x0 ∈ S(fn)\S(fn−1) since the cardinality 
#S(fn)\S(fn−1) = 1 by (3.3). Then fn−1(x0) ∈ S(f). It implies that fn−1(x0) = ξ and therefore

f(ξ) = F (x0) ∈ [a′, b′]. (3.4)

Since ξ is the unique fort of f on I, f(ξ) is equal to either minf , the minimum of f on I, or maxf , the 
maximum of f on I. We first assume that

f(ξ) = minf. (3.5)

Then, the relation (3.4) associated with the inequality a′ = minfn ≥ minf = f(ξ) implies that f(ξ) = a′. 
Noting that f is strictly decreasing on [a, ξ] (or strictly increasing on [ξ, b]) and f(a′) > a′, we have ξ < a′

because f is assumed to be strictly increasing on [a′, b′]. Furthermore, a′ = minf ≤ minfn = a′, implying 
that minfn−1 = a′. This contradicts to the fact ξ ∈ (minfn−1, maxfn−1) = (a′, maxfn−1). Next, opposite 
to (3.5), we assume that

f(ξ) = maxf.

We similarly obtain that ξ ≥ b′. By (3.4), it leads to a contradiction to the fact that ξ ∈ (minfn−1, maxfn−1)
⊆ (minfn−1, maxf) = (minfn−1, f(ξ)) ⊆ (minfn−1, b′).

Finally, we consider case (CEQ3). If H(f) < n, the result can be given as in subcase (CEQ1A). If 
H(f) = N(F ) = n, in the case that f(ξ) = maxf the discussion is similar to case (CEQ2); in the case that 
f(ξ) = minf we get ξ ≤ a′ because f is assumed to be strictly increasing on the characteristic interval [a′, b′]
and ξ is the unique fort. This contradicts to the fact that ξ ∈ (minfn−1, maxfn−1) ⊆ (minf, maxfn−1) =
(f(ξ), maxfn−1) ⊆ (a′, maxfn−1).

With the obtained contradictions in cases (CEQ1)–(CEQ3), the proof is completed. �
Corollary 3.1. Let F be the same as supposed in Theorem 3.1. Then F does not have a continuous iterative 
root of order n = N(F ) + 1 or n = N(F ) which is strictly increasing on [a′, b′].

Proof. For an indirect proof, assume that F has a continuous iterative root f of order n = N(F ) or N(F ) +1
such that f is strictly increasing on [a′, b′]. By Lemma 2.3, we see that H(f) ≤ n. If n = N(F ), it follows 
from Theorem 3.1 that F has no such iterative roots f satisfying H(f) ≤ n, which gives a contradiction. On 
the other hand, for the case n = N(F ) + 1 we claim that H(f) < n. Otherwise, 1 ≤ N(f) < ... < N(fn) =
N(F ) ≤ N(fn+1), implying n ≤ N(F ), a contradiction to the assumption of n = N(F ) + 1. Furthermore, 
the results about H(f) < n given in Theorem 3.1 yield the contradiction again. �

Aiming to the question on characteristic endpoints, Theorem 3.1 denies the existence of continuous 
iterative roots of order n ≤ N(F ) + 1 which are of the height H(f) < n and strictly increasing on [a′, b′]. 
Corollary 3.1 further denies the existence of continuous iterative roots of order n = N(F ) + 1 or N(F )
without the restriction H(f) < n. The following question is not answered yet:
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(P): Does a function F ∈ PM(I, I) given in Theorem 3.1 have an iterative root f of order n < N(F )
such that f is strictly increasing on [a′, b′] and H(f) = n?

4. Roots decreasing on characteristic interval

This section is devoted to the second class, i.e., roots decreasing on the characteristic interval [a′, b′].

Theorem 4.1. Let F be the same as supposed in Theorem 3.1. Then for any n > 2 mapping F has no 
continuous iterative roots f of order n such that f is strictly decreasing on [a′, b′] and H(f) < n − 1.

Proof. For an indirect proof, assume that F has a continuous iterative root f of order n > 2 such that f
is strictly decreasing on [a′, b′] and H(f) < n − 1. The monotonicity of f on [a′, b′] implies that n must be 
even, that is, n = 2m for an integer m > 1. Let g := f2. Then g is a continuous iterative root of F of order 
m which is strictly increasing on [a′, b′]. Furthermore, we infer from the assumption H(f) < n − 1 that

N(f) ≤ N(f2) ≤ . . . ≤ N(fn−2) = N(fn−1) = N(fn) = . . . ,

implying that H(g) < m, a contradiction to the conclusion of Theorem 3.1. �
By Lemma 2.3, we have H(f) ≤ n. Therefore, opposite to Theorem 4.1, we ask: Does mapping F supposed 

in Theorem 3.1 have a continuous iterative root f of order n (2 < n ≤ N(F ) + 1) such that f is strictly 
decreasing on [a′, b′] and n − 1 ≤ H(f) ≤ n? What happens with n = 2? In what follows, we only work 
in the case that H(f) = n for 2 ≤ n ≤ N(F ) + 1 and the case that H(f) = 1 for n = 2 because the case 
that H(f) = n − 1 for 2 < n ≤ N(F ) + 1 can be reduced to the open question (P) stated in the end of last 
section. In fact, as shown in the proof of Theorem 4.1, the monotonicity of f on [a′, b′] implies that n = 2m
for an integer m > 1 and the function g := f2 is a continuous iterative root of F of order m such that g is 
strictly increasing on [a′, b′] and H(g) = m. However, the existence of such g is still unknown as indicated 
in the question (P).

We first discuss for n = 2 in the three cases (CEQ1)–(CEQ3) because F does not satisfy condition (K+
0 )

if and only if F lies in one of cases (CEQ1)–(CEQ3) as mentioned in the Introduction.

Theorem 4.2. Let F be the same as supposed in Theorem 3.1. If F satisfies (CEQ1), then F has no con-
tinuous iterative roots f of order 2 such that f is strictly decreasing on [a′, b′] and H(f) = 1. If F satisfies 
(CEQ2) (or (CEQ3)), then F has a continuous iterative root f of order 2 such that f is strictly decreasing on 
[a′, b′] and H(f) = 1 if and only if the restriction F |[a′,b′] is a reversing correspondence and F (b′) = maxF

(or F (a′) = minF ).

The phrase “reversing correspondence” comes from [6,9]. A strictly increasing function φ mapping a 
compact interval I into itself is said to be a reversing correspondence if there are a ξ ∈ Fixφ, i.e., a fixed 
point of φ, and a strictly decreasing function ω mapping Fixφ onto itself such that ω(ξ) = ξ and the 
difference φ(x) − x on the interval (ξ1, ξ2) has an opposite sign to that on the interval (ω(ξ2), ω(ξ1)) for 
every ξ1, ξ2 ∈ Fixφ satisfying that ξ1 < ξ2 and (ξ1, ξ2) ∩ Fixφ = ∅.

Proof of Theorem 4.2. If F satisfies (CEQ1), we generally claim that for any n > 1 mapping F has no 
continuous iterative roots f of order n such that f is strictly decreasing on [a′, b′] and H(f) < n. For an 
indirect proof, assume that F has a continuous iterative root f of order n such that f is strictly decreasing 
on [a′, b′] and H(f) < n. According to the conditions given in (CEQ1), there are x′, y′ ∈ I\[a′, b′] such that 
F (x′) = a′ and F (y′) = b′. Then
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a′ = F (x′) = f ◦ fn−1(x′), b′ = F (y′) = f ◦ fn−1(y′). (4.1)

Since H(f) < n, the interval [a′, b′] is also the characteristic interval of fn−1, i.e., fn−1(I) ⊂ [a′, b′]. In view 
of (4.1), we obtain fn−1(x′) = b′ and fn−1(y′) = a′ because f is a strictly decreasing self-mapping on [a′, b′]. 
Hence, f(b′) = F (x′) = a′ and f(a′) = F (y′) = b′, implying that F (b′) = b′ and F (a′) = a′, a contradiction 
to the fact of (CEQ1). Clearly, the first result is a corollary of the general claim.

The discussion for cases (CEQ2)–(CEQ3) is quite different from the above for case (CEQ1). We only give 
a proof to case (CEQ2). Case (CEQ3) can be proved similarly.

In order to prove the necessity, assume that F has a continuous square iterative root f which is strictly 
decreasing on [a′, b′] and H(f) = 1. Then [6, Theorem 15.10] implies that F |[a′,b′] is a reversing corre-
spondence. By [10, Theorem 1], we see that f is an extension from a square iterative root f0 of F |[a′,b′], 
fulfilling

f(x) = f−1
0 ◦ F (x), ∀x ∈ I. (4.2)

From the conditions given in (CEQ2), there exists x′ ∈ I\[a′, b′] such that F (x′) = a′. Then the equality 
f(f(x′)) = a′ implies f(x′) = b′ since f is strictly decreasing on [a′, b′]. We further obtain

f(b′) = F (x′) = a′ and f(a′) = F (b′). (4.3)

Therefore, f0 maps [a′, b′] onto [a′, F (b′)]. By virtue of (4.2), f is well defined if F (b′) = maxF .
In order to prove the sufficiency, we need to find a strictly decreasing continuous iterative root f0

of F |[a′,b′] of order 2 and then extend it continuously to an iterative root well defined on the whole 
interval [a, b]. To ensure the existence of such an extension, it suffices to choose a root f0 satisfying con-
dition (4.3). Without loss of generality, assume F has a unique fixed point ξ on [a′, b′]; otherwise, we 
discuss between two consecutive fixed points separately. Since F |[a′,b′] is a reversing correspondence, it 
follows from [6, Theorem 3.1] that there is a continuous strictly decreasing function α : [a′, ξ] → [ξ, F (b′)]
fulfilling

α(a′) = F (b′), α(ξ) = ξ (4.4)

such that

α(F (x)) = F (α(x)), x ∈ [a′, ξ]. (4.5)

Hence, define f0 : [a′, b′] → [a′, b′] by

f0(x) :=
{

α(x), ∀x ∈ [a′, ξ],
α−1(F (x)), ∀x ∈ (ξ, b′].

(4.6)

Clearly, f0 is a continuous and strictly decreasing square iterative root of F |[a′,b′] by (4.5)–(4.6). Moreover, 
we infer from (4.4) that f0 satisfies condition (4.3). Therefore, function f defined in (4.2) is a continuous 
iterative root we want. This completes the proof. �

The above proof actually gives a general result for case (CEQ1), i.e., if F ∈ PM(I, I) with H(F ) = 1 is 
strictly increasing on its characteristic interval [a′, b′] and satisfies (CEQ1), then for any n > 1 mapping F
has no continuous iterative roots f of order n such that f is strictly decreasing on [a′, b′] and H(f) < n.

Finally, we consider iterative roots f with H(f) = n for 2 ≤ n ≤ N(F ) + 1. In case (CEQ1), i.e., 
minF = a′ and maxF = b′, Lemma 2.4 guarantees that if n = N(F ) then F has no continuous iterative 
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Fig. 1. S(f) = {c1}.

Fig. 2. S(f) = {cn}.

roots f of order n such that f is strictly decreasing on [a′, b′] and H(f) = n. Thus, it is unknown yet in the 
cases (CEQ2) and (CEQ3) whether there are iterative roots f of order n such that f are strictly decreasing 
on [a′, b′] and H(f) = n. The following lemmas give necessary conditions for such continuous iterative roots. 
Let S(F ) = {c1, c2, . . . , cn}, where a = c0 < c1 < c2 < . . . < cn < cn+1 = b.

Lemma 4.1. Suppose that F ∈ PM(I, I) with H(F ) = 1 satisfies (K+). If f ∈ PM(I, I) is an iterative root 
of F of order n > 1 such that H(f) = N(F ) = n, then N(F ) = 1 and there is a permutation (�1, . . . , �n) of 
{1, . . . , n} such that

f(c�k) = c�k−1 , k = 2, . . . , n, (4.7)

and S(f) = {c�1}. Moreover, one of the following assertions holds:

K1: either S(f) = {c1}, the function f reaches the minimum value at c1 and f(c1) < c1, or S(f) = {cn}, 
the function f reaches the maximum value at cn and f(cn) > cn;

K2: either S(f) = {c1}, the function f reaches the maximum value at c1 and f(c1) > c1, or S(f) = {cn}, 
the function f reaches the minimum value at cn and f(cn) < cn.

The shape of f in K1 (resp. K2) looks almost the same as the type T1 (resp. the type T2) iterative roots 
given in [9] in the case that H(F ) > 1, but in our paper we consider H(F ) = 1. One can see, from K1

for example, that the difference between the two versions comes from the values of f(b) (Fig. 1) and f(a)
(Fig. 2). In [9] we have f(b) > cn (resp. f(a) < c1) but in our paper f(b) ≤ cn (resp. f(a) ≥ c1), which will 
be indicated below Lemma 4.2.
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Proof of Lemma 4.1. It follows from H(f) = n that N(f) < N(f2) < ... < N(fn) = N(F ) = n, that is

N(fk) = k, k = 1, ..., n. (4.8)

In particular, N(f) = 1.
Let S1 = S(f) and Sk := {x ∈ (a, b) : f(x) ∈ S(fk−1)}\S(fk−1), k = 2, ..., n. According to the proof 

of Lemma 3.1 in [9], there is a permutation (�1, ..., �n) of {1, ..., n} such that Sk = {c�k}, k = 1, ..., n. This 
proves (4.7). Furthermore, the proof shows that either S(f) = {c1} or S(f) = {cn}. Finally, we consider 
the case that f takes the maximum value at c�, where � ∈ {1, n}. It suffices to prove that f(c�) > c�. 
Suppose that f(c�) ≤ c�. Then f([a, b]) ⊂ [a, f(c�)] ⊂ [a, c�]. It follows that H(f) = 1, a contradiction to 
the assumption that H(f) = n > 1. The other case can be proved similarly. This completes the proof. �

By Lemma 4.1, one can easily see from the proofs of Lemmas 3.3–3.4 of [9] the following lemma about 
behaviors of iterative roots at forts of function F .

Lemma 4.2. Suppose that F ∈ PM(I, I) with H(F ) = 1 satisfies (K+). Let f ∈ PM(I, I) be an iterative 
root of F of order n > 1 such that H(f) = N(F ) = n. Then either f(ci) = ci−1 for every i ∈ {2, . . . , n}
(resp. f(ci) = ci+1 for every i ∈ {1, . . . , n − 1}) if f is of type K1 and S(f) = {c1} (resp. S(f) = {cn}), 
or f(ci) = cn+2−i for every i ∈ {2, . . . , [n+1

2 ]} and f(ci) = cn+1−i for every i ∈ {[n+1
2 ] + 1, . . . , n} (resp. 

f(cn−i) = ci for every i ∈ {1, . . . , [n−1
2 ]} and f(cn−i) = ci+1 for every i ∈ {[n−1

2 ] + 1, . . . , n − 1}) if f is of 
type K2 and S(f) = {c1} (resp. S(f) = {cn}).

Note that our aim is to find under the assumption of (CEQ2) or (CEQ3) the iterative roots f of order 
n > 1 which are strictly decreasing on [a′, b′]. Obviously, n is even. As mentioned in Lemma 1 of [10], f is a 
self-mapping on [a′, b′], implying that K2 is impossible. In fact, assume that f is of type K2. If S(f) = {c1}
then, by Lemmas 4.1–4.2, f([a, c1]) �⊂ [a, c1] since f(c1) > c1, and f([ci, ci+1]) �⊂ [ci, ci+1] for i = 1, ..., n − 1. 
If S(f) = {cn}, then f([cn, b]) �⊂ [cn, b] since f(cn) < cn, and f([ci, ci+1]) ⊂ [ci, ci+1] if and only if i = n

2 , 
i.e., f(cn

2
) = cn

2 +1, f(cn
2 +1) = cn

2
by Lemma 4.2. However, the above two equalities about f imply that 

[cn
2
, cn

2 +1] is the characteristic interval of F and F (cn
2
) = cn

2
, F (cn

2 +1) = cn
2 +1, which contradicts to the 

conditions of (CEQ2)–(CEQ3). Therefore, under the hypothesis (CEQ2) or (CEQ3), such an iterative root f
(if exists) is of type K1. By Lemma 4.2, [a, c1] is the characteristic interval of F when S(f) = {c1} (see 
Fig. 1), and [cn, b] is the characteristic interval of F when S(f) = {cn} (see Fig. 2). Moreover, f(b) ≤ cn
(resp. f(a) ≥ c1) by the fact H(F ) = 1.

The main result of this section reads as follows.

Theorem 4.3. Let F be the same as supposed in Theorem 3.1. Then for n = N(F ) mapping F has a 
continuous iterative root f of order n such that f is strictly decreasing on [a′, b′] and H(f) = n if and only 
if n is even and one of the following conditions is fulfilled:

(i) F |[a,c1] is a reversing correspondence and

F (a) ≥ F (c2) > . . . > F (cn−2) > F (cn) ≥ a, (4.9)
F (c1) < F (c3) < . . . < F (cn−1) < c1,

where either F (a) > F (c2) and F (cn) = a or F (a) = F (c2) and F (cn) > a (see Figs. 3 and 4).
(ii) F |[cn,b] is a reversing correspondence and

F (b) ≤ F (cn−1) < F (cn−3) < . . . < F (c1) ≤ b, (4.10)
F (cn) > F (cn−2) > . . . > F (c2) > cn,

where either F (b) < F (cn−1) and F (c1) = b or F (b) = F (cn−1) and F (c1) < b (see Figs. 5 and 6).



JID:YJMAA AID:21677 /FLA Doctopic: Real Analysis [m3L; v1.221; Prn:12/09/2017; 15:58] P.11 (1-16)
L. Li, W. Zhang / J. Math. Anal. Appl. ••• (••••) •••–••• 11
Fig. 3. F (a) > F (c2) and F (c4) = a.

Fig. 4. F (a) = F (c2) and F (c4) > a.

Fig. 5. F (b) < F (c3) and F (c1) = b.

Fig. 6. F (b) = F (c3) and F (c1) < b.
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Proof of Theorem 4.3. First, we prove the necessity. Assume F has a continuous iterative root f of order 
n = N(F ) such that f is strictly decreasing on [a′, b′] and H(f) = n. Then n is even, and we infer from [6, 
Theorem 15.10] that F |[a′,b′] is a reversing correspondence. From Lemma 4.1, we need to discuss in the two 
cases: S(f) = {c1} and S(f) = {cn}.

In the case that S(f) = {c1}, by Lemma 4.2 we have f(ci) = ci−1 for every i ∈ {2, . . . , n}. Then

F (ci) = fn−i+1(c1), i = 1, ..., n. (4.11)

It suffices to consider cases (CEQ2) and (CEQ3) since the situation of (CEQ1) was done in Lemma 2.4. 
Assume that F satisfies (CEQ2) (resp. F satisfies (CEQ3)). Then there is x′ ∈ I\[a, c1] such that F (x′) = a

(resp. there is y′ ∈ I\[a, c1] such that F (y′) = c1). We only discuss case (CEQ2) because the other one 
can be proved similarly. Since f |[a,c′1] is a self-mapping and strictly decreasing, it follows that f(c1) = a

and f(a) < c1. Note that fn−1 is also decreasing in [a, c1], we see from (4.11) that F (a) = fn−1(f(a)) >
fn−1(c1) = F (c2). Furthermore, for even i ∈ {1, ..., n − 2} we have

F (ci) = fn−i+1(c1) = fn−i−1(f2(c1)) > fn−i−1(c1) = F (ci+2).

Similarly, for odd i ∈ {1, ..., n − 2} we have F (ci) < F (ci+2). Moreover, using (4.11) again, we get F (cn) =
f(c1) = a and F (cn−1) = f2(c1) < c1. Thus, both the strict inequalities and equality given in (i) are proved.

In the case that S(f) = {cn}, by Lemma 4.2 we have f(ci) = ci+1 for every i ∈ {1, . . . , n − 1}. Then

F (ci) = f i(cn), i = 1, ..., n. (4.12)

Assume that F satisfies (CEQ2) (resp. F satisfies (CEQ3)). Then there is x′ ∈ I\[cn, b] such that F (x′) = cn
(resp. there is y′ ∈ I\[cn, b] such that F (y′) = b). It suffices to consider (CEQ2) because the other one can 
be discussed similarly. Thus, f(b) = cn and f(cn) < b. Furthermore, it follows from (4.12) that F (b) =
fn−1(f(b)) = fn−1(cn) = F (cn−1) and

F (ci) = f i(cn) = f i−2(f2(cn)) > f i−2(cn) = F (ci−2)

for even i ∈ {3, ..., n}. Similarly, for odd i ∈ {3, ..., n} we obtain F (ci) < F (ci−2). Using (4.12) again, we get 
F (c1) = f(cn) < b and F (c2) = f2(cn) > cn. Thus, both the strict inequalities and equality given in (ii) are 
proved, and this completes the proof of necessity.

Next, we prove the sufficiency. We confine ourselves to the case (i) because case (ii) can be proved 
similarly. Our strategy is to find a strictly decreasing continuous root f0 of F |[a,c1] at first and then extend 
f0 to a continuous root on the whole interval [a, b]. Actually, under the conditions of (4.9), the proof of 
Theorem 4.1 in [9] (pp. 296–297) shows that F |[a,c1], no matter whether F (a) ≥ F (c2) or F (cn) ≥ a, has a 
strictly decreasing continuous iterative root f0 : [a, c1] → [a, c1] of even order n fulfilling condition (4.11), 
i.e.,

f0(F (ci)) = F (ci−1), i = 2, . . . , n and f0(c1) = F (cn), (4.13)

which will be used in the extension. In order to extend f0 from [a, c1] to [a, b], let

f1(x) := f−n+1
0 ◦ F (x), ∀x ∈ [c1, c2].

By (4.13), f0 maps [F (c2), F (c1)] onto [fn+1
0 (c1), F (c1)] and F−1|[a,c1] maps [fn+1

0 (c1), F (c1)] onto 
[f0(c1), c1]. These imply that f1 : [c1, c2] → [f0(c1), c1] is well defined, continuous and strictly increasing on 
[c1, c2] since n is even. Further, let
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f2(x) := f−1
1 ◦ f−n+2

0 ◦ F (x), ∀x ∈ [c2, c3].

By (4.13), f2 maps [c2, c3] onto [c1, c2], which is continuous and strictly increasing. Then we generally define

fi(x) := f−1
i−1 ◦ ... ◦ f−1

1 ◦ f−n+i
0 ◦ F (x), ∀x ∈ [ci, ci+1] (4.14)

for i = 3, ..., n. In view of (4.13)–(4.14) we obtain

fi(ci) = f−1
i−1 ◦ ... ◦ f−1

1 ◦ f−n+i
0 ◦ F (ci) = f−1

i−1 ◦ ... ◦ f−1
1 (f0(c1)) = ci−1,

fi(ci+1) = f−1
i−1 ◦ ... ◦ f−1

1 ◦ f−n+i
0 ◦ F (ci+1) = f−1

i−1 ◦ ... ◦ f−1
1 (c1) = ci

for i = 3, ..., n − 1. Hence, fi : [ci, ci+1] → [ci−1, ci] for i = 1, 2, ..., n is an orientation-preserving homeomor-
phism. Let

f(x) :=
{
f0(x), ∀x ∈ [a, c1],
fi(x), ∀x ∈ (ci, ci+1], i = 1, 2, ..., n,

(4.15)

where fis are defined in (4.14). Clearly, f is continuous on I because

fi−1(ci) = f−1
i−2 ◦ ... ◦ f−1

1 ◦ f−n+i−1
0 ◦ F (ci) = f−1

i−2 ◦ ... ◦ f−1
1 (c1) = ci−1

by (4.14). Moreover, for each x ∈ I\[a, c1] there exists i = 1, ..., n such that x ∈ [ci, ci+1]. One can check 
that

fn(x) = fn−i
0 ◦ f1 ◦ ... ◦ fi(x)

= fn−i
0 ◦ f1 ◦ ... ◦ fi−1 ◦ f−1

i−1 ◦ ... ◦ f−1
1 ◦ f−n+i

0 ◦ F (x)

= F (x)

by (4.14) again. Therefore, f defined in (4.15) is a continuous iterative root of F of order n. This completes 
the proof. �

Concerning the question on characteristic endpoints, studied in this paper and mentioned in the Intro-
duction, Theorems 4.2–4.3 give a complete answer to the existence of continuous iterative roots f of order 
n = N(F ) ≥ 2 which are of the height H(f) = n and strictly decreasing on [a′, b′]. For 2 < n ≤ N(F ) + 1, 
Theorem 4.1 denies the existence of continuous iterative roots f of order n which are of the height 
H(f) < n − 1 and strictly decreasing on [a′, b′], but the existence of such roots f decreasing on [a′, b′]
of order n with the height H(f) = n is still open in the case n = N(F ) +1 and the case that 2 < n < N(F ).

5. Some remarks

First, we demonstrate our theorems with the following examples.

Example 5.1. Consider F1 : [0, 1] → [0, 1] (see Fig. 7), defined by

F1(x) :=

⎧⎪⎨
⎪⎩

1
2x + 1

4 , ∀ x ∈ [0, 1
2 ],

−2x + 3
2 , ∀ x ∈ (1

2 ,
3
4 ),

x− 3 , ∀ x ∈ [ 3 , 1].
4 4
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Fig. 7. F1 with N(F1) = 2.

Fig. 8. F2 and f2.

Obviously, F1 does not satisfy condition (K+
0 ) because K(F1) = [0, 12 ] and F1 reaches 0 at the unique 

point 3
4 /∈ [0, 12 ]. By Theorem 3.1, F1 does not have a continuous iterative root f of order n > 1 which 

is strictly increasing on K(F1) and satisfies either H(f) �= n or H(f) = N(F1) = 2. On the other hand, 
by Theorems 4.1 and 4.2, F1 does not have a continuous iterative root f of order n > 1 which is strictly 
decreasing on K(F1) and satisfies H(f) < n − 1. Therefore, F1 does not have a continuous iterative root f
of any order n > 1 which satisfies H(f) < n − 1.

Example 5.2. Consider F2 : [0, 1] → [0, 1] (see Fig. 8), defined by

F2(x) :=

⎧⎪⎨
⎪⎩

1
4x + 1

16 , ∀ x ∈ [0, 1
4 ],

−1
4x + 3

16 , ∀ x ∈ (1
4 ,

3
4 ),

x− 3
4 , ∀ x ∈ [ 34 , 1].

Clearly, F2 does not satisfy condition (K+
0 ) because K(F2) = [0, 14 ] and F2 reaches 0 at the unique point 

3
4 /∈ [0, 14 ]. Moreover, the assumption (i) of Theorem 4.3 is satisfied with n = N(F2) = 2, c1 = 1

4 and c2 = 3
4 . 

It is easy to verify that the mapping f2 : [0, 1] → [0, 1] (see Fig. 8), defined by

f2(x) :=

⎧⎪⎨
⎪⎩

−1
2x + 1

8 , ∀ x ∈ [0, 1
4 ],

1
2x− 1

8 , ∀ x ∈ (1
4 ,

3
4 ),

2x− 5
4 , ∀ x ∈ [ 34 , 1],

is a continuous iterative root of F2 of order 2 such that H(f2) = 2.
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Fig. 9. F3 and f3.

Example 5.3. Consider F3 : [0, 1] → [0, 1] (see Fig. 9), defined by

F3(x) :=

⎧⎪⎨
⎪⎩

2x + 1
2 , ∀ x ∈ [0, 1

4 ],
−x + 5

4 , ∀ x ∈ (1
4 ,

1
2 ),

1
4x + 5

8 , ∀ x ∈ [ 12 , 1].

Clearly, F3 does not satisfy condition (K+
0 ) because K(F3) = [ 12 , 1] and F3 reaches 1

2 at the unique point 
0 /∈ [ 12 , 1]. Moreover, the assumption (ii) of Theorem 4.3 is satisfied with n = N(F3) = 2, c1 = 1

4 and c2 = 1
2 . 

One can check that the mapping f3 : [0, 1] → [0, 1] (see Fig. 9), defined by

f3(x) :=

⎧⎪⎨
⎪⎩

x + 1
4 , ∀ x ∈ [0, 1

4 ],
2x, ∀ x ∈ (1

4 ,
1
2 ),

−1
2x + 5

4 , ∀ x ∈ [ 12 , 1],

is a continuous iterative root of F3 of order 2 such that H(f3) = 2.

Our this paper is focused on the question on characteristic endpoints mentioned in the Introduction (also 
seen in [15]). Assuming that F ∈ PM(I, I) with H(F ) = 1 such that (K+) holds but condition (K+

0 ) is not 
true, we discuss for n = N(F ), n = N(F ) + 1 and 2 ≤ n ≤ N(F ) − 1 separately:

• For n = N(F ), F has neither a continuous iterative root which is strictly increasing on [a′, b′] (Corol-
lary 3.1) nor a continuous iterative root of height < n − 1 which is strictly decreasing on [a′, b′]
(Theorem 4.1). A necessary and sufficient condition is given in Theorem 4.3 for the existence of it-
erative roots f of height H(f) = n which are strictly decreasing on [a′, b′]. The existence of continuous 
iterative roots f of height H(f) = n − 1 which are decreasing on [a′, b′] is still unknown, which can be 
reduced to the open problem (P) as indicated in the end of section 3.

• For n = N(F ) + 1, F has neither a continuous iterative root which is strictly increasing on [a′, b′]
(Corollary 3.1) nor an iterative root f of height H(f) < n − 1 which is strictly decreasing on [a′, b′]
(Theorem 4.1), but the existence of such roots f decreasing on [a, b] is still unknown.

• For 2 < n < N(F ), F has neither a continuous iterative root f of height H(f) < n which is strictly 
increasing on [a′, b′] (Theorem 3.1) nor an iterative root f of height H(f) < n − 1 which is strictly 
decreasing on [a′, b′] (Theorem 4.1), but the existence of such a root f of height H(f) = n which is 
increasing on [a′, b′] is still unknown, which is proposed as the open problem (P).

• For n = 2, we obtain a necessary and sufficient condition for the existence of iterative roots f of height 
H(f) = 1 which are strictly decreasing on [a′, b′] (Theorem 4.2).
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Remark that the question on characteristic endpoints, which was raised in [16], does not concern about 
those F decreasing on the characteristic interval [a′, b′]. However, for those F decreasing on the characteristic 
interval [a′, b′], the following result was also obtained in Theorem 10 in [16] (also seen in Theorem 5 in [15]), 
which is in contrast to Theorem A stated in the Introduction.

Theorem B. Let F ∈ PM(I, I) be of height 1. Suppose that (K−) F is strictly decreasing on its characteristic 
interval K(F ) = [a′, b′] and, additionally, (K−

0 ) either F (a′) = b′ and F (b′) = a′ or a′ < F (x) < b′ on I. 
Then, for any odd n > 1, F has continuous iterative roots of order n.

Theorem 2 of [15] shows that condition (K−
0 ) is necessary for odd order n > N(F ) + 1 if (K−) holds. 

Hence, it is also interesting to discuss a similar question: What happens if condition (K−
0 ), also called the 

‘characteristic endpoints condition’ for decreasing case, is not satisfied?
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