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In this work we study the center conditions of a particular polynomial differential 
system with a nilpotent singularity using a new proposed algorithm. This problem 
was initially studied in [19] where some center conditions were found using the 
Cherkas’ method and its full characterization was established as an open problem.
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1. Introduction and statement main results

The case when a nilpotent singularity of a vector field is a center was theoretically characterized in [4,11]. 
In fact, any nilpotent system with a center is orbitally equivalent to a time-reversible, more specifically the 
phase portrait is symmetric respect to the y-axis after a change in the time and state variables, see also 
[1,13,18]. However, there are few families of nilpotent vector fields where the center conditions are known, see 
for instance [5–7]. Indeed the centers of the more simple semi-quasi-homogeneous systems, that is, systems 
that are sum of two quasi-homogeneous vector fields are not yet completely classified.

In [12] was studied the analytically integrable centers of the semi-quasi-homogeneous nilpotent vector 
fields of the type (1, k) with k ≥ 2

ẋ = −y + a1xy + a2x
k+1, ẏ = x2k−1 + b1y

2 + b2x
ky + b3x

2k. (1.1)

We recall that not all the nilpotent centers are locally analytic integrable, see [4,13,17]. In [19] the center 
conditions of system (1.1) were studied via Cherkas’ method, see [14,17,20]. The authors distinguished two 
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cases, k even and k odd, that we now write as the following differential systems(
ẋ

ẏ

)
=

(
y

−x4q+3

)
+

(
a1xy + a2x

2q+3

b1y
2 + b2x

2q+2y + b3x
4q+4

)
, (1.2)

with q ∈ N ∪ {0}, and (
ẋ

ẏ

)
=

(
y

−x4q+1

)
+

(
a1xy + a2x

2q+2

b1y
2 + b2x

2q+1y + b3x
4q+2

)
, (1.3)

with q ∈ N. We remark that the center problem for these nilpotent families is as important as the nonde-
generate center problem of the semi-homogeneous vector field formed by a linear component of type (−y, x)
and a quadratic component or a homogeneous cubic component, studied in [10,24] respectively. The family 
(1.2) is completely solved in [19], that is, all the centers are known. However, the classification for the family 
(1.3) is still open.

In this work we develop an orbital reversibility algorithm to obtain the orbital reversible obstructions to 
have a center for any vector field with a nilpotent singularity. We complete the center conditions for the 
family (1.3) for q = 1. In addition, a new center case is obtained for q ≥ 2, and it is conjectured that all the 
centers given in this work, for the case q ≥ 2, are the unique ones.

Notice that if F is the vector field associated to system (1.3) then F = F2q + F2q+1 is a sum of two 
quasi-homogeneous vector fields of type t = (1, 2q + 1) and degree 2q and 2q + 1, respectively. The center 
problem for the above family is the simplest unsolved problem with arbitrary q. We recall that the analytic 
integrability and the center problem for system (1.3) has been studied but not solved in [12] and later in 
[19]. Next result completes the analytical integrability problem for system (1.3).

Theorem 1.1. System (1.3) for q ≥ 1 is analytically integrable if, and only if, one of the following conditions 
is verified:

a) a2 = b2 = 0.
b) a1 + 2b1 = b2 + 2(q + 1)a2 = 0.

Next result gives center conditions of system (1.3) for q ≥ 2.

Theorem 1.2. The origin of system (1.3) for q ≥ 2 is a center if one of the following conditions is satisfied:

(a) a2 = b2 = 0.
(b) a1 + 2b1 = b2 + 2(q + 1)a2 = 0.
(c) a1 = b1 = b3 = 0.
(d) a2 = b1 + a1 = b3 − a1 = 0.
(e) a2 = b1 − 2(q + 1)a1 = b3 + 2a1 = 0.
(f) a2 = 2b1 − (2q + 1)a1 = 2b3 + a1 = 0.
(g) b3 = b2 − (2q + 1)a2 = b1 − (2q + 1)a1 = 0.

The cases (a), (b), (c), (d), (e), (f) correspond to the cases (i), (v), (vi), (ii), (iii), (iv) of [19], respectively. 
However the case (g) is a new case not found in the previous work [19].

We have shown that, for 2 ≤ q ≤ 100, the only centers of system (1.3) are those described in Theorem 1.2, 
so for these values of q these cases are necessary and sufficient conditions. We conjecture that the same 
statement happens for all q > 100.

The following result characterizes the center conditions of system (1.3) for q = 1.
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Theorem 1.3. The origin of system (1.3) for q = 1 is a center if, and only if, one of the following conditions 
is satisfied: Cases (a)-(g) for q = 1 of Theorem 1.2 and

(h) b2 − 35a2 = 3b1 − 5a1 = 9b3 + 4a1 = 405a2
2 − a2

1 = 0.

Case (h) is a new case only for q = 1. Moreover, it is also a center case not found in [19].

2. Preliminary results

Before of showing our results, we recall the following concepts and definitions. Given t = (t1, t2) with t1
and t2 natural numbers without common factors, a function f of two variables is quasi-homogeneous of type 
t and degree k if f(εt1x, εt2y) = εkf(x, y). The vector space of quasi-homogeneous polynomials of type t
and degree k will be denoted by Pt

k. A vector field F = (P, Q)T is quasi-homogeneous of type t and degree 
k if P ∈ Pt

k+t1
and Q ∈ Pt

k+t2
. We will denote Qt

k the vector space of the quasi-homogeneous polynomial 
vector fields of type t and degree k.

Any vector field can be expanded into quasi-homogeneous terms of type t of successive degrees. Thus, the 
vector field F can be written in the form F = Fr +Fr+1 + · · · for some r ∈ Z, where Fj = (Pj+t1 , Qj+t2)T ∈
Qt

j and Fr �≡ 0. If we select the type t = (1, 1), we are using in fact the Taylor expansion, but in general, 
each term in the above expansion involves monomials with different degrees.

We will denote by D0 = (t1x, t2y)T ∈ Qt
0 (a dissipative quasi-homogeneous vector field) and by Xh =

(−∂h/∂y, ∂h/∂x)T (the Hamiltonian vector field associated to the polynomial h). If h ∈ Pt
r+|t| then Xh ∈ Qt

r

where |t| = t1 + t2. Moreover, it is proved that every Fj ∈ Qt
j can be expressed as

Fj = Xhj
+ μjD0 (2.4)

with hj = (D0 ∧ Fj)/(j + |t|) and μj = div (Fj) /(j + |t|), where D0 ∧ Fj := t1xQj+t2 − t2yPj+t1 ∈ Pt
j+|t|

and div (Fj) ∈ Pt
j is the divergence of Fj , see [3].

We define the vector spaces.

Q̃t
k =

{
(P,Q)T ∈ Qt

k : P (−x, y) = P (x, y), Q(−x, y) = −Q(x, y)
}
,

Qt
k =

{
(P,Q)T ∈ Qt

k : P (x, y) = −P (x, y), Q(−x, y) = Q(x, y)
}
,

P̃t
k =

{
μ ∈ Pt

k : μ(−x, y) = −μ(x, y)
}
,

P
t
k =

{
μ ∈ Pt

k : μ(−x, y) = μ(x, y)
}

Q̃t
k, Q

t
k are the vector field in Qt

k such that the differential systems associated to these vector field are 
invariant to (x, y, t) → (−x, y, −t), or invariant to (x, y, t) → (−x, y, t), respectively. It is verified that 
Qt

k = Q̃t
k

⊕
Qt

k and Pt
k = P̃t

k

⊕
P

t
k.

The vector field transformed of F by means of the change of variables with generators (spatial U and 
temporal μ) is given by (see [15])

U∗∗ (μF) := μF + [μF,U] + 1
2! [[μF,U] ,U] + 1

3! [[[μF,U] ,U] ,U] + · · · .

Next result provides a simplified normal form which uses reduced changes of variables and time reparame-
trization that are convenient for calculating necessary conditions of centers for systems with first quasi-
homogeneous component of the type F2q = (y, −x4q+1)T , q ∈ N.
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Proposition 2.4. Let F =
∑

j≥2q Fj with Fj ∈ Q(1,2q+1)
j , F2q = (y, −x4q+1)T ∈ Q̃(1,2q+1)

2q then it is possible 

to choose adequately Ũ =
∑

j≥1 Ũj with Ũj ∈ Q̃t
j and μ̃ = 1 +

∑
j≥1 μ̃j, with μ̃j ∈ P̃t

j, t = (1, 2q + 1), such 
that

Ũ∗∗ (μ̃F) = F2q +
∑
i≥0

(
G̃2(q+i)+1 +

(
G̃2(q+i+1) + α2(q+i+1)x

2(q+i+1)D0

))
, (2.5)

where D0 = (x, (2q + 1)y)T and G̃j ∈ Q̃t
j.

Proof. By [8, Proposition 12-15] a formally orbital equivalent normal form of system ẋ = F(x) is ẋ =
G(x) := F2q +

∑
i>2q Gi, with Gi ∈ Cor (Li) (complementary space to the range of Li), being

Li : Qt
i−2q × Cor (�i−2q) → Qt

i

(Ui−2q, μi−2q) − [F2q,Ui−2q] − μi−2qF2q

�i : Pt
i−2q → Pt

i

μi−2q ∇μi−2q · F2q

Moreover G = F2q +
∑

i>2q νiD0 with νi ∈ Cor (�i) (complementary space to the range of �i). Taking 

into account that F2q = Xh with h = −1
2y

2 − 1
4q+2x

4q+2, we have that νi = β
(l)
j xjhl if j �= 4q + 1 where 

j = i − l(4q + 2) and l =
⌊

i
2(2q+1)

⌋
(�·� is floor function), and νi = 0 if j = 4q + 1. It is easy to prove that 

another subspace complementary to the range of �i is given by νi = αix
i if mod(i, 4q + 2) �= 4q + 1 and 

νi = 0 otherwise.
It is possible to choose a complementary subspace to the range of �k for all k, Cor (�k) of the form 

Cor (�k) = ˜Cor (�k)
⊕

Cor (�k), where ˜Cor (�k) = Cor (�k) ∩ P̃t
k and Cor (�k) = Cor (�k) ∩ P

t
k. Therefore 

Qt
i−2q × Cor (�i−2q) = Q̃t

i−2q × ˜Cor (�i−2q)
⊕

Qt
i−2q × Cor (�i−2q).

With this choice we consider now the operator Li : Q̃t
i−2q× ˜Cor (�i−2q)

⊕
Q̄t

i−2q×Cor (�i−2q) → Q̄t
i

⊕
Q̃t

i

whose matrix can be expressed as⎛⎜⎝ • 0 Qt
i

0 • Q̃t
i

Q̃t
i−2q × ˜Cor (�i−2q) Qt

i−2q × Cor (�i−2q)

⎞⎟⎠
where • means a non-null submatrix, since F2q ∈ Q̃t

2q and hence the following properties are verified: [
F2q, Ũi−2q

]
∈ Qt

i , 
[
F2q,Ui−2q

]
∈ Q̃t

i and if μ̃i−2q ∈ ˜Cor (�i−2q), μi−2q ∈ Cor (�i−2q), then μ̃2−2qF2q ∈ Qt
i

and μ2−2qF2q ∈ Q̃t
i .

Therefore if we define the reduced operator

L̄i : Q̃t
i−2q × ˜Cor (�i−2q) → Q̄t

i

(Ũi−2q, μ̃i−2q) −
[
F2q, Ũi−2q

]
− μ̃i−2qF2q

the matrix of the operator L̄i is a submatrix of the matrix of Li and the formally orbital equivalent normal 
form using reduced spatial generators Ũk ∈ Q̃t

k and reduced temporal generators μ̃k ∈ ˜Cor (�k) is given by

Ũ∗∗ (μ̃F) = F2q +
∑
i≥0

(
G̃2(q+i)+1 +

(
G̃2(q+i+1) + α2(q+i+1)x

2(q+i+1)D0

))
and the result follows. �

Next result characterizes the centers of system ẋ = F2q(x) + · · · .
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Theorem 2.5. The origin of system ẋ = F(x) where F =
∑

j≥2q Fj with Fj ∈ Q(1,2q+1)
j , F2q = (y, −x4q+1)T , 

is a center if, and only if, the coefficients α2(q+i+1) of equation (2.5) are null for all i ≥ 0.

Proof. By Proposition 2.4 the origin of system ẋ = F(x) is a center if, and only if, the origin of system 
ẋ = Ũ∗∗(μ̃F)(x) defined in (2.5) is a center. The sufficiency is trivial. We prove the necessity by reduction to 
absurdity. Assume that not all the coefficients α2(q+i+1) be null and take N = min

{
i ∈ N : α2(q+i+1) �= 0

}
, 

that is, α2(q+i+1) = 0 for all i < N and α2(q+N+1) �= 0. Let F be the vector field associated to the system (2.5)

and G = F2q +
∑
i≥0

2∑
j=1

G̃2q+2i+j then F = G + νD0 with ν =
∑

i≥N α2(q+i+1)x
2(q+i+1). Taking the vector 

field G as center, considering the decomposition (2.4) we have G̃2q+2i+j = Xhi,j
+ λi,jD0 j = 1, 2, where 

hi,j ∈ Pt
4q+2i+j+2 and λi,j ∈ Pt

2q+2i+j . Taking into account that F2q = Xh with h = −1
2y

2 − 1
4q+2x

4q+2, we 
get:

G · F⊥ = G ∧ νD0 = ν

⎛⎝F2q +
∑
i≥0

2∑
j=1

G̃2q+2i+j

⎞⎠ ∧D0 = ν

⎛⎝Xh +
∑
i≥0

2∑
j=1

Xhi,j
+ λi,jD0

⎞⎠ ∧ D0

= x2(q+N+1)

(
α2(q+N+1) +

∑
l>0

α2(q+N+1+l)x
2l

)⎛⎝(4q + 2)h +
∑
i≥0

2∑
j=1

(4q + 2i + j)hi,j

⎞⎠
In this way for all (x, y) in a neighborhood of the origin with x �= 0, we have that sig

(
G · F⊥) =

sig(α2(q+N+1)) and for x = 0 we get G ·F⊥ = 0 therefore all orbits of F leave from any closed orbits of the 
center G if α2(q+N+1) > 0 or all orbit of F enter from any closed orbit of the center G if α2(q+N+1) < 0. 
Therefore the origin of system (1.3) is not a center. �

These constants α2(q+i+1) give the center conditions, their vanish is a necessary condition to have a center. 
Therefore, Theorem 2.5 provides an effective algorithm for computing center conditions in the particular 
case of system (1.3) and for nilpotent systems in general. Notice that the algorithm is efficient because 
only use change of variables necessary to achieve a reduced normal form. This fact allows to calculate more 
Lyapunov constants than the classical algorithm that includes all change of variables, as it is shown in 
the following proofs. Moreover, the constants α2(q+i+1) that appear in (2.5) give the conditions of orbital 
reversibility, that is, system ẋ = F(x) of Theorem 2.5 is orbital reversible if, and only if, α2(q+i+1) = 0 for 
all i ≥ 0 in the equation (2.5), see [1,11].

3. Proof of results

3.1. Proof of Theorem 1.1

If system (1.3) is analytically integrable from [9, Theorem 18] a first integral must be of the form 
I = y2

2 + x4q+2

4q+2 + · · · . Then using [12, Theorem 2] is obtained the result.

3.2. Sufficient conditions for Theorem 1.2

In case (a) the system is Ry-reversible, and as the origin is monodromic, the origin is a center. In the 
case (b) system (1.3) is Hamiltonian with F = Xg, where g is given in (3.7). Therefore is integrable and 
as the origin is monodromic, it is a center. The case (c) is Rx-reversible. For the cases (d)-(g), in order to 
prove the sufficiency, we first apply to system (1.3) the change of variables x = u, y = v(1 + a1u)b1/a1 and 
the system becomes
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u̇ = v(1 + a1u)b1/a1+1 + a2u
2q+2,

v̇ = −u4q+1 + b3u
4q+2

(1 + a1u)b1/a1
+ b2 + (b2a1 − b1a2)u

1 + a1u
u2q+1v.

(3.6)

In the case (d) system (3.6) is given by

u̇ = v, v̇ = −u4q+1 + b2u
2q+1v + a2

1u
4q+3,

which is Ru−reversible. In the case (e) system (3.6) is

u̇ = v(1 + a1u)2q+3, v̇ = − 1 + 2a1u

(1 + a1u)2q+2u
4q+1 + b2u

2q+1v

Applying the change Y = v, X = u/(1 + a1u), and dt = (1 − a1X)2q+1dT we obtain the system

X ′ = Y, Y ′ = −X4q+1 + 2(q + 1)a1X
2q+1Y − σa2

1X
4q+3,

which is RX−reversible. In the case (f) system (3.6) is

u̇ = v(1 + a1u)(2q+3)/2, v̇ =
−u4q+1(1 + a1

2 u)
(1 + a1u)(2q+1)/2 + b2u

2q+1v.

Applying the change Y = v, X = u/
√

1 + a1u, dt = dT/((1 + a1
2 u)(1 − a1u)q) and taking into account that 

1 + a2
1
4 X2 = (1 + a1

2 u)2/(1 + a1u), we obtain the system

X ′ = Y, Y ′ = −X4q+1 + b2
X2q+1√
1 + a2

1
4 X2

Y,

which is RX−reversible. In the case (g) system (3.6) takes the form

u̇ = v(1 + a1u)2q+2 + a2u, v̇ = −u4q+1

(1 + a1u)2q+1 + (2q + 1)a2

1 + a1u
u2q+1v.

Applying the change Y = v, X = u/(1 + a1u), dt = (1 − a1X)2qdT we obtain the system

X ′ = Y + a2X
2q+2, Y ′ = −X4q+1 + (2q + 1)a2X

2q+1Y,

which is RX−reversible and this completes the proof.

3.3. Necessary conditions for Theorem 1.2

We compute the first orbital reversibility constants or the first center condition α2(q+i+1) = 0 that appear 
in (2.5). This first constant is

α2q+2 =
(
2qa1 − 3b1 − (2q + 3)b3

)(
b2 + 2(q + 1)a2

)
+ (4q + 3)a2(a1 + 2b1), q ≥ 1

The next constants are too large to include them here but the reader can compute them using the method 
derived from Theorem 2.5, see also [2]. From the form of α2q+2 we have the following four possibilities:

(1) b2 + 2(q + 1)a2 = 0;
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(2) b2 + 2(q + 1)a2 �= 0 and a1 + 2b1 = 0;
(3) (b2 + 2(q + 1)a2)(a1 + 2b1) �= 0 and a2 = 0;
(4) (b2 + 2(q + 1)a2)(a1 + 2b1)a2 �= 0.

Case (1). If b2 + 2(q + 1)a2 = 0 then we have α2q+2 = (4q + 3)a2(a1 + 2b1), for q ≥ 1 which gives rise to 
the following possibilities:

(i) If a2 = 0 then we obtain b2 = 0 and in this case system (1.3) is Ry-reversible. This situation corresponds 
to case (a).

(ii) If a1 + 2b1 = 0 system (1.3) is a Hamiltonian system with F = Xg, where

g(x, y) = −1
2y

2 − 1
2(2q + 1)x

4q+2 + b1xy
2 − a2x

2q+2y + b3
4q + 3x

4q+3. (3.7)

This case corresponds to case (b).

Case (2). If b2 +2(q+1)a2 �= 0 and a1 +2b1 = 0 then we obtain α2q+2 = (4q+3)b1 +(2q+3)b3. From the 
vanishing of this constant we can isolate b3 = −(4q + 3)b1/(2q + 3). The next orbitally reversible constant 
or center condition is

α2q+4 = b1
(
− 16q(4q + 5)(q + 1)b21 + 3(2q + 5)(2q + 3)2a2 [(2q + 3)a2 − b2]

)
, q ≥ 1,

which gives rise to the following possibilities:

(i) If b1 = 0 we obtain a1 = b3 = 0. In this case the system is Rx-reversible and corresponds to case (c).
(ii) If b1 �= 0 from the vanishing of α2q+4 we have

b21 = 3(2q + 5)(2q + 3)2a2 [(2q + 3)a2 − b2]
16q(4q + 5)(q + 1)

with a2 [(2q + 3)a2 − b2] �= 0, otherwise b1 = 0. The next constant is

α2q+6 = (2q + 5)(2q + 3)(16q2 + 150q + 161)a2 − 2(16q3 + 130q2 + 251q + 140)b2, q ≥ 1.

The vanishing of this constant provides the value of b2 given by

b2 = (2q + 5)(2q + 3)(16q2 + 150q + 161)
2(16q3 + 130q2 + 251q + 140) a2

and the next one is

α2q+8 = b1a2
[
(32(16q3 + 130q2 + 251q + 140))(q + 1)qb21 + 45a2

2(2q + 7)(2q + 5)(2q + 3)3
]
.

Hence the unique possibility to vanish α2q+8 taking into account that q ∈ N is a2 = 0 and in this case 
b2 = 0, which gives the already considered case (a).

Case (3). The condition a2 = 0 with (b2 + 2(q + 1)a2)(a1 + 2b1) �= 0 is equivalent to a2 = 0 and 
b2(a1 + 2b1) �= 0. If a2 = 0 we obtain that α2q+2 = [2qa1 − 3b1 − (2q + 3)b3] b2. From its vanishing we have 
b3 = (2qa1 − 3b1)/(2q + 3) and the next constant is α2q+4 = (b1 + a1)(b1 − 2(q + 1)a1)(2b1 − (2q + 1)a1), 
which gives rise to the following possibilities:
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(i) If b1 + a1 = 0, then we obtain b3 = a1 and this corresponds to the case (d).
(ii) If b1 − 2(q + 1)a1 = 0 we have b3 = −2a1 and this situation corresponds to case (e).
(iii) If 2b1 − (2q + 1)a1 = 0 then b3 = −a1/2 and this corresponds to the case (f).

Case (4). In the last case (b2 + 2(q + 1)a2)(a1 + 2b1)a2 �= 0 we apply the scalar change x = x1/a2, 
y = x2/a

2q+1
2 , and dt = dT/a2q

2 and system (1.3) takes the form(
x′

1
x′

2

)
=

(
x2

−x4q+1
1

)
+

(
A1x1x2 + x2q+2

1
B1x

2
2 + B2x

2q+1
1 x2 + B3x

4q+2
1

)
,

where ′ = d/dT , A1 = a1/a2, B1 = b1/a2, B2 = b2/a2 and B3 = b3/a2. In this case the first nonzero 
constant is

α2q+2 =
(
(2q + 3)B3 + B1 − (2q + 1)A1

)(
B2 + 2(q + 1)

)
+
(
B2 − (2q + 1)

)(
A1 + 2B1

)
.

We remark that B2 + 2(q + 1) �= 0 since otherwise implies b2 + 2(q + 1)a2 = 0 against the hypothesis of the 
case. Hence we can isolate from α2q+2 the parameter B3 and we obtain

B3 = B1(−3B2 + 2q) + A1(3 + 2(4 + B2)q + 4q2)
(3 + 2q)(B2 + 2(q + 1)) .

We recall that 3 + 2q �= 0 because q ∈ N. Substituting this value of B3 in the next constants we obtain 
a rational functions in the parameters A1, B1, B2, q where the denominators are different from zero. So we 
take the polynomial numerators of these constants that we rename of the same form. We have not been 
able to finish the problem using computer algebra system Singular [23] to find the decomposition in prime 
ideals of the ideal generate by the constants. Hence we use the resultant method, see for instance [5]. In fact 
any component of the center variety must be a zero of the resultants between the initial orbital reversible 
constants and the resultants of the resulting successive polynomials of the resultants. Hence we first compute 
the following resultant between α2q+4 and α2q+j , for j = 8, 10, 12 respect to the parameter A1, and these 
resultants are

Resultant[α2q+4, α2q+8, A1] = B5
1q

3(3 + 2q)15(B2 − (2q + 1))(B2 + 2(q + 1))15(5 + 4q)3P1(B1, B2, q),
Resultant[α2q+4, α2q+10, A1] = B5

1q
3(3 + 2q)21(B2 − (2q + 1))(B2 + 2(q + 1))21(5 + 4q)6P2(B1, B2, q),

Resultant[α2q+4, α2q+12, A1] = B5
1q

3(3 + 2q)27(B2 − (2q + 1))(B2 + 2(q + 1))27(5 + 4q)9P3(B1, B2, q),

where P1, P2 and P3 are polynomials in the variables B1, B2 and q. If we recall that q ∈ N we have three 
cases to study. The first one is B1 = 0, the second is B2 = (2q + 1) and the third is P1 = P2 = P3 = 0.

a) If B1 = 0 we have that

α2q+4 = A1Q1(A1, B2, q), α2q+8 = A1Q2(A1, B2, q) and α2q+10 = A1Q3(A1, B2, q),

where Q1, Q2 and Q3 are polynomials in A1, B2 and q. The case A1 = 0 implies a1 = b1 = 0 against the 
hypothesis of the case because (a1 + 2b1)a2 �= 0. Now we do the following resultants

Resultant[Q1,Q2, A1] = B4
2q

2(B2 − 2q − 3)2(3 + 2q)10(B2 + 2(q + 1))8(5 + 4q)2R1(B2, q),
Resultant[Q1,Q3, A1] = B4

2q
2(B2 − 2q − 3)2(3 + 2q)14(B2 + 2(q + 1))12(5 + 4q)4R2(B2, q),

which gives the following possibilities:

i) If B2 = 0 we have α2q+4 = 2A3
1(1 + 2q)(3 + 2q)4(5 + 2q) which never vanishes.
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ii) If B2 = 2q + 3 we have α2q+4 = 4A3
1q(3 + 2q)3(5 + 4q)(5 + 8q) which also never vanishes.

iii) If R1 = R2 = 0 we made the Resultant[R1, R2, B2] which is a polynomial in q without any natural 
root.

b) If B2 = 2q + 1 we have that α2q+4 = (B1 −A1(2q + 1))S1(A1, B1, q) and

α2q+8 = (B1 −A1(2q + 1))S2(A1, B1, q) and α2q+10 = (B1 −A1(2q + 1))S3(A1, B1, q).

If B1 − A1(2q + 1) = 0 this implies B3 = 0 and then b3 = b1 − (2q + 1)a1 = b2 − (2q + 1)a2 = 0
which corresponds to the case (g). The remaining case is S1 = S2 = S3 = 0. The resultant between these 
polynomials gives

Resultant[S1,S2, A1] = q2(3 + 2q)8(3 + 4q)8(5 + 4q)2T1(B2, q),
Resultant[S1,S3, A1] = q2(3 + 2q)12(3 + 4q)12(5 + 4q)4T2(B2, q),

and the resultant Resultant[T1, T2, B1] gives a polynomial in q without any natural root.
c) The last case is P1 = P2 = P3 = 0 with B1 �= 0. Next we do the following resultants:

Resultant[P1,P2, B1] = (2B2 − (4q + 1))2(B2 − (2q + 5))2(B2 − (2q + 3))26(B2 − 2q + 1)2
(1 + q)6(3 + 2q)12(B2 + 2q + 5)2(5 + 4q)10(7 + 4q)10(B2 + 6q + 9)6P̄1(B2, q),

Resultant[P1,P3, B1] = (2B2 − (4q + 1))2(B2 − (2q + 5))2(B2 − (2q + 3))26(B2 − 2q + 1)2
(1 + q)6(3 + 2q)12(B2 + 2q + 5)2(5 + 4q)10(7 + 4q)10(B2 + 6q + 9)6P̄2(B2, q),

with

P̄1(B2, q) = P̄2
11(B2, q)P̄2

12(B2, q), P̄2(B2, q) = P̄2
21(B2, q)P̄2

22(B2, q),

where P̄11(B2, q) is of degree 38 in q and P̄12(B2, q) is of degree 325 in q and P̄21(B2, q) is of degree 74 in q
and P̄22(B2, q) is of degree 457 in q. Then we have the following particular cases:

i) If B2 = (4q + 1)/2 the Resultant[P1/B
2
1 , P2/B

2
1 , B1] has not any natural root for q.

ii) If B2 = (2q + 5) the Resultant[P1/B
2
1 , P2/B

2
1 , B1] has not any natural root for q.

iii) If B2 = (2q + 3) the Resultant[P1/B
6
1 , P2/B

6
1 , B1] has not any natural root for q.

iv) If B2 = (2q − 1) the Resultant[P1/B
2
1 , P2/B

2
1 , B1] has not any natural root for q.

v) If B2 = −(2q + 5) the Resultant[P1, P2, B1] = 0, due to P1 = (4 + B2
1 + 2q)M1(B1, q) and P2 =

(4 +B2
1 + 2q)M2(B1, q). However 4 +B2

1 + 2q �= 0 because q must be a natural number. Moreover the 
resultant Resultant[M1, M2, B1] has not any natural root for q.

vi) If B2 = −(6q + 9) the Resultant[P1, P2, B1] = 0, due to P1 = (27 + B2
1 + 54q + 36q2 + 8q3)N1(B1, q)

and P2 = (27 + B2
1 + 54q + 36q2 + 8q3)N2(B1, q). However 27 + B2

1 + 54q + 36q2 + 8q3 �= 0 because q
must be a natural number. Moreover the resultant Resultant[N1, N2, B1] has not any natural root for 
q.

vii) The last case is P̄1 = P̄2 = 0. In this case we have to do the different resultant between the polynomials 
that define P̄1 and P̄2. The resultant between P11(B2, q) and P21(B2, q) has not any natural root for q
except the case q = 1 that we study later. However it lacks to make the computations of the resultants

Resultant[P11,P22, B1], Resultant[P12,P21, B1], Resultant[P12,P22, B1],

to see if there exist any natural root for q except the case q = 1.
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In short we have not been able to finish the problem neither using computer algebra system Singular 
[23] to find the decomposition in prime ideals of the ideal generate by the constants nor using the resultant 
method, see [5]. We recall that this second method is based in the fact that any component of the center 
variety must be a zero of the resultants between the initial orbital reversible constants and of the resultants 
of the resulting successive polynomials. Doing this resultant process we are not able to finish the process 
with our computational facilities in order to arrive to a polynomial in q that must not have roots in N
except for q = 1. However for a fixed value of 2 ≤ q ≤ 100 we always obtain the cases given in the statement 
of the theorem obtaining the decomposition of the ideal using the computer algebra system Singular.

3.4. Proof of Theorem 1.3

Necessity. Reasoning as in section about necessary conditions of the Theorem 1.2 we get the cases (a)-(g). 
Only left the study for (b2 + 2(q + 1)a2)(b2 − (2q + 1)a2)(a1 + 2b1)a2 �= 0 but now with q = 1. In this 
case using the computer algebra system Singular we can obtain the decomposition of the ideal generated 
by the orbital reversible constants and we obtain the new case (h) and this case completes the proof of the 
necessary conditions.

Sufficiency. Sufficient conditions for the cases (a)-(g) are given in the proof of Theorem 1.2. We only need 
to prove the sufficient conditions for the case (h). The conditions of case (h) are b2 = 35a2, b1 = 5a1/3, 
b3 = −4a1/9 and a1 = ±9

√
5a2. Here we only analyze the case of the positive root but proof for the negative 

one is similar. Under these conditions system (3.6) takes the form

ẋ = a2x
4 + y + 9

√
5 a2xy, ẏ = −x5 − 4

√
5a2x

6 + 35a2x
3y + 15

√
5 a2y

2. (3.8)

Now we apply the change of variables x = −u/(1 + a1u), y = −v/(1 + a1u)3 and the scaling of time 
dt = dT/(1 + 9

√
5a2u)3 where a1 = 9

√
5a2, the previous system becomes

u̇ = (1 + 9
√

5a2u)(−a2u
4 + v), v̇ = −u5 − 5

√
5a2u

6 − 35a2u
3v − 27

√
5a2

2u
4v + 12

√
5a2v

2. (3.9)

Now we do the change Y = u̇ from where v = (a2u
4 + 9

√
5a2

2u
5 + Y )/(1 + 9

√
5a2u) and system (3.9) is 

transformed to

u̇ = Y, Ẏ = p0(u) + p1(u)Y + p2(u)Y 2, (3.10)

where p0(u) = −u5(1 + a2u(14
√

5 + 5a2u(52 + 3a2u(22
√

5 + 45a2u)))), p1(u) = −39a2u
3(1 +

√
5a2u) and 

p2(u) = (21
√

5a2)/(1 + 9
√

5a2u). Systems of the form (3.10) are called Cherkas system, see for instance 
[21,25]. These Cherkas systems can be transformed to Lienard systems by the change y1 = Y ψ = Y e

∫ u
0 p2ds

that transforms system (3.10) into the Liénard system

u̇ = y1, ẏ1 = p0(u)ψ2 + p1(u)ψy1 = g(u) + f(u)y1 (3.11)

where ψ is in this case ψ = 1/(1 + 9
√

5a2u)7/3. Doing the indicated change we obtain that

g(u) = u5(
√

5 + 5a2u)2(1 + 3
√

5a2u)
5(1 + 9

√
5a2u)11/3

, f(u) = 39a2u
3(1 + 10

√
5a2u + 45a2

2u
2)

(1 + 9
√

5a2u)10/3
.

Now we compute the primitives of these functions G(u) =
∫ u

0 g(s)ds and F (u) =
∫ u

0 f(s)ds in order to apply 
the following theorem for Liénard systems, see [16] and also [22].
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Theorem 3.6. Liénard system ẋ = y, ẏ = g(x) + f(x)y has a center at the origin if, and only if, there exists 
a function z(x) satisfying F (x) = F (z), G(x) = G(z) with z(0) = 0 and z′(0) < 0.

This solution z(x) must correspond to a common factor between F (x) − F (z) and G(x) − G(z) other 
that x − z. Thus we have the following corollary for the polynomial case.

Corollary 3.7. If the Liénard system ẋ = y, ẏ = g(x) + f(x)y with f and g polynomial has a center at the 
origin, then it is necessary that the resultant of

F (x) − F (z)
x− z

and G(x) −G(z)
x− z

with respect to x or z vanishes. This condition is sufficient if the common factor of the two polynomials 
vanishes at x = z = 0.

For system (3.11) we have that G(u) = G1(u) −G1(0) = G1(u) − 1/(7290000a6
2) with

G1(u) = (
√

5 + 15a2u)2(1 + 18
√

5a2u + 315a2
2u

2 − 900
√

5a3
2u

3 + 6075a4
2u

4 + 20250
√

5a5
2u

5 + 50625a6
2u

6)
36450000 a6

2(1 + 9
√

5a2u)8/3
,

and F (u) = F1(u) − F1(0) = F1(u) − 13/(5400a3
2) where

F1(u) = 13(
√

5 + 15a2u)(−
√

5 − 45a2u + 45
√

5a2
2u

2 + 225a3
2u

3)
27000 a3

2(1 + 9
√

5a2u)4/3
.

We are going to apply Corollary 3.7 to the rational functions

F1(x) − F1(z)
x− z

and G1(x) −G1(z)
x− z

Note that F (x) − F (z) = F1(x) − F1(z) and G(x) − G(z) = G1(x) − G1(z). We can do this because 
the denominators of F1 and G1 are unity elements. In order to do that we compute the resultant of the 
numerators of

F1(u)3 − F1(z)3

u− z
and G1(u)3 −G1(z)3

u− z
(3.12)

with respect to u or z that vanishes. Since F 3
1 (x) −F 3

1 (z) = (F1(x) −F1(z))(F 2
1 (x) +F1(x)F1(z) +F 2

1 (z)) and 
the same for G3

1(x) −G3
1(z), and the factors (F 2

1 (x) + F1(x)F1(z) + F 2
1 (z)), (G2

1(x) + G1(x)G1(z) + G2
1(z))

do not introduce any factor of the form z + u + · · · . Moreover the numerators the functions (3.12) have a 
common factor given by

f(u, z) = u +
√

5a2u
2 + z + 10

√
5a2uz + 45a2

2u
2z +

√
5a2z

2 + 45a2
2uz

2.

Applying the Implicit function theorem we see that f(u, z) = 0 has a solution of the form z = −u + · · · . A 
solution that satisfies z(0) = 0 and z′(0) < 0. In fact the first terms are

z(u) = −u + 32
4
√

5a2u
2 − 320a2

2u
3 + 2600

√
5a3

2u
4 + · · · .

Hence applying Theorem 3.6 system (3.11) has a center at the origin and consequently the original system 
(3.8) also.



JID:YJMAA AID:123639 /FLA Doctopic: Real Analysis [m3L; v1.278; Prn:8/11/2019; 9:20] P.12 (1-12)
12 A. Algaba et al. / J. Math. Anal. Appl. ••• (••••) ••••••
Acknowledgments

The first and second authors are partially supported by MICINN/FEDER grant number PGC2018-
096265-B-I00 and by the Consejería de Educación y Ciencia de la Junta de Andalucía (projects P12-
FQM-1658, FQM-276). The third author is partially supported by a MINECO/FEDER grant number 
MTM2017-84383-P and an AGAUR (Generalitat de Catalunya) grant number 2017SGR-1276.

References

[1] A. Algaba, I. Checa, C. García, E. Gamero, On orbital-reversibility for a class of planar dynamical systems, Commun. 
Nonlinear Sci. Numer. Simul. 20 (1) (2015) 229–239.

[2] A. Algaba, E. Freire, E. Gamero, C. García, An algorithm for computing quasi-homogeneous formal normal forms under 
equivalence, Acta Appl. Math. 80 (2004) 335–359.

[3] A. Algaba, E. Gamero, C. García, The integrability problem for a class of planar systems, Nonlinearity 22 (2009) 395–420.
[4] A. Algaba, E. Gamero, C. García, The center problem. A view from the normal form theory, J. Math. Anal. Appl. 434 

(2016) 680–697.
[5] A. Algaba, C. García, J. Giné, Nondegenerate and nilpotent centers for a cubic system of differential equations, Qual. 

Theory Dyn. Syst. 18 (1) (2019) 333–345.
[6] A. Algaba, C. García, J. Giné, J. Llibre, The center problem for Z2-symmetric nilpotent vector fields, J. Math. Anal. 

Appl. 466 (2018) 183–198.
[7] A. Algaba, C. García, M. Reyes, The center problem for a family of systems of differential equations having a nilpotent 

singular point, J. Math. Anal. Appl. 340 (1) (2008) 32–43.
[8] A. Algaba, C. García, M. Reyes, Existence of an inverse integrating factor, center problem and integrability of a class of 

nilpotent systems, Chaos Solitons Fractals 45 (2012) 869–878.
[9] A. Algaba, C. García, M. Reyes, Invariant curves and analytic integrablility of a planar vector field, J. Differential Equations 

266 (2019) 1357–1376.
[10] N.N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position 

of focus or center type, Amer. Math. Soc. Transl. 100 (1954) 397–413.
[11] M. Berthier, R. Moussu, Réversibilité et classification des centres nilpotents, Ann. Inst. Fourier (Grenoble) 44 (2) (1994) 

465–494.
[12] J. Chavarriga, I. García, J. Giné, Integrability of centers perturbed by quasi-homogeneous polynomials, J. Math. Anal. 

Appl. 210 (1997) 268–278.
[13] J. Chavarriga, H. Giacomini, J. Giné, J. Llibre, Local analytic integrability for nilpotent centers, Ergodic Theory Dynam. 

Systems 23 (2) (2003) 417–428.
[14] L.A. Cherkas, Conditions for a Liénard equations to have a centre, Differ. Equ. 12 (1976) 201–206.
[15] S.N. Chow, J.K. Hale, Methods of Bifurcation Theory, Springer, New York, 1982.
[16] C.J. Christopher, An algebraic approach to the classification of centres in polynomial Liénard systems, J. Math. Anal. 

Appl. 229 (1999) 319–329.
[17] C.J. Christopher, N.G. Lloyd, J.M. Pearson, On a Cherkas’s method for centre conditions, Nonlinear World 2 (1995) 

459–469.
[18] I.A. García, H. Giacomini, J. Giné, J. Llibre, Analytic nilpotent centers as limits of nondegenerate centers revisited, J. 

Math. Anal. Appl. 441 (2) (2016) 893–899.
[19] A. Gasull, J. Torregrosa, Center problem for several differential equations via Cherkas’ method, J. Math. Anal. Appl. 228 

(1998) 322–343.
[20] J. Giné, Center conditions for nilpotent cubic systems using the Cherkas method, Math. Comput. Simulation 129 (2016) 

1–9.
[21] J. Giné, Center conditions for generalized polynomial Kukles systems, Commun. Pure Appl. Anal. 16 (2) (2017) 417–425.
[22] J. Giné, Center conditions for polynomial Liénard systems, Qual. Theory Dyn. Syst. 16 (1) (2017) 119–126.
[23] G.M. Greuel, G. Pfister, H.A. Schönemann, SINGULAR 3.0: A Computer Algebra System for Polynomial Computations, 

Centre for Computer Algebra, University of Kaiserlautern, 2005, http://www .singular .uni -kl .de.
[24] K.S. Sibirskii, On the number of limit cycles on the neighborhood of a singular point, Differ. Equ. 1 (1965) 36–47.
[25] Y.Q. Ye, S.L. Cai, L.S. Chen, K.C. Huang, D.J. Luo, Z.E. Ma, E.N. Wang, M.S. Wang, S.A. Yang, Theory of Limit Cycles, 

2nd ed., Translations of Mathematical Monographs, vol. 66, American Mathematical Society, Providence, RI, 1986.

http://refhub.elsevier.com/S0022-247X(19)30907-2/bibB3FAA533FD211B1713357D48CDC636DDs1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bibB3FAA533FD211B1713357D48CDC636DDs1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib306741FBC759DAAD52162F0D48109B6As1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib306741FBC759DAAD52162F0D48109B6As1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bibEA53C4197EF29EA137068D59AC5A73F9s1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib2DEF29BB9047613DAEBC90899915143Ds1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib2DEF29BB9047613DAEBC90899915143Ds1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib016055E4607088A11F04F8C26E2C385As1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib016055E4607088A11F04F8C26E2C385As1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib810C46435E4F568F954C1F729619D3F7s1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib810C46435E4F568F954C1F729619D3F7s1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bibF789016F11D31013049F5517794DBE86s1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bibF789016F11D31013049F5517794DBE86s1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib64AB004FA72199D03680B4A3AFC2107Es1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib64AB004FA72199D03680B4A3AFC2107Es1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib493BB5B23C264F62B374DD90049E75E1s1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib493BB5B23C264F62B374DD90049E75E1s1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bibFAD493B1626399C6ABAA6E40D2591C77s1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bibFAD493B1626399C6ABAA6E40D2591C77s1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib3C9C8CC903C49FFAFC29C023A3BDDD8As1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib3C9C8CC903C49FFAFC29C023A3BDDD8As1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib1473FC124ABFFACD3D28712C7EE324E8s1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib1473FC124ABFFACD3D28712C7EE324E8s1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib1F2084941750E02BF1D8956C830B2F8Es1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib1F2084941750E02BF1D8956C830B2F8Es1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib103124BE79CF03D062CDF7F7E78A8279s1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib2EEB82F8B2545E9DDF9A47AE8396975Bs1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib93ADA40DA341D3F06C6B5392C2A501C5s1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib93ADA40DA341D3F06C6B5392C2A501C5s1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib3C1690BF7C4D44905C565552C4DAEBE5s1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib3C1690BF7C4D44905C565552C4DAEBE5s1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib594B324BDA5D528A2CF24062DE1F0C37s1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib594B324BDA5D528A2CF24062DE1F0C37s1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib4BBA740BC50CF58F0DF7ACC4B4432739s1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib4BBA740BC50CF58F0DF7ACC4B4432739s1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bibCF0637F43AC781821EABE88D75B5FF39s1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bibCF0637F43AC781821EABE88D75B5FF39s1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bibDFCF28D0734569A6A693BC8194DE62BFs1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bibD24BADE136BC8CD77E37395EA94226EBs1
http://www.singular.uni-kl.de
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib34CF801A45C0C4066F10499D0075968As1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib2335070C3D0CAC021713B9C201D60017s1
http://refhub.elsevier.com/S0022-247X(19)30907-2/bib2335070C3D0CAC021713B9C201D60017s1

	Center conditions of a particular polynomial differential system with a nilpotent singularity
	1 Introduction and statement main results
	2 Preliminary results
	3 Proof of results
	3.1 Proof of Theorem 1.1
	3.2 Sufficient conditions for Theorem 1.2
	3.3 Necessary conditions for Theorem 1.2
	3.4 Proof of Theorem 1.3

	Acknowledgments
	References


