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In this paper, we study stability and weak stability of coarse isometries of Banach 
spaces. As a result, we show that if a coarse isometry f : Lp(Ω1, Σ1, μ1) →
Lp(Ω2, Σ2, μ2) (1 < p < ∞) is weakly stable at each point of a Schauder basis, then 
there is a linear isometry U : Lp(Ω1, Σ1, μ1) → Lp(Ω2, Σ2, μ2), where (Ωj , Σj , μj)
(j = 1, 2) are σ-finite measure spaces. Furthermore, if f is uniformly weakly stable, 
then ‖f(x) − Ux‖ = o(‖x‖) when ‖x‖ → ∞. As an application, we obtain that 
‖Pf(x) − Ux‖ = o(‖x‖) is equivalent to ‖f(x) − Ux‖ = o(‖x‖) as ‖x‖ → ∞, where 
P : Y → U(X) is a projection with ‖P‖ = 1.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, X and Y denote real Banach spaces. We say a mapping f : X → Y is standard 
if f(0) = 0. The properties of isometries have been studied since the celebrated Mazur-Ulam theorem ([15]
1932): Every surjective standard isometry between Banach spaces is necessarily linear. For non-surjective 
isometry, T. Figiel [11] showed the remarkable result in 1968: every standard isometry f : X → Y admits 
a linear left-inverse T : spanf(X) → X with ‖T‖ = 1 such that T ◦ f = IX .

A mapping f : X → Y is called an ε-isometry for ε ≥ 0 if 
∣∣‖f(x) − f(y)‖ − ‖x − y‖

∣∣ ≤ ε whenever 
x, y ∈ X. In 1983, J. Gevirtz [12] proved that if f : X → Y is a surjective standard ε-isometry, then there 
exists a surjective linear isometry U : X → Y such that

‖f(x) − Ux‖ ≤ 5ε for all x ∈ X. (1.1)

In 1995, M. Omladič and P. Šemrl [16] showed the constant 5 in (1.1) can be replaced by 2 which is the 
best constant (see, also, Y. Benyamini and J. Lindenstauss [2, Theorem 15.2]). Upon T. Figiel [11] theorem 
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and other remarkable results for non-surjective ε-isometry (see [17,18]), in 2013, L. Cheng, Y. Dong and 
W. Zhang [5] established the weak stability formula:

Theorem 1.1. (Cheng, Dong and Zhang) Suppose that f : X → Y is a standard ε-isometry. Then for every 
x∗ ∈ X∗ there exists φ ∈ Y ∗ with ‖x∗‖ = ‖φ‖ ≡ r so that

|〈x∗, x〉 − 〈φ, f(x)〉| ≤ 4rε for all x ∈ X. (1.2)

It has played an important role in the study of stability properties of ε-isometries (see [3–5,7–9,19,20]).
We say a mapping f : X → Y is a coarse isometry if εf (t) = o(t) as t → ∞, where

εf (t) = sup
x,y∈X,‖x−y‖≤t

{
∣∣‖f(x) − f(y)‖ − ‖x− y‖

∣∣} for t ≥ 0.

In particular, every ε-isometry mapping is a coarse isometry. In 1985, J. Lindenstrauss and A. Szankowski 
[14] first introduced the following larger perturbation function for a surjective standard mapping f : X → Y :

ϕf (t) = sup
x,y∈X

{
∣∣‖f(x) − f(y)‖ − ‖x− y‖

∣∣ : ‖x− y‖ ≤ t or ‖f(x) − f(y)‖ ≤ t} for t ≥ 0

and obtained an asymptotical stability result, which generalizes the result of J. Gevirtz [12] about ε-isometry:

Theorem 1.2. (Lindenstrauss and Szankowski) Let f be a surjective standard map from a Banach space X
onto a Banach space Y . If

∞∫
1

ϕf (t)
t2

dt < ∞, (1.3)

then there is a linear isometry U from X onto Y so that

‖f(x) − Ux‖ = o(‖x‖) as ‖x‖ → ∞.

At the same time, they showed that condition (1.3) can not be removed. Note that for each t ≥ 0, 
εf (t) ≤ ϕf (t) and (1.3) implies ϕf (t) = o(t) when t → ∞, then f is a coarse isometry.

In 2000, G. Dolinar [10] noted that Theorem 1.2 also holds if ϕf (t) is substituted by εf (t) in the integral 
convergence condition (1.3).

As far as we know, since it is difficult to ensure the existence of lim
r→∞

f(rx)
r for each x ∈ X, the representa-

tion of non-surjective coarse isometries has not been studied until 2019. L. Cheng et al. [6] first investigated 
the non-surjective coarse isometry f : X → Y and obtained the following result, where Y is a uniformly 
convex Banach space of power type p.

Theorem 1.3. (Cheng, Fang, Luo and Sun) Suppose that f : X → Y is a standard coarse isometry and that 
Y is uniformly convex with convexity of type p. If

∞∫
1

εf (s)
1
p

s1+ 1
p

ds < ∞, (1.4)

then there is a linear isometry U : X → Y so that

‖f(x) − Ux‖ = o(‖x‖) as ‖x‖ → ∞.
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In this paper, we shall study stability properties of non-surjective coarse isometry f : X → Y by assuming 
X = Lp(Ω1, Σ1, μ1) and Y = Lp(Ω2, Σ2, μ2), where (Ω1, Σ1, μ1), (Ω2, Σ2, μ2) are two σ-finite measure spaces 
and 1 < p < ∞. Besides the integral convergence condition (1.4) we use the pointwise weak stability formula 
and uniform weak stability formula to guarantee the stability of a non-surjective coarse isometry. The details 
are as follows: Suppose that {ek} is a Schauder basis in X and that f : X → Y is a standard coarse isometry, 
if for every k ∈ N and x∗ ∈ SX∗ , there exists φ ∈ SY ∗ such that

lim
r→∞

| 〈x∗, ek〉 − 〈φ, f(rek)
r

〉| = 0,

then there is a linear isometry U : X → Y satisfying

Ux = lim
r→∞

f(rx)
r

for all x ∈ X.

Moreover, if for every x∗ ∈ SX∗ , there exists φ ∈ SY ∗ such that

| 〈x∗, x〉 − 〈φ, f(x)〉 | = o(‖x‖) as ‖x‖ → ∞,

then there is a linear isometry U : X → Y satisfying

‖f(x) − Ux‖ = o(‖x‖) as ‖x‖ → ∞.

As an application, we obtain a stability result of basic sequences via coarse isometries and prove that 
‖Pf(x) − Ux‖ = o(‖x‖) is equivalent to ‖f(x) − Ux‖ = o(‖x‖) as ‖x‖ → ∞, where P : Y → U(X) is a 
projection with ‖P‖ = 1.

In this paper, the letters X, Y are used to denote real Banach spaces, and X∗, Y ∗ are their dual spaces. 
For a real Banach space X, we denote by SX and BX the unit sphere and the closed unit ball of X
respectively. ∂‖ · ‖ : X → 2X∗ stands for the subdifferential mapping of the norm ‖ · ‖. Given a bounded 
linear operator T : X → Y , T ∗ : Y ∗ → X∗ is its dual operator.

2. Main results

To begin with, we give a definition.

Definition 2.1. Let X and Y be Banach spaces and let f : X → Y be a standard coarse isometry.
(1) f is said to be pointwisely weakly stable if for each x ∈ X and x∗ ∈ SX∗ , there exists φ ∈ SY ∗ such 

that

lim
r→∞

| 〈x∗, x〉 − 〈φ, f(rx)
r

〉| = 0;

(2) f is called pointwisely stable if there exists a linear isometry U : X → Y so that

Ux = lim
r→∞

f(rx)
r

for all x ∈ X;

(3) f is said to be uniformly weakly stable if for each x∗ ∈ SX∗ , there exists φ ∈ SY ∗ such that

lim | 〈x∗, x〉 − 〈φ, f(rx) 〉| = 0 uniformly for x ∈ SX ;

r→∞ r
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(4) f is called uniformly stable if there exists a linear isometry U : X → Y so that

Ux = lim
r→∞

f(rx)
r

uniformly for x ∈ SX .

Proposition 2.2. Let X and Y be Banach spaces and let f : X → Y be a standard coarse isometry. If f is 
uniformly stable (pointwisely stable), then it is uniformly weakly stable (pointwisely weakly stable).

Proof. Let U : X → Y be a linear isometry so that

Ux = lim
r→∞

f(rx)
r

uniformly for x ∈ SX .

Since U is a linear isometry, U∗ : Y ∗ → X∗ is a surjective bounded linear operator with ‖U∗‖ = 1. Note 
that for each x∗ ∈ SX∗ , there exists φ ∈ SY ∗ such that U∗φ = x∗. Indeed, due to the surjective of U∗, there 
exists ϕ ∈ Y ∗ such that U∗ϕ = x∗. We put

〈φ, y〉 =
{

〈ϕ, y〉, if y ∈ U(X);
0, otherwise.

Then φ ∈ Y ∗, U∗φ = x∗ and

‖φ‖ = sup
y∈SY

|〈φ, y〉| = sup
y∈SU(X)

|〈ϕ, y〉| = sup
x∈SX

|〈ϕ,Ux〉| = sup
x∈SX

|〈x∗, x〉| = ‖x∗‖.

On the other hand,

| 〈x∗, x〉 − 〈φ, f(rx)
r

〉| = | 〈U∗φ, x〉 − 〈φ, f(rx)
r

〉|

= |〈φ,Ux− f(rx)
r

〉|

≤ ‖Ux− f(rx)
r

‖,

then

lim
r→∞

| 〈x∗, x〉 − 〈φ, f(rx)
r

〉| = 0 uniformly for x ∈ SX .

The pointwise case is similar. �
The next lemma is essential for our main results, and one can refer to [13].

Lemma 2.3. [13, Theorem 3.3] Let 1 ≤ p < ∞. If (Ωi, Σi, μi) are measure spaces, then there is a measure 
space (Ω, Σ, μ) such that (Lp(μi))U is isometric and order isomorphic to Lp(μ).

The following theorem says that a standard coarse isometry f is pointwisely stable when it is pointwisely 
weakly stable on a Schauder basis.

Recall that a Banach space X is said to have the Kadec-Klee property if the weak topology and the norm 
topology of X agree on the unit sphere SX of X.
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Theorem 2.4. Let (Ω1, Σ1, μ1), (Ω2, Σ2, μ2) be two σ-finite measure spaces and 1 < p < ∞. Suppose that 
X = Lp(Ω1, Σ1, μ1) with a Schauder basis {ek}, Y = Lp(Ω2, Σ2, μ2) and that f : X → Y is a standard 
coarse isometry. If for every k ∈ N and x∗ ∈ SX∗ , there exists φ ∈ SY ∗ such that

lim
r→∞

| 〈x∗, ek〉 − 〈φ, f(rek)
r

〉| = 0, (2.1)

then there is a linear isometry U : X → Y satisfying

Ux = lim
r→∞

f(rx)
r

for all x ∈ X.

Proof. Our proof is divided into three steps.
Step I. We first show that

lim
r→∞

f(rek)
r

exists and lim
r→∞

f(arek)
r

= a lim
r→∞

f(rek)
r

for all k ∈ N, a ∈ R.

Let

I = {{λn} ⊆ R : λn → ∞, as n → ∞} ,

and for each x ∈ X,

Vx = {u ∈ Y : u = w- lim
n→∞

f(λnx)
λn

for some {λn} ∈ I}.

Since f is a coarse isometry, for every x ∈ X, there exists N ∈ N so that { f(rx)
r }r≥N is a bounded subset 

of Y . Indeed,

∣∣‖f(rx)
r

‖ − ‖x‖
∣∣ = 1

|r|
∣∣‖f(rx)‖ − ‖rx‖

∣∣ ≤ εf (|r| ‖x‖)
|r| → 0 uniformly for x ∈ SX , as r → ∞. (2.2)

As Y is reflexive, it follows that { f(rx)
r }r≥N is relatively weakly compact and hence it is relatively weakly 

sequentially compact by the Eberlein-Šmulian theorem. Thus for each k ∈ N, Vek 
= ∅, and for each u ∈ Vek , 
there exists {λn} ∈ I such that u = w- lim

n→∞
f(λnek)

λn
. Given x∗ ∈ ∂‖ek‖, according to (2.1), there exists 

φ ∈ SY ∗ such that

lim
n→∞

|〈x∗, ek〉 − 〈φ, f(λnek)
λn

〉| = 0.

Consequently,

‖ek‖ = lim
n→∞

〈φ, f(λnek)
λn

〉 = 〈φ, u〉 ≤ ‖φ‖ ‖u‖ = ‖u‖,

and

‖u‖ = ‖w- lim
n→∞

f(λnek)
λn

‖ ≤ lim
n→∞

‖f(λnek)
λn

‖ = ‖ek‖.

Hence, ‖u‖ = ‖ek‖. It follows that for every k ∈ N and for every x∗ ∈ ∂‖ek‖, there exists φ ∈ SY ∗ such that

Vek ⊆ {u ∈ Y : 〈φ, u〉 = ‖u‖ = ‖ek‖}.
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By the smoothness property of Y ∗, Vek is a singleton. We denote it by e′k. Then ‖ek‖ = ‖e′k‖.
Note that for every {λn} ∈ I, w- lim

n→∞
f(λnek)

λn
= e′k. Otherwise, we can find a w-neighborhood W of e′k

and a subsequence {λnl
} of {λn} such that f(λnl

ek)
λnl

/∈ W for all l ∈ N. However, { f(λnl
ek)

λnl
} is also bounded, 

then there exists a subsequence {rm} of {λnl
} such that w- lim

m→∞
f(rmek)

rm
= e′k. This is contradiction to 

f(λnl
ek)

λnl
/∈ W for all l ∈ N. Hence for every {λn} ∈ I, w- lim

n→∞
f(λnek)

λn
= e′k. Due to (2.2) and Kadec-Klee 

property of Y , we have lim
n→∞

f(λnek)
λn

= e′k. Arbitrariness of {λn} entails

lim
r→∞

f(rek)
r

= e′k. (2.3)

By the proof above, similarly, we have

lim
r→∞

f(−rek)
r

= (−ek)′ (2.4)

Using (2.1), (2.3) and (2.4), for the x∗ ∈ SX∗ , φ ∈ SY ∗ above, we have

〈x∗,−ek〉 − 〈φ, (−ek)′〉 = 0 and 〈x∗,−ek〉 − 〈φ,−e′k〉 = 0.

Therefore, 〈φ, (−ek)′〉 = 〈φ, −e′k〉. This and smoothness of Y ∗ imply (−ek)′ = −e′k and then lim
r→∞

f(arek)
r =

a lim
r→∞

f(rek)
r for all a ∈ R.

Step II. Next, we show that

Ux =
∞∑
k=1

ake
′
k

defines a linear isometry U : X → Y , where x =
∞∑
k=1

akek, ak ∈ R.

Let U be a free ultrafilter on N and {λn} ∈ I. We define an isometry mapping f̃ : (X)U → (Y )U as 
follows:

f̃(u1, u2, ..., un, ...) =
(
f(λ1u1)

λ1
,
f(λ2u2)

λ2
, ...,

f(λnun)
λn

, ...

)
,

where u = (u1, u2, ..., un, ...) ∈ (X)U . Indeed, given u ∈ (X)U , v ∈ (Y )U ,

∣∣‖f̃(u) − f̃(v)‖ − ‖u− v‖
∣∣ =

∣∣∣∣‖
(
f(λnun) − f(λnvn)

λn

)
‖ − ‖(un − vn)‖

∣∣∣∣
= lim

U

∣∣∣∣‖f(λnun) − f(λnvn)
λn

‖ − ‖un − vn‖
∣∣∣∣

≤ lim
U

εf (|λn| ‖un − vn‖)
|λn|

= 0.

According to Lemma 2.3, (Y )U = Lp(Ω, Σ, μ) for some measure space (Ω, Σ, μ) and then (Y )U is strictly 
convex. This and f(0) = 0 entail that f̃ is a linear isometry. Hence, for each u ∈ (X)U , v ∈ (Y )U , 
f̃(u + v) = f̃(u) + f̃(v). By the definition of f̃ , for each x, y ∈ X, we have

lim ‖f(λn(x + y)) − f(λnx) − f(λny)‖ = 0, (2.5)

U λn
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and then

w- lim
U

f(λn(x + y)) − f(λnx) − f(λny)
λn

= 0.

Therefore,

w- lim
U

f(λn(x + y))
λn

= w- lim
U

f(λnx)
λn

+ w- lim
U

f(λny)
λn

(2.6)

Note that for each x0 =
m∑

k=1
akek, lim

r→∞
f(rakek)

r = ak lim
r→∞

f(rek)
r = ake

′
k, where ak ∈ R, m ∈ N, then

w- lim
U

f(λnakek)
λn

= ake
′
k. (2.7)

By (2.6) and (2.7), we obtain

w- lim
U

f(λnx0)
λn

= w- lim
U

f(λn

∑m
k=1 akek)
λn

=
m∑

k=1

w- lim
U

f(λnakek)
λn

=
m∑

k=1

ake
′
k.

On the other hand, (2.5) implies

lim
U

‖f(λnx0)
λn

‖ = lim
U

‖
m∑

k=1

f(λnakek)
λn

‖ = ‖
m∑

k=1

ake
′
k‖.

By the Kadec-Klee property of Y ,

lim
U

f(λnx0)
λn

=
m∑

k=1

ake
′
k.

Arbitrariness of {λn} entails lim
r→∞

f(rx0)
r =

m∑
k=1

ake
′
k. Since f is a standard coarse isometry, it follows that 

lim
r→∞

f(rx0)
r defines a linear isometry from a dense subspace of X into Y . Given x =

∞∑
k=1

akek, where ak ∈ R, 

let xm =
m∑

k=1
akek. We define Ux = lim

m→∞
lim
r→∞

f(rxm)
r . Clearly, U : X → Y is a linear isometry and

Ux =
∞∑
k=1

ake
′
k.

Step III. Finally, we prove

Ux = lim
r→∞

f(rx)
r

for all x ∈ X.

Let x =
∞∑
k=1

akek and ε > 0 be given. Then there exist n0, n1 ∈ N such that for all r > n1, ‖ 
∞∑

k=n0+1
akek‖ <

ε
4 , ‖ 

∞∑
ake

′
k‖ < ε

4 , εf (r ε
4 )

r < ε
4 and ‖

f(r
n0∑
k=1

akek)

r −
n0∑

ake
′
k‖ < ε

4 . Hence, if r > n1, then

k=n0+1 k=1
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‖f(rx)
r

− Ux‖ = ‖
f(r

∞∑
k=1

akek)

r
−

∞∑
k=1

ake
′
k‖

≤ ‖
f(r

∞∑
k=1

akek)

r
−

f(r
n0∑
k=1

akek)

r
‖ + ‖

f(r
n0∑
k=1

akek)

r
−

n0∑
k=1

ake
′
k‖ + ‖

n0∑
k=1

ake
′
k −

∞∑
k=1

ake
′
k‖

≤
εf (r‖

∞∑
k=n0+1

akek‖)

r
+ ‖

∞∑
k=n0+1

akek‖ + ‖
∞∑

k=n0+1

ake
′
k‖ + ε

4

< ε.

It follows that

Ux = lim
r→∞

f(rx)
r

for all x ∈ X. �
By the theorem above, we have the following projection result.

Theorem 2.5. Let (Ω1, Σ1, μ1), (Ω2, Σ2, μ2) be two σ-finite measure spaces and 1 < p < ∞. Suppose that 
X = Lp(Ω1, Σ1, μ1), Y = Lp(Ω2, Σ2, μ2) and that f : X → Y is a standard coarse isometry. If U : X → Y

is a linear isometry and P : Y → U(X) is a projection with ‖P‖ = 1, then the following statements are 
equivalent:

(i) Ux = lim
r→∞

f(rx)
r for all x ∈ X;

(ii) Ux = lim
r→∞

Pf(rx)
r for all x ∈ X.

Proof. (i) ⇒ (ii).

‖Pf(rx)
r

− Ux‖ = ‖P (f(rx)
r

− Ux)‖ ≤ ‖f(rx)
r

− Ux‖ → 0 as r → ∞.

(ii) ⇒ (i). Let T = U−1P : Y → X, then ‖T‖ = 1 and for all x ∈ X

‖Tf(rx)
r

− x‖ = ‖U
−1Pf(rx)

r
− x‖ = ‖Pf(rx)

r
− Ux‖ → 0 as r → ∞. (2.8)

By Theorem 2.4, we only need to prove f is pointwisely weakly stable. Given x∗ ∈ SX∗ , for x ∈ ∂‖x∗‖, we 
have

‖x∗‖ = 〈x∗, x〉 = lim
r→∞

〈x∗, T
f(rx)
r

〉 = lim
r→∞

〈T ∗x∗,
f(rx)
r

〉 ≤ ‖T ∗x∗‖ lim
r→∞

‖f(rx)
r

‖ = ‖T ∗x∗‖ ≤ ‖x∗‖.

Hence T ∗x∗ ∈ SY ∗ . Let φ = T ∗x∗, then φ ∈ SY ∗ and for all x ∈ X

|〈x∗, x〉 − 〈φ, f(rx)
r

〉| = |〈x∗, x〉 − 〈T ∗x∗,
f(rx)
r

〉| = |〈x∗, x〉 − 〈x∗,
T f(rx)

r
〉| ≤ ‖Tf(rx)

r
− x‖

Therefore, combining (2.8) and the inequality above, (i) holds. �
Remark 2.6. According to the proof of Theorem 2.4, we can see that the theorem also holds when X is 
replaced by a general Banach space with a Schauder basis.
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By Theorem 2.4 and Remark 2.6 above, obviously, we have the following results.

Corollary 2.7. Let X be a Banach space with a sequence {zn}∞n=1 where span{zn}∞n=1 = X and Y =
Lp(Ω, Σ, μ) (1 < p < ∞) for some σ-finite measure space (Ω, Σ, μ). Suppose that f : X → Y is a standard 
coarse isometry. If for every n ∈ N and x∗ ∈ SX∗ , there exists φ ∈ SY ∗ such that

lim
r→∞

|〈x∗, zn〉 − 〈φ, f(rzn)
r

〉| = 0,

then there is a linear isometry U : X → Y satisfying

Ux = lim
r→∞

f(rx)
r

for all x ∈ X.

Corollary 2.8. Let X be a Banach space with a δ-net M and Y = Lp(Ω, Σ, μ) (1 < p < ∞) for some σ-finite 
measure space (Ω, Σ, μ). Suppose that f : X → Y is a standard coarse isometry. If for every z ∈ M and 
x∗ ∈ SX∗ , there exists φ ∈ SY ∗ such that

lim
r→∞

|〈x∗, z〉 − 〈φ, f(rz)
r

〉| = 0,

then there is a linear isometry U : X → Y satisfying

Ux = lim
r→∞

f(rx)
r

for all x ∈ X. (2.9)

Proof. Since M is a δ-net, for every x ∈ X and every positive integer n, there exists zn ∈ M such that 
‖nx − zn‖ < δ. Hence lim

n→∞
zn
n = x. It follows that the linear span of M is dense in X. Hence, we know (2.9)

holds by the proof of Theorem 2.4. �
In 2018, D. Dai [8] proved the following result about the stability of basic sequences via nonlinear ε-

isometries between Banach spaces whenever Y is a strictly convex Banach space admitting the Kadec-Klee 
property.

Recall that a sequence {ek}∞k=1 in a Banach space X is called a basic sequence if it is a basis for the closed 
linear span of {ek}∞k=1. Two bases (or basic sequences) {xn}∞n=1 and {yn}∞n=1 in the respective Banach spaces 
X and Y are equivalent if whenever we take a sequence of scalars {an}∞n=1, then 

∑∞
n=1 anxn converges if 

and only if 
∑∞

n=1 anyn converges.

Theorem 2.9. [1, Theorem 1.3.9] (Principle of small perturbations) Let {xn}∞n=1 be a basic sequence in a 
Banach space X with basis constant Kb. If {yn}∞n=1 is a sequence in X such that

2Kb

∞∑
n=1

‖xn − yn‖
‖xn‖

= θ < 1,

then {xn}∞n=1 and {yn}∞n=1 are congruent. In particular:
(i) {yn}∞n=1 is a basic sequence with basis constant at most Kb(1 + θ)(1 − θ)−1.
(ii) If {xn}∞n=1 is a basis, so is {yn}∞n=1.
(iii) If the closed linear span of {xn}∞n=1 is complemented in X, then so is the closed linear span of 

{yn}∞n=1.

Using the above result and Corollary 2.8, we obtain the stability of basic sequences by non-surjective 
coarse isometry.
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Theorem 2.10. Let X be a Banach space with a δ-net M and Y = Lp(Ω, Σ, μ) (1 < p < ∞) for some σ-finite 
measure space (Ω, Σ, μ). Suppose that f : X → Y is a standard coarse isometry and that {xn} ⊆ X is a 
basic sequence. If for every z ∈ M and x∗ ∈ SX∗ , there exists φ ∈ SY ∗ such that

lim
r→∞

|〈x∗, z〉 − 〈φ, f(rz)
r

〉| = 0,

then there exists {λn} ∈ I such that {f(λnxn)} is a basic sequence which is equivalent to {λnxn}.

Proof. By Corollary 2.8, there is a linear isometry U : X → Y satisfying

Ux = lim
r→∞

f(rx)
r

for all x ∈ X.

Hence {Uxn} is a basic sequence equivalent to {xn} and we can choose {λn} ∈ I such that

2K
∞∑

n=1

‖Uxn − f(λnxn)
λn

‖
‖Uxn‖

= θ < 1,

where K is the basis constant of {xn}. Consequently, by Theorem 2.9 and the discussion above, { f(λnxn)
λn

}
is a basic sequence equivalent to {xn}. This entails {f(λnxn)} is a basic sequence equivalent to {λnxn}. �
Corollary 2.11. Let X be a Banach space with a basic sequence {xn} and Y = Lp(Ω, Σ, μ) (1 < p < ∞) for 
some σ-finite measure space. If f : X → Y is a standard ε-isometry. Then there exists {λn} ∈ I such that 
{f(λnxn)} is a basic sequence which is equivalent to {λnxn}.

The following result states that if Y = Lp(Ω, Σ, μ) (1 < p < ∞) for some σ-finite measure space (Ω, Σ, μ), 
then the converse version of Proposition 2.2 is also true for uniform case.

Theorem 2.12. Let X be a Banach space and Y = Lp(Ω, Σ, μ) (1 < p < ∞) for some σ-finite measure space 
(Ω, Σ, μ). Suppose that f : X → Y is a standard coarse isometry. If for every x∗ ∈ SX∗ , there exists φ ∈ SY ∗

such that

| 〈x∗, x〉 − 〈φ, f(x)〉 | = o(‖x‖) as ‖x‖ → ∞, (2.10)

then there is a linear isometry U : X → Y satisfying

‖f(x) − Ux‖ = o(‖x‖) as ‖x‖ → ∞.

Proof. According to (2.10) and Step I in the proof of Theorem 2.4, there is a linear isometry U : X → Y

satisfying

Ux = lim
r→∞

f(rx)
r

for all x ∈ X.

It remains to show that

Ux = lim
r→∞

f(rx)
r

uniformly for x ∈ SX . (2.11)

Given {λn} ∈ I. Because of (2.2), we have
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‖Ux‖ = lim
n→∞

‖f(λnx)
λn

‖ = 1 uniformly for x ∈ SX . (2.12)

Due to (2.10), for each x∗ ∈ SX∗ , there exists φx∗ ∈ SY ∗ such that

lim
n→∞

|〈x∗, x〉 − 〈φx∗ ,
f(λnx)
λn

〉| = 0 uniformly for x ∈ SX .

Consequently, for every ε > 0, there exists N ∈ N such that for all n > N and x ∈ SX ,
∣∣∣∣‖f(λnx)

λn
‖ − 1

∣∣∣∣ < ε and
∣∣∣∣〈x∗, x〉 − 〈φx∗ ,

f(λnx)
λn

〉
∣∣∣∣ < ε.

On the one hand,

‖f(λnx)
λn

+ Ux‖ − 2 ≤ ‖f(λnx)
λn

‖ − 1 ≤ ε.

On the other hand,

‖f(λnx)
λn

+ Ux‖ − 2 ≥ sup
x∗∈X∗

〈φx∗ ,
f(λnx)
λn

+ Ux〉 − 2

≥ 2 sup
x∗∈X∗

〈x∗, x〉 − 2 − ε

= −ε.

Hence,

lim
n→∞

‖f(λnx)
λn

+ Ux‖ = 2 uniformly for x ∈ SX . (2.13)

Since Y is uniformly convex, combining (2.12) and (2.13), we get

Ux = lim
n→∞

f(λnx)
λn

uniformly for x ∈ SX .

Therefore, (2.11) holds. �
Remark 2.13. Theorem 2.12 also holds when the image space Y is replaced by a uniformly convex Banach 
space.

By the theorem above, similarly, we obtain a uniform version of Theorem 2.5.

Theorem 2.14. Let (Ω1, Σ1, μ1), (Ω2, Σ2, μ2) be two σ-finite measure spaces and 1 < p < ∞. Suppose that 
X = Lp(Ω1, Σ1, μ1), Y = Lp(Ω2, Σ2, μ2) and that f : X → Y is a standard coarse isometry. If U : X → Y

is a linear isometry and P : Y → U(X) is a projection with ‖P‖ = 1, then the following statements are 
equivalent:

(i) ‖f(x) − Ux‖ = o(‖x‖) as ‖x‖ → ∞;
(ii) ‖Pf(x) − Ux‖ = o(‖x‖) as ‖x‖ → ∞.

Proof. (i) ⇒ (ii).

‖Pf(x) − Ux‖ = ‖P (f(x) − Ux)‖ ≤ ‖f(x) − Ux‖ = o(‖x‖) as ‖x‖ → ∞.
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(ii) ⇒ (i). Let T = U−1P : Y → X, then ‖T‖ = 1 and

‖Tf(x) − x‖ = ‖U−1Pf(x) − x‖ = ‖Pf(x) − Ux‖ = o(‖x‖) as ‖x‖ → ∞. (2.14)

By Theorem 2.12, we only need to prove (2.10). Given x∗ ∈ SX∗ , for x ∈ ∂‖x∗‖, we have

‖x∗‖ = 〈x∗, x〉 = lim
r→∞

〈x∗, T
f(rx)
r

〉 = lim
r→∞

〈T ∗x∗,
f(rx)
r

〉 ≤ ‖T ∗x∗‖ lim
r→∞

‖f(rx)
r

‖ = ‖T ∗x∗‖ ≤ ‖x∗‖.

Hence T ∗x∗ ∈ SY ∗ . Let φ = T ∗x∗, then φ ∈ SY ∗ and

|〈x∗, x〉 − 〈φ, f(x)〉| = |〈x∗, x〉 − 〈T ∗x∗, f(x)〉| = |〈x∗, x〉 − 〈x∗, T f(x)〉| ≤ ‖Tf(x) − x‖

Therefore, combining (2.14) and the inequality above, we obtain (2.10) and then (i) holds. �
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