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The purpose of this work is twofold. First, we aim to extend for 0 < s < 1 the 
results of one of the authors about equilibrium measures in the real axis in external 
fields created by point-mass charges for the case of logarithmic potentials (s = 0).
Our second motivation comes from the work of the other two authors on Riesz 
s-equilibrium problems on finitely many intervals on the real line in the presence 
of external fields. They have shown that when the signed equilibrium measure has 
concave positive part on every interval, then the s-equilibrium support is also a union 
of finitely many intervals, with one of them at most included in each of the initial 
intervals. As the positive part of the signed equilibrium for point-mass external 
fields is not necessarily concave, the investigation of the corresponding s-equilibrium 
support is of comparative interest. Moreover, we provide simple examples of 
compactly supported equilibrium measures in external fields Q not satisfying the 
usual requirements about the growth at infinity, that is, lim

|x|→∞
Q(x) = ∞.

Our main tools are signed equilibrium measures and iterated balayage algorithm in 
the context of Riesz s-equilibrium problems on the real line. As these techniques are 
not mainstream work in the field and can be applied in other contexts we highlight 
their use here.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

This paper is devoted to the study of Riesz s-equilibrium measures in the real axis in the presence of 
external fields created by fixed charges. We are dealing with Riesz s-potentials of the form

Uσ(z) = Uσ
s (z) :=

∫
dσ(x)
|z − x|s ,
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for measures σ supported in the real axis and 0 < s < 1. The logarithmic potential

Uσ
0 (z) = −

∫
log |z − x| dμ(x) ,

is the limit case of the Riesz potentials as s → 0+ (see e.g. [17]); hereafter, we usually refer to this case as 
log–case or, simply, as s = 0.

More precisely, we are interested in equilibrium problems with external fields of the form

Q(x) := Q(x; s, q, z) = U− q δz (x) = − q|x− z|−s , 0 < s < 1 , (1)

where, as usual, δa denotes the Dirac delta measure at the point a ∈ C, q > 0, and z ∈ C \ R, that is, the 
external field is due to the action of an “attractor” (negative charge) located outside the real axis. In the 
sequel, we assume without loss of generality that z = bi , b �= 0.

The focus of our study is the existence (and uniqueness) of the equilibrium measure μQ = μQ,s that 
solves the Gauss variational problem or the minimization of the weighted energy

IQ(ν) = IQ,s(ν) := Is(ν) + 2
∫

Qdν =
∫ ∫ 1

|x− y|s dν(x)dν(y) + 2
∫

Q(x) dν(x) , (2)

among the probability measures supported on the real axis. It is well known that the minimizer, if it exists, 
is characterized by the variational inequalities, also known as Frostman’s conditions,

UμQ(x) + Q(x)
{
≥ FQ , q.e. R
≤ FQ , everywhere on SQ := suppμQ .

(3)

Here “q.e.” means that the identity holds outside of a (possible) set of zero s-capacity. The compactness of 
the equilibrium support SQ is of particular interest. Since the external fields (1) are clearly continuous in 
the real axis, the first inequality in (3) holds everywhere on R, and therefore equality takes place everywhere 
on SQ. It is also known that since the Riesz kernel is strictly positive definite, the equilibrium measure μQ, 
if it exists, is necessarily unique (see e.g. [27]).

In the logarithmic case there is a broad array of applications to approximation theory (e.g. asymptotic 
behavior of orthogonal and Heine–Stieltjes polynomials, Padé approximants), Random Matrix models, and 
to other fields related to physical applications (continuum limits of Toda lattice, Soliton theory,...). These 
applications have motivated a detailed study of equilibrium problems in the presence of a variety of ex-
ternal fields in the complex plane and, in particular, in the real axis (see e.g. the monograph [25] and the 
recent paper [21], as well as the references therein). However, the situation is different in the case of Riesz 
s–potentials in Rd. In this last case, mainly because the important applications to electrostatics and best-
packing problems, the natural conductor to study the equilibrium problems is the sphere Sd in Rd+1; see 
[6], [7] and [12], and the references therein, among many others (however, in a few papers like [20] and [3], 
the case of the real axis has been also considered). Roughly speaking, most of the external fields considered 
have been potentials of single point masses or others closely related to them, like the axis-supported ones [6]. 
Thus, in general, the role of the real axis for the logarithmic case has been played by the unit d-dimensional 
sphere, with the spherical caps being the counterpart of the real intervals. One of the aims of this paper 
is to extend the analysis carried out in the logarithmic case for classical external fields in the real axis like 
those due to the action of atomic measures to the case of general Riesz potentials.

The outline of the paper is as follows. Section 2 is devoted to announce and comment on the main 
results of the paper, while in Section 3 some background and preliminary results about the balayage and 
the signed equilibrium measures, both being important tools in finding the (positive) equilibrium measure, 
are gathered. Finally, the proofs of the main results are given in Section 4.
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2. Main results

Throughout this section the main results of the paper will be presented. We start with the existence of 
the equilibrium measure and the possible compactness of its support.

Theorem 2.1. For the Gauss variational problem on the real axis in the external field (1), we have the 
following.

(1) For q > 1, there exists a unique equilibrium measure and its support, SQ, is a compact interval of the 
real axis.

(2) For q < 1, the equilibrium measure does not exist.

Remark 2.1. It is well known that external fields that satisfy the usual growth condition lim
|x|→∞

Q(x) = +∞
have compactly supported equilibrium measures (see, among others, [19], [8] and [18]). As far as we know, 
these are the first examples in the literature that assure compactness of the equilibrium support without the 
said growth condition. For the study of the solvability of Gauss variational problems within a more general 
context, see [27,28], among other papers by N. V. Zorii.

Remark 2.2. The case q = 1 will be considered in the next section (see Lemma 3.1). In that case, the 
equilibrium measure exists and agrees with the balayage of the point mass δz onto the real axis, that is, 
μQ = Bals(δz, R) (for the precise notation and definition, see Section 3 below). Of course, now the support 
is unbounded. This represents the borderline case between admissible cases (that is, when a compactly 
supported equilibrium measure exists, following [25]) and the non-admissible ones. Utilizing similarity with 
the logarithmic potential theory, we shall refer to it as a “weakly admissible” case (see [5], [13], [14], [24]
and [26] for the logarithmic case).

Our second result deals with the expression of the density of the equilibrium measure, when it is compactly 
supported, and the precise determination of the endpoints ±ã.

Theorem 2.2. If q > 1, SQ = [−ã, ̃a], and its density is given by

μ′
Q(x) = q b1−s

B
( 1

2 ,
1−s
2

)
B
( 1+s

2 , 1−s
2

) (
B
( 1+s

2 , 1−s
2

)
(x2 + b2)1− s

2
− Iã(ã) − Iã(x)

(ã2 − x2) 1−s
2

)
, |x| < ã , (4)

where

Ia(x) = Ia(x, a, b, z, s) :=
∫

|t|>a

(t2 − a2) 1−s
2

(t2 + b2)1−s/2 |x− t| dt

=
∞∫
0

u
1−s
2

(u + a2 + b2)1− s
2

du

u + a2 − x2 ,

(5)

and

Ia(a) =
B
( 1

2 ,
1−s
2

)
√
a2 + b2

, (6)

with ã = ã(s, q, b) ∈ (0, +∞) being the (unique) solution of the equation F ′
s(a) = 0, with Fs(a) given by



4 D. Benko et al. / J. Math. Anal. Appl. 491 (2020) 124299
Fig. 1. Graph of the densities of the equilibrium measures μ′
Q for s = 1/2, b = 1, and q = 5 (red), q = 2 (blue), on their respective 

supports. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fs(a) = Γ(1 + s)
2s Γ

( 1+s
2

) a−s ×(
Γ
(

1 − s

2

)
− q

√
π

Γ(1 + s
2 )

(
a√

a2 + b2

)s

2F1

(
s

2 ,
1 + s

2 ; 1 + s

2 ; a2

a2 + b2

))
,

where 2F1(α, β; γ; z)) denotes, as usual, the hypergeometric function (see e.g. [1, Ch. 15]).

Remark 2.3. It is possible to compute the critical value ã given by Theorem 2.2. Indeed, using the properties 

of the hypergeometric function (see [1, Ch. 15]), and after some manipulations, we get that ã =
√

c

1 − c
b, 

c being the unique solution of the equation

Fs(c) − (1 − c)Gs(c) =
Γ
( 1−s

2
)

Γ(1 + s
2 )

q
√
π

,

with Fs(c) = 2F1

(
s

2 ,
1 + s

2 ; 1 + s

2 ; c
)

and Gs(c) = 2F1

(
1 + s

2 ,
1 + s

2 ; 1 + s

2 ; c
)

.

Thus, preferably with the aid of some computer algebra software, we can obtain the critical value ã of 
the endpoint. In this sense, it is easy to check that for s = 0.5 and q = 5, then 

ã

b
≈ 1.44227; while for 

s = 0.5 and q = 2, we get ã
b

≈ 4.5233. The densities of both equilibrium measures are displayed in Fig. 1. 
Observe that the densities vanish at the respective endpoints, as it happens in the logarithmic case (“soft 
edges”). This fact will be thoroughly analyzed below.

Remark 2.4. At first glance, the connectedness of the support of μQ might seem trivial, since the external 
field Q has a single absolute minimum at the origin; but the fact that Q is not convex on the whole real 
axis requires extra work.

Remark 2.5. In the particular logarithmic case (s = 0), the connectedness of the support is a consequence of 
the algebraic equation satisfied by the Cauchy Transform of the equilibrium measure (see [23] and previous 
[21,22]). It can also be deduced from the fact that in this case the external field is weakly convex (see [2, 
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§3]). Indeed, in this case, we have the following expression for the density of the equilibrium measure in the 
external field Q (provided q > 1),

μ′
Q(x) =

√
ã2 − x2

π (x2 + b2) , x ∈ (−ã, ã) ,

where

ã =
√

2q − 1
q − 1 b .

Remark 2.6. In Section 3 below, an alternative expression for the density of the equilibrium measure will 
be found, which will be used in the proof of Theorem 2.1 (see Section 4 below), namely,

μ′
Q(x) = q Bal′s(δz, [−ã, ã])(x) − (qmã − 1)ω′

[−ã,ã](x)

= q
| Im(z)|1−s

B
( 1

2 ,
1−s
2

) (
1

(x2 + b2)1−s/2 + Iã(x)
B
( 1−s

2 , 1+s
2

)
(ã2 − x2) 1−s

2

)

− qmã − 1
ãs B

( 1
2 ,

1+s
2

)
(ã2 − x2) 1−s

2
,

(7)

where the function Ia(x) was given in (5), ω[−ã,ã] is the equilibrium (Robin) measure of the interval [−ã, ̃a], 
Bals(δz, [−ã, ̃a]) denotes the balayage of the point mass δz onto [−ã, ̃a] and mã ∈ (0, 1) is its mass, i.e.

mã = ‖Bals(δz, [−ã, ã])‖

(it is known that, in general, the balayage of a measure onto a compact set entails a mass loss; see Section 3
below). Now, comparing (4) and (7) leads us to compute the precise mass loss for the balayage of the point 
mass δz onto the support of μQ, the interval [−ã, ̃a]. Indeed, this comparison yields the following expression 
for the mass loss,

1 −mã = 1 − 1
q

(1 + f(s)h(d, s)) , 0 < s < 1 , q > 1 , b > 0 , d = ã

b
> 0 , (8)

f(s) =
B
( 1

2 ,
1+s
2

)
B
( 1−s

2 , 1+s
2

) , h(d, s) = ds√
1 + d2

.

Observe that

lim
s→0+

f(s) = 1 , lim
s→1−

f(s) = 0

and that h is an increasing function of d for |d| > s

1 − s
, while it is decreasing for |d| < s

1 − s
.

From (8), we immediately obtain that for s = 0.5 and q = 5, the mass loss of the balayage 1 −mã ≈ 0.431, 
while for q = 2 we get 1 −mã ≈ 0.252. These results seem natural: fixing s and b (the distance of the point 
mass to the real axis), a bigger mass q provides a smaller support and, thus, a bigger mass loss.

Our last main result is about the behavior of the density (4) at the endpoints of the support.

Theorem 2.3.

μ′
Q(x) = O

(
|x∓ ã| 1+s

2

)
, x → ã±. (9)
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Remark 2.7. The result in Theorem 2.3 seems to show that the generic behavior at the (soft) endpoints of 
the Riesz s–equilibrium measures in the presence of sufficiently regular external fields will be given by (9). If 
it is indeed true in a general context, it would extend the well known result for the logarithmic case (s = 0), 
about the generic “square root” behavior at the endpoints of the equilibrium density, as it was established 
in [16].

3. Balayage and signed equilibrium measures

Throughout this section we deal with the balayage and signed equilibrium measures related to the problem 
we are addressing.

First, recall that given a closed set F ⊂ C and a measure σ, the measure

σ̂ := σ̂s = Bals (σ, F )

is said to be the Riesz s-balayage of σ onto F if supp σ̂ ⊆ F and

U σ̂(z) = Uσ(z) q.e. on F , U σ̂(z) ≤ Uσ(z) on C . (10)

In the logarithmic case (s = 0), the balayage σ̂0 preserves the total mass: ‖σ̂0‖ = ‖σ‖, (and this is no longer 
true for 0 < s < 1); but (10) is modified in the sense that

U σ̂
0 (z) = Uσ

0 (z) + C q.e. on F , U σ̂
0 (z) ≤ Uσ

0 (z) + C on C ,

where C = 0 if C \ F is a bounded set.
Our first auxiliary result is the following one about the s-balayage of a point mass onto the real axis.

Lemma 3.1. Let z ∈ C\R and denote by δz the Dirac delta at the point z. Denote also δ̂z := Bals (δz, R) , 0 ≤
s < 1. Then,

• The density of δ̂z is given by

δ̂′z(x) = | Im(z)|1−s

B(1
2 ,

1−s
2 ) |x− z|2−s

, x ∈ R. (11)

• No mass loss takes place in this case, that is,

‖δ̂z‖ = ‖δz‖ = 1 , 0 ≤ s < 1. (12)

Proof. The proof is based on a stereographic projection and its associated Kelvin Transform (see [17, Sec. 
IV.5]). Indeed, as in [4, Lemma 3.4], let us take inversion with respect to the circle with center z and radius √

2| Im(z)|, in such a way that the image of the real axis is a circle K with radius 1 and z as its north pole. 
Then, if the image of a generic point x ∈ R is denoted by u ∈ K, we have that

|x− z||u− z| = 2| Im(z)| , |du| = 2| Im(z)|dx
|x− z|2 . (13)

In addition, if y ∈ R is another arbitrary point whose image is denoted by v ∈ K, the following relation 
between the distances holds,

|v − u| = 2| Im(z)||y − x|
. (14)
|x− z||y − z|
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On the other hand, it is well known that for 0 ≤ s < 2 the normalized arc-length measure, dω(w) = |dw|
2π , is 

the s-equilibrium measure of a circle of unit radius, like K (see e.g. [17]). This means that Uω(w) = const =
Ws , w ∈ K, where this constant is given by (see e.g. [6])

Ws = Ws(S1) =
B
( 1

2 ,
1−s
2

)
2sπ . (15)

First, consider the case where 0 < s < 1. Now, in order to prove (11), denote

dσ(x) = | Im(z)|1−s

B
( 1

2 ,
1−s
2

) dx

|x− z|2−s
, x ∈ R .

Then, for y ∈ R and denoting as above by v its image by inversion, and making use of (13)-(15), we have

Uσ(y) = | Im(z)|1−s

B
( 1

2 ,
1−s
2

) ∫
R

dx

|y − x|s|x− z|2−s
= 2s−1

B
( 1

2 ,
1−s
2

) ∫
K

|du|
|y − z|s|v − u|s

= 2sπ
B
( 1

2 ,
1−s
2

)
|y − z|s

∫
K

|du|/(2π)
|v − u|s = 2sπWs

B
( 1

2 ,
1−s
2

)
|y − z|s

= 1
|y − z|s = U δz (y) ,

which establishes (11). In the log–case, where s = 0, it suffices to take into account the invariance of 
harmonic measures under Kelvin Transforms (see [17, Sec. IV.5]) and the fact that the image of z by 
the above inversion is the point at infinity. Thus, we have that the equilibrium measure of K (which is 
the balayage of δ∞ onto K), that is, dω(u) = |du|

2π , is the Kelvin Transform of the balayage Bal0(δz; R). 
Therefore, the second expression in (13) yields

dBal0(δz;R)(x) = |du|
2π = 2| Im(z)|dx

2π |x− z|2 = | Im(z)|dx
π |x− z|2 ,

which proves (11) for s = 0.
In a similar fashion, we have for 0 < s < 1,

‖δ̂z‖ = | Im(z)|1−s

B
( 1

2 ,
1−s
2

) ∫
R

dx

|x− z|2−s
= 2s−1

B
( 1

2 ,
1−s
2

) ∫
K

|du|
|v − u|s

= 2sπWs

B
( 1

2 ,
1−s
2

) = 1 = ‖δz‖ ,

which renders the proof of (12) (for s = 0 it is well known that the balayage preserves the mass). �
Remark 3.1. The fact that there is no mass loss for the balayage onto the whole real axis may be also proved 
computing the integral above in a straightforward way by using the beta function.

The next lemma is the well-known superposition principle (see e.g. [17, Sec. IV.5, (4.5.5)]).

Lemma 3.2. Let F be a closed subset of the complex plane and ν a measure supported on C. Then,

dBals (ν, F ) = d(ν|F ) +

⎛⎜⎝ ∫
dBals (δt, F )

du
dν(t)

⎞⎟⎠ du .
C\F
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As noted in the Introduction, we may assume without loss of generality that z = bi , b �= 0. Thus, we are 
in the presence of a symmetric (with respect to the imaginary axis) external field, and the support of the 
equilibrium measure (if it exists) inherits that symmetry. First, we need the expression of the balayage of a 
point mass placed in the real axis outside a certain interval onto that interval. This is given in [3].

Lemma 3.3. Let a > 0 and t ∈ R \ [−a, a]. Then, we have:

dBals (δt, [−a, a]) = γs

(
a2 − t2

a2 − x2

) 1−s
2 dx

|x− t| ,

where γs = B
( 1+s

2 , 1−s
2

)−1.

As an immediate consequence of Lemmas 3.1-3.3, we have the following

Lemma 3.4. Let a > 0 and z = bi , b �= 0. Then,

dBals (δz, [−a, a]) = b1−s

B
( 1

2 ,
1−s
2

) (
1

(x2 + b2)1−s/2 + γs
Ia(x)

(a2 − x2) 1−s
2

)
dx = f(x)dx , (16)

where Ia(x) is given in (5).

Remark 3.2. Using (5) it is easy to study the behavior of the density of (16) at the endpoints of the interval. 
Indeed, we have,

lim
x→±a∓

(a2 − x2)
1−s
2 f(x) = γs b

1−s

B
( 1

2 ,
1−s
2

) √
a2 + b2

∞∫
0

v−
1+s
2 dv

(v + 1)1− s
2

= γs b
1−s

√
a2 + b2

> 0 ,

(17)

and hence, the behavior of the density of the balayage measure at the endpoints is of the form 
O
(
|x± a|− 1−s

2

)
.

Similar to the logarithmic case (s = 0), for 0 < s < 1 if the external field is a convex function on a certain 
interval I ⊂ R, then the intersection of SQ (the support of the equilibrium measure in Q) and I is a single 
interval; but not much more is known, in general, for the support of such Riesz s-equilibrium measures.

To study the equilibrium measure of a real interval in the presence of (1), we will make use of the 
signed equilibrium measure in such external field. Namely, for a closed subset F of R (or C) the s-signed 
equilibrium measure of F associated with the external field Q is a signed measure ηQ,F supported on F , 
such that ηQ,F (F ) = 1 and

UηQ,F (x) + Q(x) = CQ,F , q.e. on F . (18)

If this signed equilibrium measure exists, then it is unique (see [6, Lemma 2.1]). The importance of it for our 
analysis relies on the fact that, provided the support of the (positive) equilibrium measure μQ,F is compact, 
we have

suppμQ,F ⊆ supp η+
Q,F , (19)
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where η+
Q,F denotes the positive part of the signed measure in the usual decomposition ηQ,F = η+

Q,F − η−Q,F

(see [15], where this result is established for s = 0; the result remains valid for a general s, see [7, Theorem 
9]). Therefore, we know that suppμQ,F cannot intersect intervals where the signed measure ηQ,F is not 
positive.

Another useful tool for our analysis is the so–called Mhaskar–Saff Fs-functional, which generalizes the 
Mhaskar–Saff functional (for the logarithmic potential see [25, Sect. IV, eq. (1.1)]). Namely, if the support 
SQ of the Riesz s-equilibrium measure of a conductor Σ ⊂ C in the external field Q is a compact subset of 
Σ, then SQ minimizes, among all the compact subsets of Σ, the functional (see e.g. [7])

Fs(K) := Ws(K) +
∫

QdωK , (20)

where ωK = ωK,s is the (unweighted) s-equilibrium measure of K and Ws(K) denotes its (unweighted) 
energy: that is, such that UωK ≡ Ws(K), everywhere in K. Observe that this Riesz version of the usual 
Mhaskar–Saff functional has opposite sign to the classical one. As for the connection with the signed 
equilibrium measure, take notice that if the signed equilibrium measure on a compact set K, ηQ,K, exists, 
then

Fs(K) = CQ,K ,

with CQ,K being the equilibrium constant given in (18).
Now, it is easy to check that for the case we are dealing with in the current paper, the expression of the 

signed equilibrium measure for a real interval [−a, a] in the presence of the external field (1) agrees with 
that announced in (7), that is,

ηa = ηQ,[−a,a] = q Bals(δz, [−a, a]) − (q ma − 1)ω[−a,a] , (21)

where the expression of Bals(δz, [−a, a]) was given in (16) and

0 < ma = ‖Bals(δz, [−a, a])‖ ≤ 1

(recall again that the Riesz s-balayage of measures onto compact sets implies in general a mass loss (see 
[3])), and ω[−a,a] := ω[−a,a],s stands for the s-equilibrium measure of the interval [−a, a], which is given by 
(see [17], [3] and [20]),

dω[−a,a](x) = Ca
dx

(a2 − x2) 1−s
2

, (22)

where

Ca = Ca,s =
(

(2a)s B
(

1 + s

2 ,
1 + s

2

))−1

=
(
as B

(
1
2 ,

1 + s

2

))−1

. (23)

Take into account, also, that ma is an increasing function of a, such that lim
a→0+

ma = 0 and lim
a→+∞

ma = 1. 
Now, from (21) and (17), we have for the behavior of the density of ηa at the endpoints ±a,

lim
x→±a∓

(a2 − x2)
1−s
2 η′a(x) = b1−s

B
( 1−s

2 , 1+s
2

) √
a2 + b2

− q ma − 1
as B

( 1−s
2 , 1+s

2
) . (24)

Suppose now that q > 1. Then, as a grows from 0 to +∞, the density of the signed equilibrium measure 
ηa given in (21) evolves as shown in Figs. 2–4. Namely, for a below a certain critical value a1 > 0, ηa is, in 
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Fig. 2. Density of ηa for q = 5 and a = .12.

Fig. 3. Density of ηa for q = 5 and a = 1.

fact, the sum of two positive measures (Fig. 2), while for a1 < a < a2, for certain a2, ηa is the difference of 
two positive measures but is still a positive measure everywhere in [−a, a] (Fig. 3); thus, by uniqueness, for 
0 < a < a2, ηa agrees with μa, the (positive) equilibrium measure of [−a, a] in Q. Conversely, for a > a2, 
ηa is no longer a positive measure everywhere in [−a, a]; indeed, by (24) we have that the support of its 
negative part consists of two symmetric subintervals [a′, a] and [−a, −a′] , 0 < a′ < a (Fig. 4).

Otherwise, if q < 1, (21) is always a positive measure everywhere on [−a, a], and thus, μQ,[−a,a] ≡ ηa, for 
any a > 0. Therefore, for q < 1 the density of the signed (indeed, positive) equilibrium measure on [−a, a]
always diverges to +∞ at the endpoints; see Fig. 5, where the graphs of density of ηa for q = .5 and a = 10
and a = 20 are displayed.

There is a very useful tool combining the two main concepts in this section, namely the signed equilibrium 
measure and the balayage of a measure, which may lead to the determination of the (positive) equilibrium 
measure. This is a recursive procedure known as the Iterated Balayage Algorithm (hereafter, IBA). This 
method has been successfully applied in a number of problems in the case of logarithmic potentials (see 
[15], [10], [9], among others), and also, implicitly at least, for the case of Riesz s-potentials in [6] (there, 
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Fig. 4. Density of ηa for q = 5 and a = 4 > a2.

Fig. 5. Density of ηa for q = .5 and a = 10 (blue) and a = 20 (red).

a continuous version of this algorithm was used). Next, we include a short description of this method (for 
details in the log–case, see [15] and [11]).

Namely, suppose that we are given a Gauss variational problem in the real axis (for Riesz s-potentials, 
0 < s < 1) in the presence of a certain external field Q and it is known that the support SQ of the equilibrium 
measure μQ is compact. Suppose Σ = Σ0 is a compact subset of the real axis large enough so that SQ ⊂ Σ0, 
and let ν0 = ηQ,Σ0 be the corresponding signed equilibrium measure, according to the definition (18). Then, 
if ν0 = ν+

0 − ν−0 denotes its Jordan decomposition, then (19) yields that μQ ≤ ν+
0 and

SQ ⊂ supp ν+
0 = Σ1 .

Now, we can compute the signed equilibrium measure ν1 in the external field Q for the compact interval Σ1
and we also have that μQ ≤ ν+

1 and
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SQ ⊂ supp ν+
1 = Σ2 ⊂ Σ1 .

Iterating this procedure, a sequence of measures {νk} and other sequence of nested compact sets {Σk} are 
generated so that

SQ ⊂ Σk+1 = supp ν+
k , k = 0, 1, . . .

Obviously, the algorithm stops if at any step the signed measure νk is actually a positive one; in that case, 
we would have that μQ = νk. Thus, it seems reasonable to expect that the sequence {ν+

k } converges to the 
equilibrium measure μQ, and it is indeed the case if certain conditions are satisfied; the hardest part is often 
to prove that the sequence of negative parts {ν−k } tends to zero as k → ∞. This requires to control the 
limit set

Σ∗ = ∩∞
k=1 Σk . (25)

In the proof of Theorem 2.1, in the next section, this method will be successfully applied.

Remark 3.3. In the log–case, each of the successive signed measures νk+1 agrees with the balayage of the 
previous one, νk, onto the support of its positive part Σk+1 = supp ν+

k , k = 0, 1, . . .. Due to the mass 
loss in Riesz s–balayage we modify the iterative scheme above by adding appropriate scaling of the regular 
s–equilibrium measure at each step.

To end this section, along with the family of signed equilibrium measures {ηa}a>0, we will also consider 
the one–parameter family of measures {σa}a>0, whose densities are given by

σ′
a(x) = q b1−s

B
( 1

2 ,
1−s
2

)
B
( 1+s

2 , 1−s
2

) (
B
( 1+s

2 , 1−s
2

)
(x2 + b2)1− s

2
− Ia(a) − Ia(x)

(a2 − x2) 1−s
2

)
, |x| < a, (26)

with Ia(x) given by (5). First, we have the following

Lemma 3.5. For any a > 0, it holds:

(i) σa is a positive measure for any a > 0.
(ii) Uσa(x) + Q(x) = Ea = − q b1−s

√
a2+b2

= const < 0 , |x| ≤ a.
(iii) ‖σa‖ ∈ (0, q), as a varies through (0, +∞).
(iv) lim

|x|→a−
σ′
a(x) = 0.

Proof. First, let us see that σ is a positive measure in (−a, a). To do it, take into account that (5) implies 
that

Ia(a) − Ia(x)
(a2 − x2) 1−s

2
= (a2 − x2)

1+s
2

∞∫
0

u− 1+s
2

(u + a2 + b2)1− s
2

du

u + a2 − x2

≤ 1
(a2 + b2)1− s

2

∞∫
0

v−
1+s
2

1 + v
dv =

B(1+s
2 , 1−s

2 )
(a2 + b2)1− s

2

≤
B(1+s

2 , 1−s
2 )

2 2 1− s .

(x + b ) 2
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Second, it is necessary to check that the total (also called “chemical”) potential

Uσ(x) + Q(x) = Uσ(x) − q

|x− z|s = E ≡ const

on [−a, a]. But it is immediate because (26), (16), and (5) imply that

σa = q

(
Bals (δz, [−a, a]) − b1−s Ia(a)

B
( 1

2 ,
1−s
2

)
B
( 1+s

2 , 1−s
2

)
Ca

ω[−a,a]

)
, (27)

where ω[−a,a] denotes again the (Robin) s-equilibrium measure of [−a, a] (see (22)) and Ca is given by 
(23). Indeed, taking into account the expression of the Riesz s-energy of the interval (i.e. its unweighted 
equilibrium energy)

Ws(a) =
Γ(1−s

2 ) Γ(1 + s)
2s Γ(1+s

2 )
a−s (28)

and (6), we obtain that

E = Es,q,b,a = − q b1−s

√
a2 + b2

.

As for part (iii), that ‖σa‖ ∈ (0, q) immediately arises from (27), in such a way that lim
a→0+

‖σa‖ = 0 and 

lim
a→∞

‖σa‖ = q.
To prove (iv), note that

Ia(a) − Ia(x)
(a2 − x2) 1−s

2
= (a2 − x2)

1+s
2

∞∫
0

u− 1+s
2

(u + a2 + b2)1− s
2

du

u + a2 − x2

=
∞∫
0

v−
1+s
2

(v + 1) ((a2 − x2)v + a2 + b2)1− s
2
dv

(29)

and, taking into account that

B
(

1 + s

2 ,
1 − s

2

)
=

∞∫
0

u− 1+s
2

u + 1 du ,

(29) easily yields

lim
|x|→a−

σ′
a(x) = 0 . �

In Fig. 6 - Fig. 7, the plots of the densities of σa for q = 5 and b = 1, corresponding to the cases a = 5
(in this case, ‖σa‖ = 2.616107631) and a = .5 (‖σa‖ = 0.1579953845), are displayed.

Finally, observe also that, comparing (26) with (21), we have that:

ηa = σa + K ω[−a,a] ,

for a certain constant K = K(q, b, s, a). Indeed, this close relationship between the positive measure σa and 
the signed measure ηa will be exploited in the proof of Theorem 2.1.
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Fig. 6. Density of σa for a = 5.

Fig. 7. Density of σa for a = 0.5.

4. Proofs of the main results

4.1. Proof of Theorem 2.1

(1) As seen in Section 3, for a large enough the signed equilibrium measure ηa = ηQ,[−a,a] has a negative 
part supported on two symmetric pieces close to the endpoints of the interval, say [−a, −b] ∪ [b, a], with 
0 < b < a (see Fig. 4 and (24)). Then, it is possible to apply the IBA (also described in Section 3) to find 
the equilibrium measure μa = μQ,[−a,a], starting from Σ0 = [−a0, a0] = [−a, a]. In this way, as shown in the 
previous section, we can build a sequence of measures {ν+

k } such that SQ ⊂ . . . ⊂ Σk+1 = supp ν+
k ⊂ . . . ⊂

Σ1 = supp ν+
0 , where



D. Benko et al. / J. Math. Anal. Appl. 491 (2020) 124299 15
νk = ηak
= ηQ,[−ak,ak] ,

with Σk = [−ak, ak] = supp ν+
k−1, and a0 ≥ a1 ≥ . . .

Now, we are concerned with finding the limit of the sequence {νk}. But (24) shows that the limit of the 
recursive algorithm above occurs when the critical value of a, for which

b1−s

B
( 1+s

2 , 1−s
2

) √
a2 + b2

= q ma − 1
B
( 1+s

2 , 1
2
)
as

, (30)

is attained; in this case the density of η′a vanishes at the endpoints, and no negative part of the signed 
equilibrium measure is supported in two symmetric pieces beside the endpoints. But comparing with the 
expression of the density of σa (26), it is easy to check that the critical value of a for which identity (30) is 
attained agrees with the one for which ‖σa‖ = 1 (see (27)). Therefore, if we call ã that critical value of a, 
we have that the IBA process converges to a unit measure, being positive everywhere on [−ã, ̃a] and, hence,

μQ,a ≡ ηã ≡ σã .

Thus, by the Frostman conditions we have that

Uσã(x) + Q(x)
{

= C , |x| ≤ ã ,

≥ C , |x| ≤ a ,
(31)

for some constant C. But since the limit measure of IBA is the same for any a ≥ ã, (31) also holds for 
any a ∈ (ã, +∞), and therefore, the Frostman inequality holds for any x ∈ R and, in turn, μQ ≡ σã. This 
renders the proof.

(2) For the proof of the second part we need the following Lemma.

Lemma 4.1. For the Gauss variational problem (2) in the external field (1), we have:

(a) If there exists an equilibrium measure μQ, satisfying Frostman conditions (3), then FQ ≤ 0.
(b) If SQ is unbounded, then necessarily q = 1 (and, hence, SQ = R).

Proof. The proof of (a) is immediate in case SQ is a compact subset of the real axis. Indeed, it is enough 
to take limits as |x| → ∞ in the inequality of (3), and take into account that

lim
|x|→∞

UμQ(x) = lim
|x|→∞

∫
dμQ(y)
|x− y|s = 0 = lim

|x|→∞
Q(x)

to conclude that FQ ≤ 0.
In case SQ is unbounded, it is enough to follow a monotone convergence argument, using the sequence 

of truncated measures μn = μQ|[−n,n] , n ∈ N, which converges to μQ, as n → ∞. It is clear that μn ≤
μn+1 , n ∈ N and lim|x|→∞ Uμn(x) = 0 and, thus, lim|x|→∞ UμQ(x) = 0.

For part (b), it suffices to take into account that now the equality in (3) holds for |x| large enough. 
Therefore, multiplying this equality by |x|s, taking limits as |x| → ∞ and applying again the monotone 
convergence argument, it yields that necessarily q = 1 and, hence, FQ = 0, with the whole real axis being 
the support of the equilibrium measure. �

Now, Lemma 4.1 (b) shows that for q < 1, in case of existence of μQ it must be compactly supported. 
But in that case, for some a large enough, μQ ≡ μa = μQ,[−a,a], that is, the equilibrium measure for the real 
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axis must agree with the equilibrium for a compact interval [−a, a]. But, as seen in Section 3, for q < 1 we 
have that ηa ≡ μa, for any a > 0 (see Fig. 5) and, then, we would conclude that μQ ≡ ηa, for some a > 0. 
Then, (21) shows that

Uηa(x) + Q(x) = (1 − q ma)Ws(a) ,

with Ws(a) > 0 being the s–energy of the interval [−a, a] given in (28). Finally, since q < 1 and ma < 1, 
we would get a positive value for the equilibrium constant FQ, and it contradicts Lemma 4.1 (a).

4.2. Proof of Theorem 2.2

We aim to determine the endpoints ±ã of the support SQ = [−ã, ̃a]. To this end, the Mhaskar–Saff 
Fs-functional (20) will be used. In our case, this functional takes the form:

Fs(K) = Fs(a) = Ws(a) − q

∫
Q(x) dω[−a,a](x) = Ws(a) − q U

ω[−a,a]
s (bi) , (32)

with dω[−a,a](x) given in (22) and Ws(a) is given by (28). Thus, after some calculations, we get

Uω[−a,a](bi) =
B(1+s

2 , 1
2 )

22 B(1+s
2 , 1+s

2 )
(a2 + b2)−s/2

2F1

(
s

2 ,
1 + s

2 ; 1 + s

2 ; a2

a2 + b2

)
, (33)

and therefore, from (28) and (33), (32) may be written in the form:

Fs(a) = Γ(1 + s)
2s Γ

( 1+s
2

) a−s

(
Γ
(

1 − s

2

)
− q

√
π

Γ(1 + s
2)

(
a√

a2 + b2

)s

2F1

(
s

2 ,
1 + s

2 ; 1 + s

2 ; a2

a2 + b2

))
= Γ(1 + s)

2s Γ
( 1+s

2
) a−s g(c, s) ,

(34)

with c = a2

a2 + b2
.

Now, taking b > 0 and q > 0 fixed, it is easy to check (see [1, Ch. 15]) that g(c, s) in (34) is a decreasing 
function of a; and using [1, (15.1.20)], we also have that

2F1

(
s

2 ,
1 + s

2 ; 1 + s

2 ; 1
)

=
Γ
( 1+s

2
)

Γ
( 1−s

2
)

√
π

and, hence,

lim
a→+∞

g(c, s) = Γ
(

1 − s

2

)
− q

√
π

Γ(1 + s
2) lim

c→1− 2F1

(
s

2 ,
1 + s

2 ; 1 + s

2 ; c
)

= (1 − q) Γ
(

1 − s

2

)
.

Since, on the other hand, it is clear that

lim
a→+∞

Fs(a) = 0 and lim
a→0+

Fs(a) = +∞ ,

it implies that for q ≤ 1, Fs(a) is a strictly positive and decreasing function of a and, thus, it does not have a 
minimum. Otherwise, when q > 1, Fs(a) < 0 for a > a0, with a0 = a0(s, q, b) and, since lima→+∞ Fs(a) = 0, 
then Fs(a) must be an increasing function of a for a > ã, with ã = ã(s, q, b) > a0. Therefore, the absolute 
minimum of the function Fs(a) is attained at this point ã ∈ (0, +∞) (see Fig. 8).
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Fig. 8. Graph of the function Fs(a) for s = 1/2, b = 1, and q = 5 (red), q = 2 (blue), q = 0.75 (green). Observe that for q = .75, 
Fs is a positive and monotonically decreasing function in (0, ∞) which never meets the real axis.

4.3. Proof of Theorem 2.3

Indeed, from (4) and (29) we have that

lim
|x|→ã−

(ã2 − x2)−
1+s
2 μ′

Q(x) =

lim
|x|→ã−

(ã2 − x2)−
1+s
2

⎧⎨⎩B
( 1+s

2 , 1−s
2

)
(x2 + b2)1− s

2
− (ã2 − x2)

1+s
2

∞∫
0

u− 1+s
2

(u + ã2 + b2)1− s
2

du

u + ã2 − x2

⎫⎬⎭ =

lim
|x|→ã−

(ã2 − x2)−
1+s
2

∞∫
0

v−
1+s
2

v + 1

{
1

(x2 + b2)1− s
2
− 1

((ã2 − x2)v + ã2 + b2)1− s
2

}
dv.

Now, making the change of variable w = ã2 − x2

x2 + b2
(v + 1), we have that

lim
|x|→ã−

(ã2 − x2)−
1+s
2 μ′

Q(x) =

1
(x2 + b2)1− s

2
lim

|x|→ã−
(ã2 − x2)−

1+s
2

∞∫
ã2−x2
x2+b2

(
x2+b2

ã2−x2 w − 1
)− 1+s

2 (
1 − (1 + w) s

2−1)
w

dw

Therefore, after some straightforward manipulations, we get

lim
|x|→ã−

(ã2 − x2)−
1+s
2 μ′

Q(x) = 1
(ã2 + b2) 3

2

∞∫ 1 − (1 + w) s
2−1

w
3+s
2

dw .
0
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Since 1 − (1 + w) s
2−1 =

(
1 − s

2

)
w + O(w2) for w → 0+, we have that the last integral is convergent and 

does not vanish. This renders the proof of (9).
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