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We determine the asymptotics for the variance of the number of zeros of random 
linear combinations of orthogonal polynomials of degree ≤ n in subintervals [a, b] of 
the support of the underlying orthogonality measure μ. We show that, as n → ∞, 
this variance is asymptotic to cn, for some explicit constant c > 0.
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1. Introduction and main results

Let μ be a positive Borel measure compactly supported in the real line, whose support contains infinitely 
many points. For n ≥ 0, n ∈ Z, we consider the nth orthonormal polynomial

pn (x) = γnx
n + ... (1.1)

for μ, with γn > 0, so that

∫
pn(x)pm(x) dμ(x) = δmn, m, n ≥ 0.

Define the ensemble of random orthogonal polynomials of the form

Gn(x) =
n∑

j=0
ajpj(x), n ≥ 0, (1.2)
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where {aj}∞j=0 are standard Gaussian N (0, 1) i.i.d. random variables. For any interval [a, b] ⊂ R, let 
Nn([a, b]) (resp. Nn (R)) denote the number of zeros of Gn lying in [a, b] (resp. total number of real zeros).

Real zeros of high degree random polynomials have been studied since the 1930s. The early work con-
centrated on the expected number of real zeros E[Nn(R)] for Pn(x) =

∑n
k=0 akx

k, where {ak}nk=0 are i.i.d. 
random variables. Bloch and Pólya [9] gave the upper bound E[Nn(R)] = O(

√
n) for polynomials with 

coefficients in {−1, 0, 1}. Improvements and generalizations were obtained by Littlewood and Offord [26,27], 
Erdős and Offord [14] and others. Kac [22] introduced the “Kac-Rice formula” to establish the important 
asymptotic result

E[Nn(R)] = (2/π + o(1)) logn as n → ∞,

for polynomials with independent real Gaussian coefficients.
More precise forms of this asymptotic were obtained by Kac [23], Edelman and Kostlan [13], Wilkins 

[40] and others. For related further directions, see [7] and [16]. Maslova [32] proved that the variance of real 
zeros for Kac polynomials 

∑n
k=0 akz

k satisfies

Var[Nn(R)] = 4
π

(
1 − 2

π

)
logn + o(logn)

for i.i.d. coefficients with mean 0, variance 1 and P (ak = 0) = 0. This result was recently generalized by 
Nguyen and Vu [33].

Das [10] considered random Legendre polynomials corresponding to Lebesgue measure dμ(x) = dx on 
[−1, 1], and found that E[Nn([−1, 1])] is asymptotically equal to n/

√
3. Wilkins [39] estimated the error 

term in this asymptotic relation. For random Jacobi polynomials, Das and Bhatt [11] established that 
E[Nn([−1, 1])] is asymptotically equal to n/

√
3 too. Farahmand [15], [16], [17] considered the expected 

number of the level crossings of random sums of Legendre polynomials with coefficients having different 
distributions. These results were generalized to wide classes of random orthogonal polynomials by Lubinsky, 
Pritsker and Xie [30] and [31]. In particular, they showed that the first term in the asymptotics for E[Nn(R)]
remains the same as for the Legendre case.

The asymptotic variance and the Gaussianity for real zeros of random trigonometric polynomials were 
established by Granville and Wigman [19], and subsequently by Azaïs and León [2] via different methods. Su 
and Shao [35] found the asymptotic variance for the real zeros of random cosine polynomials, while Azaïs, 
Dalmao and León [1] gave a different proof. Xie [41] showed that the variance of real zeros for a general class 
of random orthogonal polynomials is o(n2). A recent paper of Do, H. Nguyen and O. Nguyen [12] studied 
dependence of the variance on the distribution of the i.i.d. random coefficients in the trigonometric case.

In this paper our main goal is determining the asymptotic for the variance of the number of real zeros 
for the ensemble of random orthogonal polynomials of the form (1.2). To state our results, we require the 
following definition:

Definition 1.1. We say that a measure is regular in the sense of Stahl, Totik, and Ullman, if the leading 
coefficients {γj} of the orthonormal polynomials in (1.1) satisfy

lim
j→∞

γ
1/j
j = 1

cap (supp [μ]) ,

where cap (supp [μ]) denotes the logarithmic capacity of supp [μ].

While not a transparent condition, it is a weak one. For example, if the support of μ consists of finitely 
many intervals, and μ′ is positive a.e. in each of those intervals, then μ is regular. However, much less is 
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needed [34]. We let ν denote the equilibrium measure ν for supp [μ] in the sense of potential theory, and let 
ω (x) = dν

dx . In any open subinterval of supp [μ], ω exists, and is positive and continuous [34]. For example, 
when supp [μ] = [−1, 1],

ω (x) = 1
π
√

1 − x2
.

Let

S (u) = sin πu

πu
; (1.3)

F (u) = det

⎡
⎢⎢⎢⎣

1 S (u) 0 S′ (u)
S (u) 1 −S′ (u) 0

0 −S′ (u) −S′′ (0) −S′′ (u)
S′ (u) 0 −S′′ (u) −S′′ (0)

⎤
⎥⎥⎥⎦ ; (1.4)

G (u) = det

⎡
⎢⎣ 1 S (u) −S′ (u)

S (u) 1 0
−S′ (u) 0 −S′′ (0)

⎤
⎥⎦ ; (1.5)

H (u) = det

⎡
⎢⎣ 1 S (u) 0

S (u) 1 −S′ (u)
S′ (u) 0 −S′′ (u)

⎤
⎥⎦ . (1.6)

Sylvester’s determinant identity and the fact that G (−u) = G (u) show that
(
1 − S (u)2

)
F (u) = G (u)2 −H (u)2 .

Also let

Ξ (u) = 1
π2

⎧⎪⎨
⎪⎩
√

F (u)
1 − S (u)2

+ 1(
1 − S (u)2

)3/2H (u) arcsin
(
H (u)
G (u)

)⎫⎪⎬
⎪⎭− 1

3 (1.7)

and

c =
∞∫

−∞

Ξ (u) du + 1√
3
. (1.8)

Theorem 1.2. Let μ be a measure with compact support on the real line, that is regular in the sense of Stahl, 
Totik, and Ullmann. Let ω denote the Radon-Nikodym derivative of the equilibrium measure for the support 
of μ. Let [a′, b′] be a subinterval in the support of μ, such that μ is absolutely continuous there, and its 
Radon-Nikodym derivative μ′ is positive and continuous there. Assume moreover, that

sup
n≥1

‖pn‖L∞[a′,b′] < ∞. (1.9)

If [a, b] ⊂ (a′, b′) then

lim
n→∞

1
n

Var [Nn ([a, b])] = c

⎛
⎝ b∫

ω (y) dy

⎞
⎠ . (1.10)
a
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Note that the limit does not depend on the particular measure μ, but involves the equilibrium density 
of the support of μ. The bounds for the orthonormal polynomials are known for example when μ′ satisfies 
a Dini-Lipschitz condition. Therefore an application of Theorem 1.2 gives:

Corollary 1.3. Let μ be a measure supported on [−1, 1] satisfying the Szegő condition

1∫
−1

logμ′ (x) dx

π
√

1 − x2
> −∞.

Let [a′, b′] be a subinterval of (−1, 1), in which μ is absolutely continuous, while μ′ is positive and continuous 
in [a′, b′]. Assume moreover that its local modulus of continuity,

Ω (t) = sup {|μ′ (x) − μ′ (y)| : x, y ∈ [a′, b′] and |x− y| ≤ t} , t > 0,

satisfies the Dini-Lipshitz condition

1∫
0

Ω (t)
t

dt < ∞.

If [a, b] ⊂ (a′, b′), then

lim
n→∞

1
n

Var [Nn ([a, b])] = c

⎛
⎝ b∫

a

1
π
√

1 − y2
dy

⎞
⎠ . (1.11)

Remarks.

(a) We believe that this result is new even for the Legendre weight μ′ = 1.
(b) The hypotheses of Theorem 1.2 are also satisfied for exponential weights investigated in [25] that do not 

satisfy the Szegő condition. For example, the conclusion of Theorem 1.2 holds for any [a, b] ⊂ (−1, 1), 
when

μ′ (x) = exp
(
− expk

(
1 − x2)−α

)
, x ∈ (−1, 1) ,

where α > 0 and expk = exp (exp (... exp())) denotes the kth iterated exponential.
(c) For a class of weights supported on several disjoint intervals, in a classic paper, Widom [38] established 

asymptotics of the orthonormal polynomials under some smoothness conditions on the weight. These 
imply the uniform boundedness of the orthonormal polynomials in subintervals of the interior of the 
support, so that Theorem 1.2 applies to Widom’s weights.

(d) As noted above, the analogous limit for trigonometric polynomials was established by Granville and 
Wigman in [19]. We have indications that our results are related to those of [19] via the same limiting 
Paley-Wiener process.

(e) Azaïs, Dalmao and León [1, Theorem 1] found the asymptotics for the variance of zeros of random 
cosine polynomials 

∑n
k=0 ak cos ky on [0, π]. These random cosine polynomials are equivalent to the 

random Chebyshev polynomials 
∑n

k=0 akTk (x) on [−1, 1] by the change of variable y = arccosx. Our 
asymptotic variance result of Theorem 1.2 for the random Chebyshev polynomials agrees with that of 
[1, Theorem 1] for random cosine polynomials.
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This paper is organized as follows: in Section 2, we state the Kac-Rice formula for the variance, and 
prove Theorem 1.2 and Corollary 1.3, deferring technical details to later sections. In Section 3, we record 
some technical estimates and gather results from elsewhere. In Section 4, we estimate the “tail term” with 
|x− y| ≥ Λ

n in the integral defining the main term in the variance. In Section 5, we handle the “central 
term” where x and y are close, which gives the dominant contribution to the integral. In Section 6, the 
appendix, we prove the formula for the variance.

In the sequel, C, C1, C2, ... denote constants independent of n, x, y. The same symbol may be different in 
different occurrences.

Acknowledgments

The authors would like to acknowledge the input of Igor Wigman of King’s College London. He provided 
essential insight into the literature and ideas for this paper. The authors would also like to thank a referee 
for finding an error in the statement of Lemma 3.2.

2. The proofs of Theorem 1.2 and Corollary 1.3

We begin with the Kac-Rice formulas for the expectation and variance. These involve the reproducing 
kernel

Kn (x, y) =
n−1∑
j=0

pj (x) pj (y) (2.1)

and for nonnegative integers r, s, its derivatives

K(r,s)
n (x, y) =

n−1∑
j=0

p
(r)
j (x) p(s)

j (y) . (2.2)

Lemma 2.1. Let [a, b] ⊂ R, and let Gn be defined by (1.2). Then the expected number of real zeros for Gn is 
expressed by

E [Nn ([a, b])] = 1
π

b∫
a

ρ1 (x) dx, (2.3)

where

ρ1 (x) = 1
π

√√√√K
(1,1)
n+1 (x, x)

Kn+1 (x, x) −
(
K

(0,1)
n+1 (x, x)

Kn+1 (x, x)

)2

. (2.4)

Proof. See [30]. �
We note that ρ1 depends on n, but we omit this dependence to simplify the notation. The same applies 

to ρ2 below. The variance of real zeros of Gn is found from the following formula, which was derived in [41]
by using the method of [19].

Lemma 2.2. Let [a, b] ⊂ R, and let Gn be defined by (1.2).

Var [Nn ([a, b])] =
b∫ b∫

{ρ2 (x, y) − ρ1 (x) ρ1 (y)} dxdy +
b∫
ρ1 (x) dx, (2.5)
a a a



6 D.S. Lubinsky, I.E. Pritsker / J. Math. Anal. Appl. 498 (2021) 124954
where

ρ2(x, y) = 1
π2

√
Δ

(√
Ω11Ω22 − Ω2

12 + Ω12 arcsin
(

Ω12√
Ω11Ω22

))
. (2.6)

Here

Δ(x, y) := Kn+1(x, x)Kn+1(y, y) −K2
n+1(x, y) (2.7)

and Ω is the covariance matrix of the random vector (P ′
n(x), P ′

n(y)) conditional upon Pn(x) = Pn(y) = 0:

Ω =
[
Ω11 Ω12
Ω12 Ω22

]
,

with

Ω11(x, y) := K
(1,1)
n+1 (x, x) −

1
Δ

(
Kn+1(y, y)(K(0,1)

n+1 (x, x))2 − 2Kn+1(x, y)K(0,1)
n+1 (x, x)K(0,1)

n+1 (y, x) + Kn+1(x, x)(K(0,1)
n+1 (y, x))2

)
,

(2.8)

Ω22(x, y) := K
(1,1)
n+1 (y, y) −

1
Δ

(
Kn+1(y, y)(K(0,1)

n+1 (x, y))2 − 2Kn+1(x, y)K(0,1)
n+1 (x, y)K(0,1)

n+1 (y, y) + Kn+1(x, x)(K(0,1)
n+1 (y, y))2

)
,

(2.9)

Ω12(x, y) := K
(1,1)
n+1 (x, y) −

1
Δ[Kn+1(y, y)K(0,1)

n+1 (x, x)K(0,1)
n+1 (x, y) −Kn+1(x, y)K(0,1)

n+1 (x, y)K(0,1)
n+1 (y, x)

−Kn+1(x, y)K(0,1)
n+1 (x, x)K(0,1)

n+1 (y, y) + Kn+1(x, x)K(0,1)
n+1 (y, x)K(0,1)

n+1 (y, y)]. (2.10)

Proof. See the Appendix. It is also shown there that the matrix Ω is nonnegative definite, so that the square 
root defining ρ2 is well defined. �

To prove Theorem 1.2, we split the first integral in (2.5) into a central term that provides the main 
contribution, and a tail term: for some large enough Λ, write

b∫
a

b∫
a

{ρ2 (x, y) − ρ1 (x) ρ1 (y)} dx dy

=

⎡
⎢⎣ ∫∫
{(x,y):x,y∈[a,b],|x−y|≥Λ/n}

+
∫∫

{(x,y):x,y∈[a,b],|x−y|<Λ/n}

⎤
⎥⎦ {ρ2 (x, y) − ρ1 (x) ρ1 (y)} dx dy

= Tail + Central.

We handle the tail term by proving the following estimate and a simple consequence:
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Lemma 2.3.

(a) There exist C1, n0, and Λ0 such that for n ≥ n0 and |x− y| ≥ Λ0
n ,

|ρ2 (x, y) − ρ1 (x) ρ1 (y)| ≤ C1

|x− y|2
. (2.11)

(b) There exist C2, n0, and Λ0 such that for n ≥ n0 and Λ ≥ Λ0,

∫∫
{(x,y):x,y∈[a,b],|x−y|≥Λ/n}

|ρ2 (x, y) − ρ1 (x) ρ1 (y)| dx dy ≤ C2
n

Λ . (2.12)

Proof. See Section 4. �
Recall that Ξ is defined by (1.7). For the central term we will prove:

Lemma 2.4.

(a) Uniformly for u in compact subsets of C\ {0}, and x ∈ [a, b] and y = x + u
nω(x) ,

(
1

nω (x)

)2

{ρ2 (x, y) − ρ1 (x) ρ1 (y)} = Ξ (u) + o (1) . (2.13)

(b) Let η > 0. There exists C such that for x ∈ [a, b], y = x + u
nω(x) , u ∈ [−η, η] and n ≥ 1,

|ρ2 (x, y) − ρ1 (x) ρ1 (y)| ≤ Cn2.

Proof. See Section 5. �
The second integral in (2.5) is simpler:

Lemma 2.5.

1
n

b∫
a

ρ1 (x) dx = 1√
3

b∫
a

ω (x) dx + o (1) . (2.14)

Proof. See Section 5. �
Proof of Theorem 1.2. We fix Λ > η > 0 and split

b∫
a

b∫
a

{ρ2 (x, y) − ρ1 (x) ρ1 (y)} dy dx

=
b∫

a

⎡
⎣∫

I

+
∫
J

+
∫
K

⎤
⎦ {ρ2 (x, y) − ρ1 (x) ρ1 (y)} dy dx, (2.15)

where for a given x,
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I = {y ∈ [a, b] : |y − x| ≥ Λ/ (nω (x))} ;

J = {y ∈ [a, b] : η/ (nω (x)) ≤ |y − x| < Λ/ (nω (x))} ;

K = {y ∈ [a, b] : |y − x| < η/ (nω (x))} .

If ω0 is the maximum of ω (x) in [a, b], (recall that ω is positive and continuous in [a, b]) then
∣∣∣∣∣∣

b∫
a

∫
I

{ρ2 (x, y) − ρ1 (x) ρ1 (y)} dy dx

∣∣∣∣∣∣
≤

∫∫
{(x,y):x,y∈[a,b],|x−y|≥Λ/(nω0)}

|ρ2 (x, y) − ρ1 (x) ρ1 (y)| dy dx

≤ C1
nω0

Λ , (2.16)

by Lemma 2.3(b), provided Λ/ω0 ≥ Λ0. Next,

1
n

b∫
a

∫
J

{ρ2 (x, y) − ρ1 (x) ρ1 (y)} dy dx

=
b∫

a

ω (x)
∫

η≤|u|≤Λ,
x+ u

nω(x)∈[a,b]

{
ρ2

(
x, x + u

nω (x)

)
− ρ1 (x) ρ1

(
x + u

nω (x)

)}
1

(nω (x))2
du dx.

Note that if η ≤ |u| ≤ Λ and x ∈ [a, b] but x + u
nω(x) /∈ [a, b], then x is at a distance of O

(Λ
n

)
to a or b, and 

in view of Lemma 2.4(b), the integral over such (x, u) is O
( 1
n

)
. Using Lemma 2.4(a), we deduce that

lim
n→∞

1
n

b∫
a

∫
J

{ρ2 (x, y) − ρ1 (x) ρ1 (y)} dydx

=

⎛
⎝ b∫

a

ω (x) dx

⎞
⎠
⎛
⎜⎝ ∫
η≤|u|≤Λ

Ξ (u) du

⎞
⎟⎠ . (2.17)

Finally, from Lemma 2.4(b), (but with a different fixed η there),

1
n

∣∣∣∣∣∣
b∫

a

∫
K

{ρ2 (x, y) − ρ1 (x) ρ1 (y)} dydx

∣∣∣∣∣∣ ≤ Cη, (2.18)

where C is independent of n, η. Combining the three estimates (2.16)–(2.18) over I, J, K, with (2.15) and 
Lemma 2.5, we obtain

lim sup
n→∞

∣∣∣∣∣∣∣
1
n
V ar [Nn ([a, b])] −

⎛
⎝ b∫

a

ω (x) dx

⎞
⎠
⎛
⎜⎝ ∫
η≤|u|≤Λ

Ξ (u) du + 1√
3

⎞
⎟⎠
∣∣∣∣∣∣∣

≤ C

(
1 + η

)
,
Λ
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where C is independent of n, Λ, η. Now if B > A ≥ Λ0, then Lemma 2.3(b) and Lemma 2.4(a) show that

⎛
⎝ b∫

a

ω (x) dx

⎞
⎠
∣∣∣∣∣∣
∫

A≤u≤B

Ξ (u) du

∣∣∣∣∣∣

= lim
n→∞

1
n

∣∣∣∣∣∣∣
b∫

a

∫
{y∈[a,b]:Aω(x)/n≤y−x<Bω(x)/n}

{ρ2 (x, y) − ρ1 (x) ρ1 (y)} dy dx

∣∣∣∣∣∣∣ ≤ C1/A.

It follows that 
∫∞
Λ0

Ξ (u) du converges. Similarly, 
∫ −Λ0
−∞ Ξ (u) du converges. So we may let Λ → ∞ above and 

deduce that

lim sup
n→∞

∣∣∣∣∣∣∣
1
n
V ar [Nn ([a, b])] −

⎛
⎝ b∫

a

ω (x) dx

⎞
⎠
⎛
⎜⎝ ∫
|u|≥η

Ξ (u) du + 1√
3

⎞
⎟⎠
∣∣∣∣∣∣∣

≤ Cη.

On the other hand, Lemma 2.4(a) and Lemma 2.4(b) show that if 0 < δ < η,

⎛
⎝ b∫

a

ω (x) dx

⎞
⎠
∣∣∣∣∣∣∣
∫

δ≤u≤η

Ξ (u) du

∣∣∣∣∣∣∣

= lim
n→∞

1
n

∣∣∣∣∣∣∣
b∫

a

∫
{y∈[a,b]:δω(x)/n≤y−x<ηω(x)/n}

{ρ2 (x, y) − ρ1 (x) ρ1 (y)} dy dx

∣∣∣∣∣∣∣ ≤ C2η.

It follows that 
∫ η

0 Ξ (u) du converges. Similarly, 
∫ 0
−η

Ξ (u) du converges. So we may let η → 0+ above to 
deduce the result. �
Proof of Corollary 1.3. Under the hypotheses of this theorem, Badkov even established asymptotics for the 
orthonormal polynomials [4, p. 42, Corollary 2] that trivially imply (1.9). Also, as noted above, since μ′

satisfies Szegő’s condition and so is positive a.e. in [−1, 1], it is regular [34, Corollary 4.1.3]. Then the result 
follows from Theorem 1.2. �

3. Auxiliary results

Throughout this section, we assume that μ is as in Theorem 1.2. We begin by recording some determi-
nantal and other formulae: let Δ, Ω11, Ω12, Ω22 be as in (2.7)–(2.10). Also let

Σ =

⎡
⎢⎢⎢⎣
Kn+1 (x, x) Kn+1 (x, y) K

(0,1)
n+1 (x, x) K

(0,1)
n+1 (x, y)

Kn+1 (x, y) Kn+1 (y, y) K
(0,1)
n+1 (y, x) K

(0,1)
n+1 (y, y)

K
(0,1)
n+1 (x, x) K

(0,1)
n+1 (y, x) K

(1,1)
n+1 (x, x) K

(1,1)
n+1 (x, y)

K
(0,1) (x, y) K

(0,1) (y, y) K
(1,1) (x, y) K

(1,1) (y, y)

⎤
⎥⎥⎥⎦ . (3.1)
n+1 n+1 n+1 n+1
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Lemma 3.1.
(a)

Δ (x, y) = det
[
Kn+1 (x, x) Kn+1 (x, y)
Kn+1 (y, x) Kn+1 (y, y)

]
; (3.2)

(b)

ΔΩ11 = det

⎡
⎢⎣ Kn+1 (y, y) Kn+1 (y, x) K

(0,1)
n+1 (y, x)

Kn+1 (x, y) Kn+1 (x, x) K
(0,1)
n+1 (x, x)

K
(1,0)
n+1 (x, y) K

(0,1)
n+1 (x, x) K

(1,1)
n+1 (x, x)

⎤
⎥⎦ ; (3.3)

(c)

ΔΩ22 = det

⎡
⎢⎣ Kn+1 (x, x) Kn+1 (x, y) K

(0,1)
n+1 (x, y)

Kn+1 (y, x) Kn+1 (y, y) K
(0,1)
n+1 (y, y)

K
(1,0)
n+1 (y, x) K

(1,0)
n+1 (y, y) K

(1,1)
n+1 (y, y)

⎤
⎥⎦ ; (3.4)

(d)

ΔΩ12 = det

⎡
⎢⎣ Kn+1 (x, x) Kn+1 (x, y) K

(0,1)
n+1 (x, x)

Kn+1 (y, x) Kn+1 (y, y) K
(0,1)
n+1 (y, x)

K
(1,0)
n+1 (y, x) K

(0,1)
n+1 (y, y) K

(1,1)
n+1 (y, x)

⎤
⎥⎦ . (3.5)

(e) Let Σ be given by (3.1). Then
(
Ω11Ω22 − Ω2

12
)
Δ = det (Σ) . (3.6)

Proof. (a)–(d): These follow by expanding the determinants for example along the bottom row.
(e) This can be established using Sylvester’s determinant identity [5, p. 24, Thm. 1.4.1] on the matrix Σ
defined by (3.1):

det (Σ) det (Σ3,4;3,4) = det (Σ3;3) det (Σ4;4) − det (Σ3;4) det (Σ4;3) ,

where Σ3,4;3,4 denotes the 2 ×2 matrix formed from Σ by removing the 3rd and 4th rows and columns of Σ, 
while Σr;s denotes the 3 × 3 matrix formed from Σ by removing the rth row and sth column. This identity 
and (a–d) yield

det (Σ) Δ = (ΔΩ22) (ΔΩ11) − (ΔΩ12)2 .

Note that in identifying det (Σ4;4) with ΔΩ11, we have to swap the 1st and 2nd rows and columns. Moreover, 
we use that ΣT

4;3 = Σ3;4. �
Next, we record some estimates on the reproducing kernels and their derivatives:

Lemma 3.2. Let [a, b] be a subinterval of (a′, b′). Then for r, s = 0, 1 and r = 2, s = 0; and for all n ≥ 1 and 
x, y ∈ [a, b],

∣∣∣K(r,s)
n (x, y)

∣∣∣ ≤ Cnr+s

|x− y| + 1
n

. (3.7)

Proof. First we note that since μ has compact support [18, p. 41],

C2 = sup γn−1

γ
< ∞.
n≥1 n
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The Christoffel-Darboux formula asserts that

Kn (x, y) = γn−1

γn

pn (x) pn−1 (y) − pn−1 (x) pn (y)
x− y

,

so that using our bound |pn (x)| ≤ C1 for x, y ∈ [a′, b′],

|Kn (x, y)| ≤ 2C2C
2
1

|x− y| .

Moreover, by Cauchy-Schwartz,

|Kn (x, y)| ≤

⎛
⎝n−1∑

j=0
p2
j (x)

⎞
⎠

1/2⎛
⎝n−1∑

j=0
p2
j (y)

⎞
⎠

1/2

≤ C2
1n.

Combining the last two inequalities gives

|Kn (x, y)| ≤ C2
1 min

{
2C2

|x− y| , n
}
,

so that (for example, using the inequality between arithmetic and harmonic means) we have the result (3.7)
for r = s = 0. Next,

K(1,0)
n (x, y)

= γn−1

γn

(
p′n (x) pn−1 (y) − p′n−1 (x) pn (y)

x− y
+ pn−1 (x) pn (y) − pn−1 (y) pn (x)

(x− y)2

)
. (3.8)

To estimate the derivatives, we use Bernstein’s inequality for derivatives, namely for polynomials of degree 
≤ n,

|P ′ (x)| ≤ n√
1 − x2

‖P‖L∞[−1,1] , x ∈ (−1, 1) .

This has the following consequence: for j, n ≥ 1 and polynomials P of degree ≤ n,∥∥∥P (j)
∥∥∥
L∞[a,b]

≤ C3n
j ‖P‖L∞[a′,b′] .

Here C3 depends on j, a, b, a′, b′ but not on P nor on the degree n of P . It then follows that for j = 0, 1, 2,

C4 = sup
n≥1

∥∥∥p(j)
n

∥∥∥
L∞[a,b]

/nj < ∞.

Also then, from (3.8), for x, y ∈ [a, b],

∣∣∣K(1,0)
n (x, y)

∣∣∣ ≤ 2C2

{
C1C4n

|x− y| + C2
1

|x− y|2

}
.

Next, by Cauchy-Schwartz,

∣∣∣K(1,0)
n (x, y)

∣∣∣ ≤
⎛
⎝n−1∑

p′j (x)2
⎞
⎠

1/2⎛
⎝n−1∑

p2
j (y)

⎞
⎠

1/2

≤ C4C1n
2.
j=0 j=0
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Thus

∣∣∣K(1,0)
n (x, y)

∣∣∣ ≤ C5 min
{

n

|x− y| + 1
|x− y|2

, n2

}
.

This yields (3.7) for r = 1, s = 0. Of course r = 0, s = 1 follows by symmetry. Finally,

K(1,1)
n (x, y) = γn−1

γn

(
p′n (x) p′n−1 (y) − p′n−1 (x) p′n (y)

x− y
+

p′n (x) pn−1 (y) − p′n−1 (x) pn (y)
(x− y)2

+
pn−1 (x) p′n (y) − p′n−1 (y) pn (x)

(x− y)2
+ 2pn−1 (x) pn (y) − pn−1 (y) pn (x)

(x− y)3

)
.

Thus using our bounds on 
{
p
(j)
n

}
, j = 0, 1, 2, gives for x, y ∈ [a, b],

∣∣∣K(1,1)
n (x, y)

∣∣∣ ≤ C6

{
n2

|x− y| + n

|x− y|2
+ 1

|x− y|3

}
,

and again Cauchy-Schwartz gives

∣∣∣K(1,1)
n (x, y)

∣∣∣ ≤
⎛
⎝n−1∑

j=0
p′j (x)2

⎞
⎠

1/2⎛
⎝n−1∑

j=0
p′j (x)2

⎞
⎠

1/2

≤ C7n
3.

This and the previous inequality give (3.7) for r = s = 1. The case r = 2, s = 0 is similar. �
Next, we record some universality limits. Recall that S is defined by (1.3):

Lemma 3.3. Let [a′, b′] be a subinterval in the support of μ such that μ is absolutely continuous there, and 
μ′ is positive and continuous there. Let [a, b] ⊂ (a′, b′). Let r, s be non-negative integers. Then

(a) Uniformly for x ∈ [a, b] and u, v in compact subsets of C,

lim
n→∞

K
(r,s)
n

(
x + u

nω(x) , x + v
nω(x)

)
Kn (x, x)

(
1

nω (x)

)r+s

= (−1)s S(r+s) (u− v) . (3.9)

(b) Let

τr,s =
{

0, r + s odd
(−1)(r−s)/2

r+s+1 , r + s even
. (3.10)

Then uniformly for x ∈ [a, b],

lim
n→∞

1
nr+s+1K

(r,s)
n (x, x)μ′ (x) = πr+sω (x)r+s+1

τr,s (3.11)

and

lim 1
r+s

K
(r,s)
n (x, x) = (πω (x))r+s

τr,s. (3.12)

n→∞ n Kn (x, x)
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(c) In particular, uniformly for x ∈ [a, b],

lim
n→∞

1
n2K

(1,0)
n (x, x) = 0 (3.13)

and for r = 0, 1,

K(r,r)
n (x, x) ≥ Cn2r+1. (3.14)

(d)
S′′ (0) = −π2

3 . (3.15)

Proof. (a) We start with a result of Totik [37, Theorem 2.2]: uniformly for x ∈ [a, b], and u, v in compact 
subsets of R,

lim
n→∞

1
n
Kn

(
x + u

n
, x + v

n

)
μ′ (x) /ω (x) = S ((u− v)ω (x)) . (3.16)

In particular, it then follows that uniformly for x ∈ [a, b], and u in compact subsets of R,

lim
n→∞

Kn

(
x + u

n , x + u
n

)
Kn (x, x) = 1.

Theorem 1.1 in [28, p. 375] then asserts that uniformly for x ∈ [a, b], and u, v in compact subsets of C,

lim
n→∞

Kn

(
x + u

Kn(x,x)μ′(x) , x + v
Kn(x,x)μ′(x)

)
Kn (x, x) = S (u− v) .

Here the uniformity and Totik’s (3.16) allows us to replace Kn (x, x)μ′ (x) by nω (x): uniformly for x ∈ [a, b], 
and u, v in compact subsets of C,

lim
n→∞

Kn

(
x + u

nω(x) , x + v
nω(x)

)
Kn (x, x) = S (u− v) . (3.17)

This is the case r = s = 0 of (3.9). Because the limit holds uniformly for u, v in compact subsets of C, we 
may differentiate this asymptotic with respect to u, v to get the general case of (3.9).
(b) For the special case where the support of μ is [−1, 1], this is Corollary 1.3 in [29, p. 917] (see also [36]). 
There it was shown that [29, p. 937]

S (u− v) =
∞∑

j,k=0

uj

j!
vk

k! π
j+kτj,k, (3.18)

so we can reformulate (3.9) for r = s = 0 as

lim
n→∞

∞∑
j,k=0

(
u

nω(x)

)j
j!

(
v

nω(x)

)k
k!

K
(j,k)
n (x, x)
Kn (x, x) =

∞∑
j,k=0

uj

j!
vk

k! π
j+kτj,k.

Comparing coefficients of like powers of u, v gives (3.12). That this holds uniformly in x for a given r, s
follows easily from the uniformity of the original limit in x (cf. [29, p. 938]). Finally Totik’s limit (3.16)
gives
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lim
n→∞

1
n
Kn (x, x)μ′ (x) /ω (x) = 1,

uniformly for x ∈ [a, b], so we also obtain the first asymptotic (3.11).
(c) This follows directly from (b).
(d) From (3.18),

S (u) =
∞∑
j=0

uj

j! π
jτj,0. (3.19)

So S′′ (0) = π2τ2,0 = −π2

3 . �
4. The tail term - Lemma 2.3

Recall that ρ1, ρ2 are defined by (2.4) and (2.6). First write

ρ1 (x) = 1
πKn+1 (x, x)

√
Ψ (x) (4.1)

where

Ψ (x) = K
(1,1)
n+1 (x, x)Kn+1 (x, x) −K

(0,1)
n+1 (x, x)2 . (4.2)

Next, write

ρ2 (x, y) − ρ1 (x) ρ1 (y) = T1 + T2 + T3, (4.3)

where

T1 = 1
π2Δ

(√
(Ω11Ω22 − Ω2

12) Δ −
√

Ψ (x) Ψ (y)
)

;

T2 = 1
π2

√
Δ

|Ω12| arcsin
(

|Ω12|√
Ω11Ω22

)
;

T3 = 1
π2

(
1
Δ − 1

Kn+1 (x, x)Kn+1 (y, y)

)√
Ψ (x) Ψ (y). (4.4)

We estimate each T term separately. It is the following lemma that contains the main idea, namely cancel-
lation using Laplace’s determinant formula:

Lemma 4.1. There exist n0 and Λ0 > 0 such that for n ≥ n0 and all x, y ∈ [a, b], with |x− y| ≥ Λ0/n,

|T1| ≤
C(

|x− y| + 1
n

)2 . (4.5)

Proof. Write

T1 =
(
Ω11Ω22 − Ω2

12
)
Δ − Ψ (x) Ψ (y)

π2Δ
[√

(Ω11Ω22 − Ω2
12) Δ +

√
Ψ (x) Ψ (y)

] = Num
Denom .

The numerator is (recall (3.6))
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Num =
(
Ω11Ω22 − Ω2

12
)
Δ − Ψ (x) Ψ (y)

= det (Σ) − Ψ (x) Ψ (y)

= det

⎡
⎢⎢⎢⎣
Kn+1 (x, x) Kn+1 (x, y) K

(0,1)
n+1 (x, x) K

(0,1)
n+1 (x, y)

Kn+1 (x, y) Kn+1 (y, y) K
(0,1)
n+1 (y, x) K

(0,1)
n+1 (y, y)

K
(0,1)
n+1 (x, x) K

(0,1)
n+1 (y, x) K

(1,1)
n+1 (x, x) K

(1,1)
n+1 (x, y)

K
(0,1)
n+1 (x, y) K

(0,1)
n+1 (y, y) K

(1,1)
n+1 (x, y) K

(1,1)
n+1 (y, y)

⎤
⎥⎥⎥⎦

− det
[
Kn+1 (x, x) K

(0,1)
n+1 (x, x)

K
(0,1)
n+1 (x, x) K

(1,1)
n+1 (x, x)

]
det
[
Kn+1 (y, y) K

(0,1)
n+1 (y, y)

K
(0,1)
n+1 (y, y) K

(1,1)
n+1 (y, y)

]
.

Let Σ be the 4 × 4 matrix above. Then we can write this as

Num = det [Σ] − det
[
Σ
(

1 3
1 3

)]
det
[
Σ
(

2 4
2 4

)]

where Σ 

(
r s

j k

)
denotes the matrix formed from Σ by taking the elements that lie in rows r, s and columns 

j, k. Now let us use Laplace’s determinant expansion [24, p. 37]: we have chosen rows 1, 3. Laplace’s expansion 
gives

det (Σ) =
∑

1≤j<k≤4

(−1)1+3+j+k det
[
Σ
(

1 3
j k

)]
det
[
Σc

(
1 3
j k

)]
,

where Σc is formed from the complimentary rows and columns. The choices for (j, k) are 
{
(1, 2) , (1, 3) , (1, 4) ,

(2, 3) (2, 4) , (3, 4)
}
, This gives det (Σ) as a sum of 6 terms, one of which is det

[
Σ
(

1 3
1 3

)]
det
[
Σ
(

2 4
2 4

)]
. 

So

Num = − det
[
Σ
(

1 3
1 2

)]
det
[
Σ
(

2 4
3 4

)]

− det
[
Σ
(

1 3
1 4

)]
det
[
Σ
(

2 4
2 3

)]
− det

[
Σ
(

1 3
2 3

)]
det
[
Σ
(

2 4
1 4

)]

+ det
[
Σ
(

1 3
2 4

)]
det
[
Σ
(

2 4
1 3

)]
− det

[
Σ
(

1 3
3 4

)]
det
[
Σ
(

2 4
1 2

)]

= − det
[
Kn+1 (x, x) Kn+1 (x, y)
K

(0,1)
n+1 (x, x) K

(0,1)
n+1 (y, x)

]
det
[
K

(0,1)
n+1 (y, x) K

(0,1)
n+1 (y, y)

K
(1,1)
n+1 (x, y) K

(1,1)
n+1 (y, y)

]

− det
[
Kn+1 (x, x) K

(0,1)
n+1 (x, y)

K
(0,1)
n+1 (x, x) K

(1,1)
n+1 (x, y)

]
det
[
Kn+1 (y, y) K

(0,1)
n+1 (y, x)

K
(0,1)
n+1 (y, y) K

(1,1)
n+1 (x, y)

]

− det
[
Kn+1 (x, y) K

(0,1)
n+1 (x, x)

K
(0,1)
n+1 (y, x) K

(1,1)
n+1 (x, x)

]
det
[
Kn+1 (x, y) K

(0,1)
n+1 (y, y)

K
(0,1)
n+1 (x, y) K

(1,1)
n+1 (y, y)

]

+ det
[
Kn+1 (x, y) K

(0,1)
n+1 (x, y)

K
(0,1) (y, x) K

(1,1) (x, y)

]
det
[
Kn+1 (x, y) K

(0,1)
n+1 (y, x)

K
(0,1) (x, y) K

(1,1) (x, y)

]

n+1 n+1 n+1 n+1
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− det
[
K

(0,1)
n+1 (x, x) K

(0,1)
n+1 (x, y)

K
(1,1)
n+1 (x, x) K

(1,1)
n+1 (x, y)

]
det
[
Kn+1 (x, y) Kn+1 (y, y)
K

(0,1)
n+1 (x, y) K

(0,1)
n+1 (y, y)

]
.

Using the estimate (3.7) and that 
(
|x− y| + 1

n

)−1 ≤ n, we continue this as

= − det

⎡
⎣ O (n) O

(
1

|x−y|+ 1
n

)
O
(
n2) O

(
n

|x−y|+ 1
n

)
⎤
⎦det

⎡
⎣O

(
n

|x−y|+ 1
n

)
O
(
n2)

O
(

n2

|x−y|+ 1
n

)
O
(
n3)

⎤
⎦

− det

⎡
⎣ O (n) O

(
n

|x−y|+ 1
n

)
O
(
n2) O

(
n2

|x−y|+ 1
n

)
⎤
⎦det

⎡
⎣ O (n) O

(
n

|x−y|+ 1
n

)
O
(
n2) O

(
n2

|x−y|+ 1
n

)
⎤
⎦

− det

⎡
⎣O

(
1

|x−y|+ 1
n

)
O
(
n2)

O
(

n
|x−y|+ 1

n

)
O
(
n3)

⎤
⎦det

⎡
⎣O

(
1

|x−y|+ 1
n

)
O
(
n2)

O
(

n
|x−y|+ 1

n

)
O
(
n3)

⎤
⎦

+ det

⎡
⎣O

(
1

|x−y|+ 1
n

)
O
(

n
|x−y|+ 1

n

)
O
(

n
|x−y|+ 1

n

)
O
(

n2

|x−y|+ 1
n

)
⎤
⎦det

⎡
⎣O

(
1

|x−y|+ 1
n

)
O
(

n
|x−y|+ 1

n

)
O
(

n
|x−y|+ 1

n

)
O
(

n2

|x−y|+ 1
n

)
⎤
⎦

− det

⎡
⎣O

(
n2) O

(
n

|x−y|+ 1
n

)
O
(
n3) O

(
n2

|x−y|+ 1
n

)
⎤
⎦det

⎡
⎣O

(
1

|x−y|+ 1
n

)
O (n)

O
(

n
|x−y|+ 1

n

)
O
(
n2)

⎤
⎦

= O

(
n6(

|x− y| + 1
n

)2
)
.

Thus

Num = O

(
n6(

|x− y| + 1
n

)2
)
. (4.6)

Also

Denom = π2Δ
[√

(Ω11Ω22 − Ω2
12) Δ +

√
Ψ (x) Ψ (y)

]

≥ π2Δ
√

Ψ (x) Ψ (y).

Here from (3.14) and (3.13), for n large enough,

Ψ (x) = K
(1,1)
n+1 (x, x)Kn (x, x) −K(0,1)

n (x, x)2 ≥ Cn4 − o
(
n4) ≥ Cn4.

Also from (3.14) and (3.7),

1 − Δ
Kn (x, x)Kn (y, y) = K2

n (x, y)
Kn (x, x)Kn (y, y)

≤ C(
|x− y| + 1

n

)2
n2

= C
2 ≤ 1

2 ,
(n |x− y| + 1)
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if |x− y| ≥ Λ0/n with Λ0 large enough. Then

Δ ≥ 1
2Kn (x, x)Kn (y, y) ≥ Cn2 (4.7)

and

Denom ≥ Cn6. (4.8)

Then combined with (4.6), this yields

|T1| =
∣∣∣∣ Num
Denom

∣∣∣∣ ≤ C(
|x− y| + 1

n

)2 . �

Next, let us deal with T2:

Lemma 4.2. There exist n0 and Λ0 such that for n ≥ n0 and all x, y ∈ [a, b], with |x− y| ≥ Λ0/n,

|T2| ≤
C(

|x− y| + 1
n

)2 . (4.9)

Proof. Recall that

|T2| = T2 = 1
π2

√
Δ

|Ω12| arcsin
(

|Ω12|√
Ω11Ω22

)
.

From |sin u| ≥ 2
π |u|, |u| ≤ π

2 , we obtain for |v| ≤ 1,

2
π
|arcsin v| ≤ |v|

so

|T2| ≤
1

2πΔ3/2
|Ω12Δ|2√
Ω11Ω22Δ2 . (4.10)

Here from Lemma 3.1(d) and Lemma 3.2,

Ω12Δ = det

⎡
⎢⎣ Kn+1 (x, x) Kn+1 (x, y) K

(0,1)
n+1 (x, x)

Kn+1 (y, x) Kn+1 (y, y) K
(0,1)
n+1 (y, x)

K
(1,0)
n+1 (y, x) K

(0,1)
n+1 (y, y) K

(1,1)
n+1 (y, x)

⎤
⎥⎦

= det

⎡
⎢⎢⎢⎣

O (n) O
(

1
|x−y|+ 1

n

)
O
(
n2)

O
(

1
|x−y|+ 1

n

)
O (n) O

(
n

|x−y|+ 1
n

)
O
(

n
|x−y|+ 1

n

)
O
(
n2) O

(
n2

|x−y|+ 1
n

)
⎤
⎥⎥⎥⎦

We expand by the first row and continue this as

Ω12Δ = O

(
n4

|x− y| + 1
n

)
. (4.11)

Next, we examine Ω11 and Ω22. From Lemma 3.1(b), followed by (3.7), (3.13),
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Ω11Δ = det

⎡
⎢⎣ Kn+1 (y, y) Kn+1 (y, x) K

(0,1)
n+1 (y, x)

Kn+1 (x, y) Kn+1 (x, x) K
(0,1)
n+1 (x, x)

K
(1,0)
n+1 (x, y) K

(0,1)
n+1 (x, x) K

(1,1)
n+1 (x, x)

⎤
⎥⎦

= det

⎡
⎢⎢⎢⎢⎣

Kn+1 (y, y) O
(

1
|x−y|+ 1

n

)
O
(

n
|x−y|+ 1

n

)
O
(

1
|x−y|+ 1

n

)
Kn+1 (x, x) o

(
n2)

O
(

n
|x−y|+ 1

n

)
o
(
n2) K

(1,1)
n+1 (x, x)

⎤
⎥⎥⎥⎥⎦ .

Expanding by the first row, and using K(r,r)
n+1 (x, x) = O

(
n2r+1), we see that

Ω11Δ = Kn+1 (y, y)
{
Kn+1 (x, x)K(1,1)

n+1 (x, x) − o
(
n4)}

−O

(
1

|x− y| + 1
n

){
O

(
n3

|x− y| + 1
n

)
+ o

(
n3

|x− y| + 1
n

)}

+O

(
n

|x− y| + 1
n

){
O

(
n2

|x− y| + 1
n

)
+ O

(
n2

|x− y| + 1
n

)}
,

so if |x− y| ≥ Λ0/n, and Λ0 ≥ 1,

Ω11Δ = Kn+1 (y, y)Kn+1 (x, x)K(1,1)
n+1 (x, x) − o

(
n5)+ O

(
n5

Λ2
0

)

≥ Cn5 − o
(
n5)+ O

(
n5

Λ2
0

)
≥ C1n

5 (4.12)

if Λ0 and n are large enough, say n ≥ n0, by (3.13) and (3.14). Of course the constant C1 depends on the 
size of C, and the decay of the o 

(
n5) term, as does n0. In much the same way,

Ω22Δ = det

⎡
⎢⎣ Kn+1 (x, x) Kn+1 (x, y) K

(0,1)
n+1 (x, y)

Kn+1 (y, x) Kn+1 (y, y) K
(0,1)
n+1 (y, y)

K
(1,0)
n+1 (y, x) K

(1,0)
n+1 (y, y) K

(1,1)
n+1 (y, y)

⎤
⎥⎦

= Kn+1 (x, x)Kn+1 (y, y)K(1,1)
n+1 (y, y) − o

(
n5)+ O

(
n5

Λ2
0

)

≥ C1n
5. (4.13)

Again the threshholds n0 and Λ0 influence the choice of C1. Then combining (4.10)–(4.13), followed by 
(4.7),

T2 ≤ C

(
n4

|x− y| + 1
n

)2 1
Δ3/2

1
n5 ≤ C

(
1

|x− y| + 1
n

)2

. �
Next, we handle T3:

Lemma 4.3. There exist n0 and Λ0 such that for n ≥ n0 and all x, y ∈ [a, b], with |x− y| ≥ Λ0/n,

|T3| ≤
C( 1 )2 . (4.14)
|x− y| + n
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Proof. Note first from (4.2), (3.13), and (3.14),

Ψ (x) = O
(
n4)− o

(
n4) = O

(
n4) .

Next, recall from (4.4),

T3 = 1
π2

(
1
Δ − 1

Kn+1 (x, x)Kn+1 (y, y)

)√
Ψ (x) Ψ (y)

= 1
π2

K2
n+1 (x, y)

ΔKn+1 (x, x)Kn+1 (y, y)
√

Ψ (x) Ψ (y)

≤ C(
|x− y| + 1

n

)2 Δn2
n4

≤ C(
|x− y| + 1

n

)2 ,
by (4.7). Note too that T3 ≥ 0. �
Proof of Lemma 2.3(a). Just combine the estimates for T1, T2, T3 from Lemmas 4.1, 4.2, 4.3 and recall 
(4.3). �
Proof of Lemma 2.3(b). From Lemma 2.3(a), for y ∈ [a, b],

∫
{x∈[a,b],|x−y|≥Λ/n}

|ρ2 (x, y) − ρ1 (x) ρ1 (y)| dx

≤
∫

{x∈[a,b],|x−y|≥Λ/n}

C

|x− y|2
dx

≤
∫

{x∈[a,b],|x−y|≥Λ/n}

2C
|x− y|2 +

(Λ
n

)2 dx

≤
∞∫

−∞

2C
|x− y|2 +

(Λ
n

)2 dx.

We make the substitution x − y = Λ
n t in the integral:

= n

Λ

∞∫
−∞

2C
t2 + 1dt.

Then (2.12) follows. �
5. The central term - Lemma 2.4

Recall that Δ, Ω11, Ω22, Ω12 were defined in (2.7)–(2.10), while S, F, G, H were defined in (1.3)–(1.6):

Lemma 5.1. Uniformly for u in compact subsets of the plane, and uniformly for x ∈ [a, b] and y = x + u ,
nω(x)
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(a)

(
Ω11Ω22 − Ω2

12
)
Δ

Kn+1 (x, x)4

(
1

nω (x)

)4

= F (u) + o (1) ; (5.1)

(b) Δ
Kn+1 (x, x)2

= 1 − S (u)2 + o (1) ; (5.2)

(c)
ΔΩ11

Kn+1 (x, x)3

(
1

nω (x)

)2

= G (u) + o (1) ; (5.3)

(d)
ΔΩ22

Kn+1 (x, x)3

(
1

nω (x)

)2

= G (u) + o (1) ; (5.4)

(e)
Ω12Δ

Kn+1 (x, x)3

(
1

nω (x)

)2

= H (u) + o (1) . (5.5)

Proof. We repeatedly use that Kn+1(y,y)
Kn+1(x,x) = 1 + o (1), as follows from (3.11).

(a) Recall that Σ was defined by (3.1). Then (3.6) gives

[(
Ω11Ω22 − Ω2

12
)
Δ
]

Kn+1 (x, x)4

(
1

nω (x)

)4

= detΣ
Kn+1 (x, x)4

(
1

nω (x)

)4

= det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 Kn+1(x,y)
Kn+1(x,x)

K
(0,1)
n+1 (x,x)

Kn+1(x,x)
1

nω(x)
K

(0,1)
n+1 (x,y)

Kn+1(x,x)
1

nω(x)
Kn+1(x,y)
Kn+1(x,x)

Kn+1(y,y)
Kn+1(x,x)

K
(0,1)
n+1 (y,x)

Kn+1(x,x)
1

nω(x)
K

(0,1)
n+1 (y,y)

Kn+1(x,x)
1

nω(x)
K

(0,1)
n+1 (x,x)

Kn+1(x,x)
1

nω(x)
K

(0,1)
n+1 (y,x)

Kn+1(x,x)
1

nω(x)
K

(1,1)
n+1 (x,x)

Kn+1(x,x)

(
1

nω(x)

)2 K
(1,1)
n+1 (x,y)

Kn+1(x,x)

(
1

nω(x)

)2

K
(0,1)
n+1 (x,y)

Kn+1(x,x)
1

nω(x)
K

(0,1)
n+1 (y,y)

Kn+1(x,x)
1

nω(x)
K

(1,1)
n+1 (x,y)

Kn+1(x,x)

(
1

nω(x)

)2 K
(1,1)
n+1 (y,y)

Kn+1(x,x)

(
1

nω(x)

)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Here we have factored in 1
nω(x) into the 3rd and 4th rows and columns. Using (3.9) and recalling that 

y = x + u
nω(x) , we continue this as

= det

⎡
⎢⎢⎢⎣

1 S (−u) −S′ (0) −S′ (−u)
S (−u) 1 −S′ (u) −S′ (0)
−S′ (0) −S′ (u) −S′′ (0) −S′′ (−u)
−S′ (−u) −S′ (0) −S′′ (−u) −S′′ (0)

⎤
⎥⎥⎥⎦+ o (1)

= det

⎡
⎢⎢⎢⎣

1 S (u) 0 S′ (u)
S (u) 1 −S′ (u) 0

0 −S′ (u) −S′′ (0) −S′′ (u)
S′ (u) 0 −S′′ (u) −S′′ (0)

⎤
⎥⎥⎥⎦+ o (1) = F (u) + o (1)

as S is even, so S′ is odd and S′′ is even.
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(b) From (3.9),

Δ
Kn+1 (x, x)2

= det
[

1 Kn+1(x,y)
Kn+1(x,x)

Kn+1(x,y)
Kn+1(x,x)

Kn+1(y,y)
Kn+1(x,x)

]
= det

[
1 S (−u)

S (−u) 1

]
+ o (1) .

(c) From (3.3) and then (3.9),

ΔΩ11

Kn+1 (x, x)3

(
1

nω (x)

)2

= det

⎡
⎢⎢⎢⎣

Kn+1(y,y)
Kn+1(x,x)

Kn+1(y,x)
Kn+1(x,x)

K
(0,1)
n+1 (y,x)

Kn+1(x,x)
1

nω(x)
Kn+1(x,y)
Kn+1(x,x) 1 K

(0,1)
n+1 (x,x)

Kn+1(x,x)
1

nω(x)
K

(1,0)
n+1 (x,y)

Kn+1(x,x)
1

nω(x)
K

(0,1)
n+1 (x,x)

Kn+1(x,x)
1

nω(x)
K

(1,1)
n+1 (x,x)

Kn+1(x,x)

(
1

nω(x)

)2

⎤
⎥⎥⎥⎦

= det

⎡
⎢⎣ 1 S (u) −S′ (u)

S (−u) 1 −S′ (0)
S′ (−u) −S′ (0) −S′′ (0)

⎤
⎥⎦+ o (1)

= det

⎡
⎢⎣ 1 S (u) −S′ (u)

S (u) 1 0
−S′ (u) 0 −S′′ (0)

⎤
⎥⎦+ o (1) = G (u) + o (1) ,

recall (1.5).
(d) From (3.4) and then (3.9),

ΔΩ22

Kn+1 (x, x)3

(
1

nω (x)

)2

= det

⎡
⎢⎢⎢⎣

1 Kn+1(x,y)
Kn+1(x,x)

K
(0,1)
n+1 (x,y)

Kn+1(x,x)
1

nω(x)
Kn+1(y,x)
Kn+1(x,x)

Kn+1(y,y)
Kn+1(x,x)

K
(0,1)
n+1 (y,y)

Kn+1(x,x)
1

nω(x)
K

(1,0)
n+1 (y,x)

Kn+1(x,x)
1

nω(x)
K

(1,0)
n+1 (y,y)

Kn+1(x,x)
1

nω(x)
K

(1,1)
n+1 (y,y)

Kn+1(x,x)

(
1

nω(x)

)2

⎤
⎥⎥⎥⎦

= det

⎡
⎢⎣ 1 S (−u) −S′ (−u)

S (u) 1 −S′ (0)
S′ (u) S′ (0) −S′′ (0)

⎤
⎥⎦+ o (1) = G (u) + o (1)

as S′ is odd, and we can multiply both the 3rd row and 3rd column by −1.
(e) From (3.5) and then (3.9),

Ω12Δ
Kn+1 (x, x)3

(
1

nω (x)

)2

= det

⎡
⎢⎢⎢⎣

1 Kn+1(x,y)
Kn+1(x,x)

K
(0,1)
n+1 (x,x)

Kn+1(x,x)
1

nω(x)
Kn+1(y,x)
Kn+1(x,x)

Kn+1(y,y)
Kn+1(x,x)

K
(0,1)
n+1 (y,x)

Kn+1(x,x)
1

nω(x)
K

(1,0)
n+1 (y,x)

Kn+1(x,x)
1

nω(x)
K

(0,1)
n+1 (y,y)

Kn+1(x,x)
1

nω(x)
K

(1,1)
n+1 (y,x)

Kn+1(x,x)

(
1

nω(x)

)2

⎤
⎥⎥⎥⎦

= det

⎡
⎢⎣ 1 S (−u) 0

S (u) 1 −S′ (u)
S′ (u) 0 −S′′ (u)

⎤
⎥⎦+ o (1) = H (u) + o (1) ,
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recall (1.6). �
Now we can obtain the asymptotics for ρ2 (x, y) − ρ1 (x) ρ1 (y) stated in (2.13):

Proof of Lemma 2.4(a). Recall as in (4.3)–(4.4), that

(
1

nω (x)

)2

{ρ2 (x, y) − ρ1 (x) ρ1 (y)}

=
(

1
nω (x)

)2

{T1 + T2 + T3} . (5.6)

We handle the terms Tj , j = 1, 2, 3 one by one:
Step 1: T1
Firstly from (3.9), (3.10), (3.15), and (4.2),

Ψ (x)
Kn+1 (x, x)2

(
1

nω (x)

)2

=

⎛
⎝K

(1,1)
n+1 (x, x)

Kn+1 (x, x) −
(
K

(0,1)
n+1 (x, x)

Kn+1 (x, x)

)2⎞⎠( 1
nω (x)

)2

= −S′′ (0) + o (1) = π2

3 + o (1) .

Also, from (3.9), uniformly for u in compact subsets of C,

Ψ (y)
Kn+1 (x, x)2

(
1

nω (x)

)2

=

⎛
⎝K

(1,1)
n+1 (y, y)

Kn+1 (x, x)
Kn+1 (y, y)
Kn+1 (x, x) −

(
K

(0,1)
n+1 (y, y)

Kn+1 (x, x)

)2⎞⎠( 1
nω (x)

)2

= −S′′ (0) + o (1) = π2

3 + o (1) . (5.7)

Then
(

1
nω (x)

)4 Ψ (x) Ψ (y)
Δ2

= Kn+1 (x, x)4

Δ2

[
Ψ (x)

Kn+1 (x, x)2

(
1

nω (x)

)2
][

Ψ (y)
Kn+1 (x, x)2

(
1

nω (x)

)2
]

= 1(
1 − S (u)2

)2

(
π2

3

)2

+ o (1) ,

by the above and Lemma 5.1(b). Hence also with an obvious choice of branches, uniformly for u in compact 
subsets of C\ {0},

(
1

nω (x)

)2 1
Δ
√

Ψ (x) Ψ (y) = 1
2

(
π2

3

)
+ o (1) . (5.8)
1 − S (u)
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(Note that Δ occurs outside the square root, and only it leads to the pole at 0). Then from (5.1) and (5.8), 
and recalling the definition of T1 at (4.4),

(
1

nω (x)

)2

T1

= Kn+1 (x, x)2

π2Δ

√
(Ω11Ω22 − Ω2

12) Δ
Kn+1 (x, x)4 (nω (x))4

−
(

1
nω (x)

)2 1
π2Δ

√
Ψ (x) Ψ (y)

= 1
π2
(
1 − S (u)2

) (√F (u) − π2

3

)
+ o (1) .

Step 2: T2
From (4.4),

(
1

nω (x)

)2

T2

= Kn+1 (x, x)3

π2Δ3/2

[
Ω12Δ

Kn+1 (x, x)3

(
1

nω (x)

)2
]

arcsin
(

Ω12√
Ω11Ω22

)

= 1

π2
(
1 − S (u)2

)3/2H (u) arcsin
(
H (u)
G (u)

)
+ o (1) ,

by (5.2)–(5.5).
Step 3: T3
From (4.4) and (5.5),

(
1

nω (x)

)2

T3

=
(

1
nω (x)

)2 1
π2

(
Kn+1 (x, y)2

ΔKn+1 (x, x)Kn+1 (y, y)

)√
Ψ (x) Ψ (y)

= 1
π2

(
Kn+1 (x, y)
Kn+1 (x, x)

)2
Kn+1 (x, x)
Kn+1 (y, y)

[
1

(nω (x))2 Δ

√
Ψ (x) Ψ (y)

]

= 1
π2

(
S (u)2

1 − S (u)2

)
π2

3 + o (1) ,

by (5.8) and (3.9). Substituting the asymptotics for Tj , j = 1, 2, 3 into (5.6) gives

(
1

nω (x)

)2

{ρ2 (x, y) − ρ1 (x) ρ1 (y)}

= 1
π2
(
1 − S (u)2

)
⎧⎨
⎩
√
F (u) − π2

3

(
1 − S (u)2

)
+ H (u)√

1 − S (u)2
arcsin

(
H (u)
G (u)

)⎫⎬
⎭+ o (1)

= Ξ (u) + o (1) ,

recall (1.7). �
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We next deal with u near 0, which turns out to be challenging. First, we prove

Lemma 5.2.

(a) Δ 
(
x, x + u

nω(x)

)
has a double zero at u = 0, and there is ρ > 0 such that for all x ∈ [a, b] and n large 

enough, Δ 
(
x, x + u

nω(x)

)
has no other zeros in |u| ≤ ρ. Moreover, uniformly for u in compact subsets 

of C, and x ∈ [a, b],

lim
n→∞

Δ
(
x, x + u

nω(x)

)
Kn+1 (x, x)2 u2

= 1 − S (u)2

u2 . (5.9)

The right-hand side is interpreted as its limiting value at u = 0.
(b)

[(
Ω11Ω22 − Ω2

12
)
Δ
] (

x, x + u
nω(x)

)
has a zero of even order at least 4 at u = 0. Moreover, uniformly 

for u in compact subsets of C, and x ∈ [a, b],

lim
n→∞

(
Ω11Ω22 − Ω2

12
)

Δ

(
1

nω (x)

)4

= F (u)(
1 − S (u)2

)2 .

The right-hand side is interpreted as its limiting value at u = 0.

Proof. (a) First,

Δ
(
x, x + u

nω (x)

)

= Kn+1 (x, x)Kn+1

(
x + u

nω (x) , x + u

nω (x)

)
−Kn+1

(
x, x + u

nω (x)

)2

is a polynomial in u, and by Cauchy-Schwarz is non-negative for real u, with a zero at u = 0. This then 
must be a zero of even multiplicity. But since

lim
n→∞

Δ
(
x, x + u

nω(x)

)
Kn+1 (x, x)2

= 1 − S (u)2 ,

uniformly in compact sets by Lemma 5.1(b) and (3.9), and the right-hand side has an isolated double zero 
at 0, it follows from Hurwitz’ Theorem and the considerations above, that necessarily for large enough n, 
Δ 
(
x, x + u

nω(x)

)
has a double zero at 0, and no other zeros in some neighborhood of 0 that is independent 

of n. Since the convergence is uniform in x, the neighborhood may also be taken independent of x. But 

then 
{

Δ
(
x,x+ u

nω(x)

)
Kn+1(x,x)2u2

}
n≥1

is a sequence of polynomials in u that converges uniformly in compact subsets of 

C\ {0} and hence also in compact subsets of C.
(b) Recall (3.6):

(
Ω11Ω22 − Ω2

12
)
Δ = det (Σ) .

Here det (Σ) is also a polynomial in u when y = x + u
nω(x) . As in the proof of Lemma 2.2 in the Appendix, Σ

is a positive definite matrix when x 
= y, so is nonegative definite for all x, y. Then det (Σ) ≥ 0 for real x, y
while det (Σ) = 0 when u = 0. Thus as a polynomial in u, det (Σ) can only have an even multiplicity zero at 
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u = 0. We need to show that it has a zero of multiplicity at least 4 when u = 0. By a classical inequality for 
determinants of positive definite matrices and their leading submatrices [6, p. 63, Thm. 7], when y is real,

0 ≤ det (Σ) ≤ Δ (x, y) det
[
K

(1,1)
n+1 (x, x) K

(1,1)
n+1 (x, y)

K
(1,1)
n+1 (x, y) K

(1,1)
n+1 (y, y)

]
.

We already know that Δ has a double zero at u = 0 for y = x + u
nω(x) . But the second determinant also 

vanishes when y = x, that is u = 0. It follows that necessarily as a polynomial in u, det (Σ) has a zero of 
multiplicity at least 4 at u = 0. Then

Ω11Ω22 − Ω2
12

Δ = det (Σ)
Δ2

has a removable singularity at 0, since the zero of multiplicity 4 in the denominator is cancelled by the 
zero of multiplicity ≥ 4 in the numerator. Then from (5.1), (5.2), uniformly for x ∈ [a, b] and u in some 
neighborhood of 0,

Ω11Ω22 − Ω2
12

Δ

(
1

nω (x)

)4

=
(
Ω11Ω22 − Ω2

12
)
Δ

Kn+1 (x, x)4

(
1

nω (x)

)4
[
Kn+1 (x, x)2

Δ

]2

= F (u)(
1 − S (u)2

)2 + o (1) .

Moreover, since S (u) = 1 only at u = 0, this limit actually holds uniformly for u in compact subsets of 
C. �

Next, we deal with the most difficult term Ω12:

Lemma 5.3. (Ω12Δ)
(
x, x + u

nω(x)

)
has a zero of multiplicity at least 3 at u = 0. Moreover, uniformly for u

in compact subsets of R, and x ∈ [a, b],

lim
n→∞

Ω12√
Δ

(
1

nω (x)

)2

= H (u)
(1 − S2 (u))3/2

.

The right-hand side is interpreted as its limiting value at u = 0. In addition, uniformly for u in compact 
subsets of R, and x ∈ [a, b],

|Ω12|√
Δ

arcsin
(

|Ω12|√
Ω11Ω22

)(
1

nω (x)

)2

≤ C.

Proof. We first perform row and column operations in the determinant defining Δ12 and then expand using 
Taylor series. More precisely, we subtract the first row from the second; then the first column from the 
second; and then we subtract 1

y−x × the second row from the third:

Ω12Δ

= det

⎡
⎢⎣ Kn+1 (x, x) Kn+1 (x, y) K

(0,1)
n+1 (x, x)

Kn+1 (y, x) Kn+1 (y, y) K
(0,1)
n+1 (y, x)

K
(1,0) (y, x) K

(0,1) (y, y) K
(1,1) (y, x)

⎤
⎥⎦
n+1 n+1 n+1
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= det

⎡
⎢⎣ Kn+1 (x, x) Kn+1 (x, y) K

(0,1)
n+1 (x, x)

Kn+1 (y, x) −Kn+1 (x, x) Kn+1 (y, y) −Kn+1 (x, y) K
(0,1)
n+1 (y, x) −K

(0,1)
n+1 (x, x)

K
(1,0)
n+1 (y, x) K

(0,1)
n+1 (y, y) K

(1,1)
n+1 (y, x)

⎤
⎥⎦

= det

⎡
⎢⎢⎢⎣

Kn+1 (x, x) Kn+1 (x, y) −Kn+1 (x, x) K
(0,1)
n+1 (x, x)

Kn+1 (y, x) −Kn+1 (x, x) Kn+1 (y, y) + Kn+1 (x, x)
−2Kn+1 (x, y)

K
(0,1)
n+1 (y, x) −K

(0,1)
n+1 (x, x)

K
(1,0)
n+1 (y, x) K

(1,0)
n+1 (y, y) −K

(1,0)
n+1 (y, x) K

(1,1)
n+1 (y, x)

⎤
⎥⎥⎥⎦

= det

⎡
⎢⎢⎢⎢⎢⎢⎣

Kn+1 (x, x) Kn+1 (x, y) −Kn+1 (x, x) K
(0,1)
n+1 (x, x)

Kn+1 (y, x) −Kn+1 (x, x) Kn+1 (y, y) + Kn+1 (x, x)
−2Kn+1 (x, y)

K
(0,1)
n+1 (y, x) −K

(0,1)
n+1 (x, x)

K
(1,0)
n+1 (y, x)

−Kn+1(y,x)−Kn+1(x,x)
y−x

K
(1,0)
n+1 (y, y) −K

(1,0)
n+1 (y, x)

−Kn+1(y,y)+Kn+1(x,x)−2Kn+1(x,y)
y−x

K
(1,1)
n+1 (y, x)

−K
(0,1)
n+1 (y,x)−K

(0,1)
n+1 (x,x)

y−x

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(5.10)

Let us examine the entries in the second and third rows. First, for some t between x, y,

Kn+1 (y, x) −Kn+1 (x, x) = K
(1,0)
n+1 (t, x) (y − x) = O

(
n2 (y − x)

)
by Lemma 3.2. Second, using the estimates from that lemma, for some r, s, v between x, y,

Kn+1 (y, y) + Kn+1 (x, x) − 2Kn+1 (x, y)

= Kn+1 (x, x) + (y − x) 2K(1,0)
n+1 (x, x) + 1

2 (y − x)2 2
{
K

(1,1)
n+1 (r, r) + K

(2,0)
n+1 (r, r)

}

+Kn+1 (x, x) − 2
{
Kn+1 (x, x) + (y − x)K(0,1)

n+1 (x, x) + 1
2 (y − x)2 K(0,2)

n+1 (x, s)
}

= (y − x)2
{
K

(1,1)
n+1 (r, r) + K

(2,0)
n+1 (r, r) −K

(0,2)
n+1 (x, s)

}
= O

(
n3 (y − x)2

)
.

Third,

K
(0,1)
n+1 (y, x) −K

(0,1)
n+1 (x, x) = O

(
n3 (y − x)

)
.

Fourth, for some t between y, x,

K
(1,0)
n+1 (y, x) − Kn+1 (y, x) −Kn+1 (x, x)

y − x

= K
(1,0)
n+1 (y, x) −K

(1,0)
n+1 (t, x) = O

(
n3 (y − x)

)
.

Fifth, for some r, ζ, s between y, x, with r, s as above,

K
(1,0)
n+1 (y, y) −K

(1,0)
n+1 (y, x) − Kn+1 (y, y) + Kn+1 (x, x) − 2Kn+1 (x, y)

y − x

= (y − x)K(1,1)
n+1 (y, ζ) − (y − x)

{
K

(1,1)
n+1 (r, r) + K

(2,0)
n+1 (r, r) −K

(0,2)
n+1 (x, s)

}
= (y − x)

{
K

(1,1)
n+1 (y, ζ) −K

(1,1)
n+1 (r, r) −K

(2,0)
n+1 (r, r) + K

(0,2)
n+1 (x, s)

}
= O

(
n4 (y − x)2

)
,
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by the estimates in Lemma 3.2. Sixth, for some ξ between x, y,

K
(1,1)
n+1 (y, x) −

K
(0,1)
n+1 (y, x) −K

(0,1)
n+1 (x, x)

y − x

= K
(1,1)
n+1 (y, x) −K

(1,1)
n+1 (ξ, x) = O

(
n4 (y − x)

)
.

Then substituting all these into (5.10),

Ω12Δ

= det

⎡
⎢⎢⎣

O (n) O
(
n2 (y − x)

)
O
(
n2)

O
(
n2 (y − x)

)
O
(
n3 (y − x)2

)
O
(
n3 (y − x)

)
O
(
n3 (y − x)

)
O
(
n4 (y − x)2

)
O
(
n4 (y − x)

)
⎤
⎥⎥⎦

= (y − x)3 det

⎡
⎢⎣ O (n) O

(
n2) O

(
n2)

O
(
n2) O

(
n3) O

(
n3)

O
(
n3) O

(
n4) O

(
n4)

⎤
⎥⎦ = O

(
n8 (y − x)3

)
.

Here we extracted factors of y − x from the second and third rows, and then the second column. It follows 
that as a polynomial in u, (Ω12Δ)

(
x, x + u

nω(x)

)
has a zero of multiplicity at least 3 at 0. Then Ω12Δ

u3 is a 

polynomial in u, and Ω12√
Δ = Ω12Δ

u3

(
u2

Δ

)3/2
, which is analytic in some neighborhood of 0 that is independent 

of n, x, u. The uniform convergence in (5.5) gives uniformly for u in compact subsets of R,

Ω12√
Δ

(
1

nω (x)

)2

=
[

Ω12Δ
Kn+1 (x, x)3

(
1

nω (x)

)2
]
Kn+1 (x, x)3

Δ3/2

= H (u)
(1 − S2 (u))3/2

+ o (1) .

Also then, H (u) necessarily has a zero of multiplicity ≥ 3 at 0. Finally, uniformly for u in compact subsets 
of R,

|Ω12|√
Δ

arcsin
(

|Ω12|√
Ω11Ω22

)(
1

nω (x)

)2

≤ |Ω12|√
Δ

π

2

(
1

nω (x)

)2

≤ C. �
Now we can deduce the desired bound near the diagonal:

Proof of Lemma 2.4(b). Recall from (2.6) that

|ρ2 (x, y)|
(

1
nω (x)

)2

≤ 1
π2

(√
Ω11Ω22 − Ω2

12
Δ + |Ω12|√

Δ
arcsin

(
|Ω12|√
Ω Ω

))(
1

nω (x)

)2

≤ C,

11 22
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by Lemma 5.1(a), (b) and Lemmas 5.2–5.3. Next, from (4.1), followed by (5.7), (with u = 0 there)

ρ1 (x)
nω (x) = 1

π

√
Ψ (x)

Kn+1 (x, x)2 (nω (x))2
= 1√

3
+ o (1) , (5.11)

and a similar asymptotic holds for ρ1 (y). It follows that

|ρ2 (x, y) − ρ1 (x) ρ1 (y)|
(

1
nω (x)

)2

≤ C,

which gives the result, since ω is positive and continuous in [a, b]. �
Proof of Lemma 2.5. This follows directly from (5.11). �
6. Appendix - proof of Lemma 2.2

In this section, we prove Lemma 2.2. The functions ρ2 (x, y) and ρ1 (x) arising in (2.5), are called the 
second and the first intensities, or the two-point and one-point correlation functions of zeros, see, e.g., [20, 
pp. 7–8]. By their defining properties, we have

E [Nn ([a, b])] =
b∫

a

ρ1 (x) dx

and

E [Nn ([a, b]) (Nn ([a, b]) − 1)] =
b∫

a

b∫
a

ρ2 (x, y) dx dy.

Thus the variance of real zeros of random orthogonal polynomials in an interval [a, b] ⊂ R can be written 
as in (2.5) by completing the following steps:

Var [Nn ([a, b])]

= E
[
Nn ([a, b])2 − E [Nn ([a, b])]2

]
= E [Nn ([a, b]) (Nn ([a, b]) − 1)] − E [Nn ([a, b])]2 + E [Nn ([a, b])]

=
b∫

a

b∫
a

ρ2 (x, y) dx dy −
b∫

a

b∫
a

ρ1 (x) ρ1 (y) dx dy +
b∫

a

ρ1 (x) dx

=
b∫

a

b∫
a

{ρ2 (x, y) − ρ1 (x) ρ1 (y)} dx dy +
b∫

a

ρ1 (x) dx.

We follow the argument of [19] in several parts of this proof. For x, y ∈ R, define the random vector

V = V (x, y) := (Gn(x), Gn(y), G′
n(x), G′

n(y))T ,

and observe that the components of this vector are Gaussian random variables satisfying
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E[Gn(x)] = E[G′
n(x)] = 0, Var[Gn(x)] = Kn+1(x, x) and Var[G′

n(x)] = K
(1,1)
n+1 (x, x).

The covariance matrix Σ of V is defined by

Σ = Σ(x, y)

:=

⎡
⎢⎣

Var[Gn(x)] Cov[Gn(x), Gn(y)] Cov[Gn(x), G′
n(x)] Cov[Gn(x), G′

n(y)]
Cov[Gn(y), Gn(x)] Var[Gn(y)] Cov[Gn(y), G′

n(x)] Cov[Gn(y), G′
n(y)]

Cov[G′
n(x), Gn(x)] Cov[G′

n(x), Gn(y)] Var[G′
n(x)] Cov[G′

n(x), G′
n(y)]

Cov[G′
n(y), Gn(x)] Cov[G′

n(y), Gn(y)] Cov[G′
n(y), G′

n(x)] Var[G′
n(y)]

⎤
⎥⎦

=

⎡
⎢⎢⎢⎣
Kn+1(x, x) Kn+1(x, y) K

(0,1)
n+1 (x, x) K

(0,1)
n+1 (x, y)

Kn+1(x, y) Kn+1(y, y) K
(0,1)
n+1 (y, x) K

(0,1)
n+1 (y, y)

K
(0,1)
n+1 (x, x) K

(0,1)
n+1 (y, x) K

(1,1)
n+1 (x, x) K

(1,1)
n+1 (x, y)

K
(0,1)
n+1 (x, y) K

(0,1)
n+1 (y, y) K

(1,1)
n+1 (x, y) K

(1,1)
n+1 (y, y)

⎤
⎥⎥⎥⎦ , (6.1)

exactly as in (3.1). When x = y, the first row of Σ is the same as the second row, and hence detΣ = 0. Our 
first goal is to show that V has the multivariate normal distribution with mean zero and the covariance 
matrix Σ when x 
= y and n ≥ 3. This follows in a standard way, e.g., from [21, Corollary 16.2], by proving 
that Σ is positive definite, which amounts to showing that 
vTΣ
v > 0 for all nonzero 
v ∈ R4. Recall that any 
covariance matrix is positive semi-definite [21, Theorem 12.4], i.e., 
vTΣ
v ≥ 0 for all 
v ∈ R4. This means we 
only need to demonstrate that 
vTΣ
v = 0 implies 
v = 
0. For a vector 
v = [v1 v2 v3 v4 ]T , observe that


vTΣ
v = Var[
vTV ] =
n∑

k=0

(v1pk(x) + v2pk(y) + v3p
′
k(x) + v4p

′
k (y))2.

It is clear now that 
vTΣ
v = 0 if and only if

v1pk(x) + v2pk(y) + v3p
′
k(x) + v4p

′
k(y) = 0, k = 0, . . . , n. (6.2)

But this system of equations has only trivial solution 
v = 
0. Indeed, if we write

Qn(t) =
n∑

j=0
bjpj(t),

where {bj}nj=0 ⊂ R is arbitrary, then (6.2) implies that

v1Qn(x) + v2Qn(y) + v3Q
′
n(x) + v4Q

′
n(y) = 0. (6.3)

Since {pj(x)}nj=0 is a basis for the vector space of all polynomials of degree at most n with real coefficients, 
the set of all polynomials Qn(t) coincides with this space. In particular, since n ≥ 3 and x 
= y, we use the 
following choices for Qn in (6.3) to conclude that

Qn(t) = (t− x)(t− y)2 ⇒ v3 = 0;

Qn(t) = (t− x)2(t− y) ⇒ v4 = 0;

Qn(t) = t− y ⇒ v1 = 0;

Qn(t) = t− x ⇒ v2 = 0.

We now write Σ in the following block form
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Σ =

⎡
⎢⎢⎢⎣
Kn+1(x, x) Kn+1(x, y) K

(0,1)
n+1 (x, x) K

(0,1)
n+1 (x, y)

Kn+1(x, y) Kn+1(y, y) K
(0,1)
n+1 (y, x) K

(0,1)
n+1 (y, y)

K
(0,1)
n+1 (x, x) K

(0,1)
n+1 (y, x) K

(1,1)
n+1 (x, x) K

(1,1)
n+1 (x, y)

K
(0,1)
n+1 (x, y) K

(0,1)
n+1 (y, y) K

(1,1)
n+1 (x, y) K

(1,1)
n+1 (y, y)

⎤
⎥⎥⎥⎦ =:

[
A B
BT C

]
, (6.4)

where A, B and C are the corresponding 2 × 2 matrices. Note that detA = Δ = 0 if and only if x = y by 
the equality case in the Cauchy-Schwarz inequality. Thus we define Ω = C −BTA−1B for x 
= y, and write

Σ =
[
A 0
BT I

] [
I A−1B
0 Ω

]
.

The latter implies that

detΣ = detA detΩ = Δ det Ω.

Since Σ is invertible for x 
= y, so is Ω and thus detΩ > 0 if x 
= y. It also follows from (6.4) by direct 
algebraic manipulations that the elements of the matrix

Ω = C −BTA−1B =
[
Ω11 Ω12
Ω12 Ω22

]

are as defined in (2.8)–(2.10).
Since the random vector V = V (x, y) has the multivariate normal distribution N (0, Σ) with a non-

singular covariance matrix Σ, we compute the density of its distribution by [21, p. 130] in the form

px,y(0, 0, t1, t2) =
exp

(
−1

2(0, 0, t1, t2) Σ−1(0, 0, t1, t2)T
)

(2π)2(det Σ)1/2

=
exp

(
−1

2(t1, t2) Ω−1(t1, t2)T
)

(2π)2(detΣ)1/2
.

Using matrix algebra, we further obtain that

Σ−1 =
[

[A−BC−1BT ]−1 −A−1B[C −BTA−1B]−1

−C−1BT [A−BC−1BT ]−1 [C −BTA−1B]−1

]
.

Theorem 3.2 of [3, p. 71] states that if (a, b) ⊂ R, then

E[Nn([a, b]) (Nn([a, b]) − 1)] =
∫∫
D

∫
R

∫
R

|t1t2|px,y(0, 0, t1, t2) dt1dt2dxdy,

where D = {(x, y) ∈ R2| a ≤ x, y ≤ b}. Hence

E[Nn([a, b])(Nn([a, b]) − 1)]

=
∫∫
D

∫
R

∫
R

|t1t2|
exp

(
−1

2 (t1, t2)Ω−1(t1, t2)T
)

(2π)2(det Σ)1/2
dt1dt2dxdy,

=
∫∫
D

∫
R

∫
R

|t1t2|
exp

(
−1

2 (t1, t2)Ω−1(t1, t2)T
)

(2π)2(Δ det Ω)1/2
dt1dt2dxdy,

= 1
4π2

∫∫
D

I(x, y)√
Δ det Ω

dxdy,
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where the inner integral is

I(x, y) =
∫
R

∫
R

|t1t2| exp
(
−1

2(t1, t2)Ω−1(t1, t2)T
)
dt1dt2.

Note if x 
= y, we have detΩ = Ω11Ω22 − Ω2
12 > 0 and

Ω−1 = 1
det Ω

[
Ω22 −Ω12
−Ω12 Ω11

]
.

It follows that

(t1, t2) Ω−1 (t1, t2)T = Ω22

det Ω t21 − 2 Ω12

det Ω t1t2 + Ω11

det Ω t22.

Applying the result of [8, (3.9)], we evaluate the inner integral as

I(x, y) = 4(detΩ)2

Ω11Ω22(1 − δ2)

(
1 + δ√

1 − δ2
arcsin δ

)
,

with

δ = − Ω12√
Ω11Ω22

.

Finally, putting everything together, we obtain

E[Nn([a, b])(Nn([a, b]) − 1)]

= 1
4π2

∫∫
D

4(detΩ)2

Ω11Ω22(1 − δ2)

(
1 + δ√

1 − δ2
arcsin δ

)
dx dy√
Δ detΩ

= 1
π2

∫∫
D

√
Ω11Ω22 − Ω2

12

(
1 − Ω12√

Ω11Ω22 − Ω2
12

arcsin
(
− Ω12√

Ω11Ω22

))
dx1 dx2√

Δ

= 1
π2

∫∫
D

(√
Ω11Ω22 − Ω2

12 + Ω12 arcsin Ω12√
Ω11Ω22

)
dx dy√

Δ
.

This and Lemma 2.1 give the result. �
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