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1. INTRODUCTION

In 1935, Griiss proved the integral inequality [9]

‘b 80 = [ ) a ﬁ/ﬂ”g(x)dx\

1
< (@ = )T = y), (1.1)

provided that f and g are two integrable functions on [a, b] and satisfy the

condition

p<f(x)<® and y<g(x)<I foral xe[a,b]. (12)

The constant 1 is the best possible and is achieved for

a+b
2

F(3) = g(x) = senl x -
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The discrete version of (1.1) states that:
Ifa<a <A, b<b,<B(=1,...,n) where a, A,a,,b, B, b; are real
numbers, then

S| ==

Zai'

1

S| =
S| =

a;b; —
1 i

n
=

n

n 1
;Z]bi < (A-a)(B-b), (13)

where the constant } is the best possible for an arbitrary n > 1.

For an entire chapter devoted to the history of this inequality see [11]
where further references are given.

New results in the domain can be found in [1-7, 10].

In [2], the author proved the following generalization in inner product
spaces.

THEOREM 1. Let (X,< -, )) be an inner product space over I, = C, R
ande € X, |lell = 1. If ¢, D, y,T" € K and x, y € X such that

Re{(®e —x,x — ¢pe) = 0 and Re{Te —y,y — ye) =0 (1.4)

hold, then we have the inequality

1
Kx,y> = (x,exe, y)l < ZICD - ¢lIT = vl. (1.5)

The constant % is the best possible.

It has been shown in [1] that the above theorem, for real cases, contains
the usual integral and discrete Griiss inequality and also some Griiss type
inequalities for mappings defined on infinite intervals.

Namely, if p:(—o0,0) — (—o, ) is a probabilistic density function, i.e.,
[Z.p(t)dt =1, then p'/? € [*(—,«) and obviously || p'/?||, = 1. Con-
sequently, if we assume that f, g € L*(—,*) and

a-pP<f<y-p?  B-pP<g<6-pfae.  on(-»=),

(1.6)

then we have the inequality
[ swswa— [T swerwan [ 0 a

1
< 7= a)(0-5). (1.7)
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Similarly, if 7 = (1,);c,y € I*(R) with £, (|11> = 1 and x = (x,);c, y =
(y)ien € I*(R) are such that

a-l;<x;, < ¢, B-l;<y <6 (1.8)
for all i € N, then we have

1
Yoxyi— roxlie Yoyl < —(y—a)(6-B). (1.9)

ieN ieN ieN 4

In this paper we point out some other Griiss type discrete inequalities in
inner product spaces. Applications for the Fourier transform, Mellin
transform, polynomials with coefficients in Hilbert spaces, and Lipschitzian
mappings with values in normed spaces are also given.

2. PRELIMINARY RESULTS

The following lemma is of interest in itself.

LEMMA 1. Let (H;{-,-)) be an inner product space over the real or
complex number field K, x, € Hand p; > 0 (i = 1,...,n) such that ¥}_, p;
=1(n = 2). Ifx, X € H are such that

Re{X —x;,,x; —x) =0  foralli € {1,...,n}, (2.1)

then we have the inequality

2

" 1
0< ZPi||xi||2 - < Z”X — x| (2.2)

i=1

n
Zpixi
i=1

The constant % is sharp.

Proof. Define

n n
I, = <X_ Zpixi’ Zpixi —x>
i=1 i=1
and

n
L= Y p{X—x;,x; —x).
i=1
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Then

2

I, = Zpi<X7xi> —(X,x) -
i=1

n
Zpixi
i=1

n
+ Zpi<xi’x>
i=1
and
n n ) n
I, = Zpi<X>xi> —(X,x) - Zpi“xi“ + Zpi<xi’x>‘
i=1 i=1 i=1

Consequently,

2

. (2.3)

L -1, = Zpi”xinz - Epixi
i=1 i=1

Taking the real value in (2.3), we can state that

2

= 2
Zpi“xi“ -
i=1

n
Zpixi
i=1

n n n
:R6<X_ Zpixi’ Epixi_x>_ ZpiRe<X_xi’xi_x>’
i=1 i=1 i

(2.4)
which is also an identity of interest in itself.
Using the assumption (2.1), we can conclude, by (2.4), that
n n 2 n n
Y plxll? = X px,| < R6<X — X P 2 Di%i —x>.
i=1 i=1 i=1 i=1
It is known that if y, z € H, then
4Re(z,y) <llz +yl, (2.6)

with equality iff z = y.
Now, by (2.6) we can state that

2

A

n n 1 n n
R6<X_ Zpixi’ Zpixi —x> = ZHX_ Zpixi + Zpixi -X
i=1 i=1 i=1 i=1

1
—lx — x|
4|| x|
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Using (2.5), we obtain (2.2).
To prove the sharpness of the constant 1, let us assume that the
inequality (2.2) holds with a constant ¢ > 0; i.e.,

2

0< X pllxll’ - <cllx —x|? (2.7)

i=1

n
Zpixi
i=1

for all p;, x;, and n as in the hypothesis of Lemma 1.
Assume that n =2, p, =p, =1, x, =x, and x, =X with x, X € H
and x # X. Then, obviously,

(X —x,x, —x)=(X—x,,x, —x) =0,

which shows that the condition (2.1) holds.
If we replace n, p,, p,, X, X, in (2.7), we obtain

2 2

Ll + H”X
— + —_ J—
5 (Il ) 2

2

2
ZP;‘”xi” -
i=1

2
Zpixi
i=1

1
—llx — XII?
4
<cllx — X%,

from where we deduce that ¢ > §, which proves the sharpness of the
constant ;. |

Remark 1. The assumption (2.1) can be replaced by the more general
condition

™M=

piRe{X —x;,,x;, —x) =0, (2.8)
1

i

and the conclusion (2.2) will still remain valid.
The following corollary is natural.

CorROLLARY 1. Leta, €K, p, >0 =1,...,n)(n > 2) with ¥}_, p;, =
1. If a, A € K are such that

Re[(A —a;)(a;—a)| =0  forallie {1,...,n}, (2.9)
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then we have the inequality

2
n 1
0< ¥ pilal® - < 14 —al. (2.10)
i=1

n
Zpiai
i=1

The constant % is sharp.

The proof follows by the above lemma by choosing H = K, {x, y) = xp,
Xx; =a;, x =a,and X = A. We omit the details.

Remark 2. The condition (2.9) can be replaced by the more general
assumption

™M=

p:Re[(A4 —a;)(a, —a)] = 0. (2.11)

Il
—_

Remark 3. 1f we assume that KK = R, then (2.8) is equivalent to
a<a, <A foralie{l,...,n}, (2.12)

and then, with the assumption (2.12), we obtain the discrete Griiss type
inequality
n n 2 1
05 Lpat-(Lpa) sqa-at ey
i=1 i=1

where the constant } is sharp.

3. A DISCRETE INEQUALITY OF GRUSS’ TYPE

The following Griiss type inequality holds.

THEOREM 2. Let (H;< -, )) be an inner product space over K, K = R, C,
x,€H,a,€eK,p;>20G=1,....n)(n =2 withZ!_p,= 1. Ifa, A € K
and x, X € H are such that

Re[(A —a;)(a;—a)] =0, Re{X—x;,x;,—x) >0
foralli € {1,...,n}, (3.1)

then we have the inequality

n n n 1
Y piax; = Xpa;c X piX
i=1 i=1 i=1

0< < Z'A —alllX =x|l. (3.2)

The constant % is sharp.



500 S. S. DRAGOMIR

Proof. A simple computation shows that

M:

1 n
pia Zpl ,Zpl 5= 3 L nn(e = )5 —x). (33

1

i

Taking the norm in both parts of (3.3) and using the generalized triangle
inequality, we obtain

1
2,

n n n
Z pia;x; Zpiaizpixi
= i i=1

i a —a [lx; — <||. (3.4)

By the Cauchy-Buniakowsky—Schwartz discrete inequality for double sums,
we obtain

1 n :
(_ Z Pin|ai - “,‘| llx; _xj”

2=

% npla - )(% > pl-p,-nx,-—xjnz). (35)

Lj 1 i,j=1

As a simple calculation reveals that

n n
2 2
)y pipj|ai - aj| = Zpi|ai| -
i i=1

n
Y pa
i=1

and

2

n
Y pipillx —x17 = Zp, |x,II* —

n
Y pix
i=1

then, by (3.4) and (3.5), we conclude that

n n n
Z pia;x; Zpiaizpixi
— i=1 i=1

2 1/2

M=

172
DiX; ) .

(3.6)

n

2
Zpi|ai| -
i=1

n
Y pa
i=1

i=1
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However, from Lemma 1 and Corollary 1, we know that

n n 2172
Y ol -| o | <1 -a (3:)
i=1 i=1
and
n n 2\ 172 1
Zpi|ai|2 —| X pia; = §|A —al. (3.8)
i=1 i=1

Consequently, by using (3.6)—(3.8), we deduce the desired estimate (3.2).
To prove the sharpness of the constant %, assume that (3.2) holds with a

constant ¢ > 0; i.e.,

n

n n
Z pia;x; — Z bia; Z DiX;
i=1

i=1 i=1

<cld —alllX — xll (3.9

for all p;, a;, x;, a, A, x, X, and n as in the hypothesis of Theorem 2.
If we choose n =2, a, =a, a,=A4, x, =x, x, =X (a # 4, x # X),

and p, = p, = 3, then

||l\1N

1
p:a;x; Zpl zzpl X = E Pj(ai—aj)(xi—xj)

'MN

~
Il
—_

Z(a -A)(x — X).
Consequently, from (3.9), we deduce

1

Zla —AllX —xll < cl4 — all1X — xl,

which implies that ¢ > §, and the theorem is completely proved. |

Remark 4. The condition (3.1) can be replaced by the more general
assumption

piRe(X —x,x;,—x) =0

M:

Re[(A4 — a;)(a; — a)] = 0,

s
S

Il
_
I
_

(3.10)

and the conclusion (3.2) will still be valid.

The following corollary for real or complex numbers holds.
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COROLLARY 2. Let a,b;e K (K=C,R), p,>0 (i =1,...,n) with

|20 )

X' p;=1.1Ifa, A,b, B € K are such that
Re[(A —a)(@ —a)] 20, Re[(B-b)(b—5)] =0, (3.11)

then we have the inequality

1

0<|Y pab,— Y. pa;, Y, pb;| < Z'A —allB -bl, (3.12)
i=1 i=1 i=1

where the constant  is sharp.

Remark 5. 1f we assume that a;, b;, a, A, b, B are real numbers, then
(3.11) is equivalent to

a<a; <A,b<b,<B foralli € {1,...,n}, (3.13)

1

and (3.12) becomes

1

0< Zpiaibi_ Zpiaizpibi = Z(A—a)(B—b), (3.14)
i=1 i=1 i=1

which is the classical Griiss inequality for sequences of real numbers.

4. APPLICATIONS FOR DISCRETE
FOURIER TRANSFORMS

Let (H;{ -, ) be an inner product space over [ and let X = (x,..., x,)
be a sequence of vectors in H.
For a given w € R, define the discrete Fourier transform

F(X)(m) = ) exp(2wimk) X x,, m=1,....,n. (4.1)
k=1
The following approximation result for the Fourier transform (4.1) holds.

THEOREM 3. Let (H;{ -, )) andx € H" be as above. If there exist the
vectors x, X € H such that

Re{X —x;,x, —x) >0  forallk € {1,...,n}, (4.2)
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then we have the inequality

in( wmn 1 »
}Zv(i)(m) _ SinQwmn) ool + Dim] X~ 3 x,

sin(wm) n,-

. 1/2
sin”(wmn) l (43)

1
< -lXx - 2 - —
2|| xll[n sin®(wm)

forallm € {1,...,n} andw € R,w + L7, 1 € Z.

Proof. From the inequality (3.6) in Theorem 2, we can state that

1 n 1 n 1 n
H_ Zakxk_ - Zak'_ Zxk
k=1 k=1 =1
2)1/2

(4.4)

1/2
X

2 n

1ot
= 2l P == X x,
n - n

k=1

IR R
<= Xlal—|- X a
=1 =1

forall a, e K, x, e H(k=1,...,n).
However, the x, (k = 1,..., n) satisfy (4.2), and therefore, by Lemma 1,
we have

2

1z 1 2 1
0<— Y lx P —H— Yol < —Ix —xlP. (4.5)
=1 =1 4

Consequently, by (4.4) and (4.5), we conclude that

1/2
n n 1 n 1 n n 2
Yoax = Y a— %, S_”X_x”(”2|ak|2_ Y )
k=1 k=1 n =1 2 k=1 k=1

(4.6)
forall ¢, e K(k=1,...,n).
We now choose in (4.6), a, = exp(2wimk) to obtain
n 1 n
F(F)(m) — ¥ exp(wimk) X — ¥ x,
k=1 =1
1 n n 2 1/2
< E”X —xll(n Y lexp(2wimk)|* —| Y exp(2wimk) ) (4.7)
k=1 k=1

forall m € {1,..., n}.
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As a simple calculation reveals that
exp(2wimn) — 1
exp(2wim) — 1

Y exp(2wimk)
k=1

exp(2wim) X

exp(2wim) X

cos(2wmn) + isin(2wmn) — 1}

cos(2wm) + isin(2wm) — 1

exp(2wim) X sin(wmn) [COS(wmn) + isin(wmn)}

sin(wm) | cos(wm) + isin(wm)
sin(wmn) )
= W X exp(me)[

exp(iwmn)

exp(iwm)

= % X exp[(n + 1)im],

M=

Iexp(2wimk)|2 =n
i=1

and

n 2

Y exp(2wimk)
k=1

thus, from (4.7), we deduce the desired inequality (4.3). |

sin®(wmn)
- forw#t—m,leZ,
sin”(wm) m

Remark 6. The assumption (4.2) can be replaced by the more general
condition

Y Re(X —x;,x;, —x) >0, (4.8)
i=1
and the conclusion (4.3) will still remain valid.
The following corollary is an obvious consequence of (4.3).
COROLLARY 3. Leta, e K(i =1,...,n). Ifa, A € K are such that
Re[(A —a;)(a;—a)| =0  forallie {1,...,n}, (4.9)

then we have an approximation of the Fourier transform for the vector
a=(ay,...,a,) K",

i sin(wmn) . 1z
F,(a)(m) — sin(—wm)eXp[(n + 1)im] X ;kglak
1 ,  sin*(wmn) bz
< E|A —alln® — W 5 (410)

forallm e {1,...,n} andw € R so that w # %W,ZEZ.
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Remark 7. 1If we assume that I = R, then (4.9) is equivalent to
a<a; <A foralli € {1,...,n}. (4.11)

Consequently, with the assumption (4.11), we obtain the approximation of
the Fourier transform

sin(wmn) 12

exp[(n + 1)im] X — Y a,

Fu(@)(m) = sin(wm) n /-

. 1/2
sin”(wmn) l 4.12)

1 A — [ 2 _
- 2( " sin?(wm)

forall m € {1,...,n}and w # Lo, 1 € Z.

5. APPLICATIONS FOR THE DISCRETE
MELLIN TRANSFORM

Let (H;{-,- ) be an inner product over K and let X = (x,,...,x,) be a
sequence of vectors in H.
Define the Mellin transform,

H(X)(m) = kglk’"*lxk, m=1,...,n, (5.1)

of the sequence x € H".
The following approximation result holds.

THEOREM 4. Let H and X be as above. If there exist the vectors x, X € H
such that

Re{X —x,x, —x) >0 forallk =1,...,n, (5.2)

then we have the inequality

1 n
H//z(fc)(m) = S,(m) 7 T w

1 ) 172
< EHX—XH[HSZ,,,_Z(H) — Sm_l(n)] , me{l,...,n}, (5.3)

where S, (n), p € R, n € N is the p-powered sum of the first n natural
numbers; i.e.,

S,(n) = i k?.
k=1
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Proof. We apply inequality (4.6) to obtain

n n 1 7
LA = Yk — Yy
k=1 k=1 n =1

1/2

IA

1 n n 2
E“X_x”[n Z k2(m71) _ ( Z kml) 1
k=1 k=1

SIX {18, ()~ 53] (5.4)

and the inequality (5.3) is proved. |

Consider the particular values of the Mellin transform
(%) = ) kxy
k=1
and
ma(%) = Y K’xy.
k=1

The following corollary holds.

COROLLARY 4. Let H and X be as in Theorem 4. Then we have the
inequalities

n+1 =~ 1 n(n+ 1) 172
/-'L]()_C) - ;_ ’ k§1Xk < EHX—XHI?[%} (5.5)
and
n+1)(2n +1 n
Ma(X) — Silha )é 1) : Zxk
k=1

1
< WIIX—xIIn\/(n —1)(n+1)(2n+ 1)(8n + 1) . (5.6)

Remark 8. 1f we assume that p = (p,,..., p,) is a probability distribu-
tion, ie., p, =0 (k=1,...,n), L{_pr=1, and p<p, <P (k=
1,...,n), then by (5.5) and (5.6), we get the inequalities

n+1 n(n + 1) 2

n 1
kp, — < —(P - _—
kZ::l Pk ) ‘—2( P)”[ 3

(5.7)
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and

i K2, (n+ 1)2211 +1)
k=1
< 12‘/_ (P-p)ny(n—1)(n+1)2n+1)(8n + 1), (5.8)

which have been obtained in [8] and applied to the estimation of the 1- and
2-moments of a guessing mapping.

6. APPLICATIONS FOR POLYNOMIALS

Let (H;{ -, )) be an inner product space over K and let ¢ = (¢,...,c,)
be a sequence of vectors in H.

Define the polynomial P: C — H with the coefficients ¢ = (¢,...,c,)
by

P(z) =cy+zc, + - +2%,, zeC, c, # 0.

n n

The following approximation result for the polynomial P holds.
THEOREM 5. Let H, ¢, and P be as above. If there exist the vectors
¢,C € H such that
Re{C —¢;,c, —¢) =0  forallk €{0,...,n}, (6.1)

then we have the inequality

" =1 gt + o +e
X
-1 n+1

n

o) -

2
(i) 122 =1 2" —2Re(2"*1) + 117
n+ -

—||C—C|| P
1z]> — 1 |z]” —2Re(z) + 1

(6.2)

forallz € C, |z| # 1.
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Proof.  Using the inequality (4.6), we can state that

n n n
Z chk - z*- Z Cr
k=0 0 nt+1,.5
1 n n 2 1/2
< -lIC—cll(n+1) X Iz1* - ¥ 2* )
2 k=0 k=0
1 [ | |2n+2 1 Zn+1 _ 2]4/2
= —lc - +1
2|| clf(n +1) o1 ~ 1

Iz]> — 1 Iz|* — 2Re(z) +1

1 [ 272 =1 2 —2Re(2 ) + 17
= EHC —cll|(n + 1) —

(6.3)
and the inequality (6.2) is proved. |

The following result for the complex roots of the unity also holds.

THEOREM 6. Let z; = cos(;X™7) + i sin(;X™), and let k € {0,..., n} be
the complex (n + 1)-roots of the unity. Then we have the inequality

IP(z)ll < %(n +DIC—cl, ke{l,...,n), (6.4)

where the coefficients ¢ = (c,,...,c,) € H""! satisfy the assumption (6.1).

Proof. From the inequality (6.3), we can state that

n+1 __ 1 n
P — .
(2i) z—1 n+1 kgock
1 n n+1 _ 2 1/2
< SlIC —clf(n + 1) |21 | —— : (6.5)

k=0

forall ze C, z # 1.
Putting z =z, k €{1,...,n} and taking into account that z}*'=
1, |z,] = 1, we get the desired result (6.4). |

The following corollary is a natural consequence of Theorem 6.
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COROLLARY 5. Let P(z) = ¥}_,a,z* be a polynomial with real coeffi-
cients and let z, be the (n + 1)-roots of the unity as defined above. If
a<a, <A, k=0,...,n, then we have the inequality

1
P(z)l < 5 (n+1)(4 ~a). (6.6)

7. APPLICATIONS FOR LIPSCHITZIAN MAPPINGS
Let (H;{-,-)) be as above and let F: H — B be a mapping defined on
the inner product space H with values in the normed linear space B which
satisfy the Lipschitzian condition

|F(x) = F(y)l < Lllx = yll, forall x,y € H, (7.1

where || denotes the norm on B and || || is the Euclidean norm on H.
The following theorem holds.

THEOREM 7. Let F: H — Bbe as above andx; € H,p; > 0(i =1,...,n)
with P, .= Y!_, p; > 0. If there exist two vectors x, X € H such that

Re{X —x;,,x;, —x) >0 foralli € {1,...,n}, (7.2)

then we have the inequality

1
< Slx =l (7.3)

1 2 1 2
_ F(x.) — F|— X,
P,, ;pz (xl) (P Zplxl)

ni=1

Proof. As F is Lipschitzian, we have (7.1) for all x,y € H. Choose
x=1/PY/_px;and y =x; (j =1,...,n), to get

1 n
P Zpixi e (7.4)

ni=1

<L

F(% ipixi) - F(xj)

ni=1

forall j €{1,...,n}.
If we multiply (7.4) by p; > 0 and sum over j from 1 to n, we obtain

n

SLij

j=1

n

ij

j=1

1 n
P Zpixi —X;

ni=1

. (7.5)

ni=1

F(% ipixi) - F(xj)
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Using the generalized triangle inequality, we have

2P

j=1

F(Pini_ilpiXi) _F(xj)

( Y pa ) - iij(xf)-

b5 j=1

(7.6)

By the Cauchy—Buniakowsky—Schwartz inequality, we also have

n 1 n
'2: ]b‘ };_'2: DiX; x]
j=1 ni=1
. L 271/2
= ijFZpixi_xj p)/?
j=1 ni=1
- ) ) 1/2
—p2Yy — Y pix; —2Re< Zp, X ]>+||x &
j=1 }2i=1 nl 1
o R 1/2
= pl/2 > Y pix, —2Re< ZPz X, Zp] ]>+ ijllx Ilzw
ni=1 n i=1

Zp, X;

n i=1

P ! i (B
=0y 5 pillx;
P, 5

1/2
] . (7.7

Combining the above inequalities (7.5)—(7.7) we deduce, by dividing with
P, > 0, that
211/2

(7.8)

n

1 n 1
F _Zpixi - Z F(x;)
Pni:l

1 n
Zpixi
n i=1

[ Zp,llx > —
n i=1

Finally, using Lemma 1, we obtain the desired result. [

Remark 9. The condition (7.2) can be substituted by the more general
condition

=

p;Re{X —x,,x, —x) >0, (7.9)

i=1

and the conclusion (7.3) will still remain valid.
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The following corollary is a natural consequence of the above findings.

COROLLARY 6. Letx; € H (i =1,...,n) and x, X € H be such that the

condition (7.2) holds. Then we have the inequality

0 ! Zn: Il I ! Zn: lIIX l
< — . Al — || — XL < = — X
- Pn i:1pl xl Pn i:1p1x1 — 2 X

The proof follows by Theorem 7 by choosing F: H —» R, F(x) = ||xl|,

which is Lipschitzian with the constant L = 1, as |F(x) — F(y)| = |||x|| —
lylll < llx — yll, for all x,y € H.

11.
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