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Abstract

Sufficient conditions are established for boundary controllability of various classes of Sobolev-
type nonlinear systems including integrodifferential systems in Banach spaces. The results are
obtained using the strongly continuous semigroup of operators and the Banach contraction principle.
Examples are provided to illustrate the theory.
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1. Introduction

Controllability of Sobolev-type nonlinear integrodifferential systems in Banach spaces
has been discussed by Balachandran and Dauer [3] with the help of the Schauder fixed point
theorem. In [5], Balachandran and Sakthivel studied the controllability of Sobolev-type
semilinear functional integrodifferential systems in Banach spaces by using the Schaefer
fixed point theorem. These types of equations occur in thermodynamics, in the flow of fluid
through fissured rocks and in the shear in second order fluids. Kwun et al. [14] studied
approximate controllability for delay Volterra systems with bounded linear operators, and
in [4] Balachandran and Sakthivel discussed this problem for delay integrodifferential
systems in Banach spaces.
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Several abstract settings have been developed to describe the distributed control
systems in which the control is exercised through the boundary. Balakrishnan [6] first
constructed a solution for a parabolic boundary control equation BbAtitontrols that
can be expressed as a mild solution to an operator equation using semigroup theory.
Fattorini[11] developed a semigroup approach for boundary control systems. Lasiecka [15]
established the regularity of optimal boundary controls for parabolic equations. In [7-9]
Barbu discussed the general theory of boundary control systems and the existence of
solutions for boundary control problems governed by parabolic equations with nonlinear
boundary value conditions. In [10] Cirina studied the existence of boundary controls for
quasilinear systems of hyperbolic equations.

The formulation of boundary control problems in terms of semigroup theory offers
the following advantage over a variational approach. The semigroup approach can treat
a problem where the spatial domain does not h&® boundary, such as for an
n-dimensional parallelepiped. Related abstract descriptions of boundary control systems
and their applications to various fields of study can be found in [13,16-18,24].

Han and Park [12] studied the boundary controllability of semilinear systems with non-
local condition. Recently the problem of boundary controllability of delay integrodifferen-
tial systems in Banach spaces has been investigated by Balachandran and Anandhi [1,2].
The purpose of this paper is to establish sufficient conditions for the boundary control-
lability of various types of nonlinear Sobolev-type systems including integrodifferential
systems in Banach spaces. The approach will use semigroup theory and the Banach fixed
point theorem.

2. Preliminaries

Let Y andZ be Banach spaces with noring and|| - ||, respectively. Let be a linear,
closed and densely defined operator with doma{a) C Y and rangeR (o) C Z, and let
0 be a linear operator wit(6) C Y andR(#) C X, a Banach space.

Consider the boundary control nonlinear system

(Ex()) =ox()+ f(t,x(®)), teJ=[0,b],

Ox(t) = Bu(1),

x(0) = xo, ()
whereE: D(E) C Y — R(E) C Z is alinear operator, the control functiare L1(J, U),
a Banach space of admissible control functions Withs a Banach spacB; :U — X is
a linear continuous operator, and the nonlinear operatar x ¥ — Z is given.

Lety(t) = Ex(¢) for x € Y, then (1) can be written as

YO =cEy0) + f(t, ETly@), ted,

fy(1) = Bau (1),

y(0) = yo, 2)
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whered =9E~1:Z — X is a linear operator. LeA : Y — Z be a linear operator defined
by

D(AE™Y) ={weD(cE™Y): fw=0},
AEYw=0Etw, forwe D(AE_l).

The operatorsA: D(A) C Y — Z and E:D(E) C Y — Z satisfy the following
hypotheses.

(H1) A andE are closed linear operators.

(H2) D(E) C D(A) andE is bijective.

(H3) E~1:Z — D(E) is continuous.

(Hs) The resolventR(r, AE~1) is a compact operator for somee p(AE~1), the
resolvent set oft E 1.

The hypotheseéH;), (H2) and the Closed Graph Theorem imply the boundedness of
the linear operatoAE~1:Z — Z.

Lemma 2.1 [21]. Let S(r) be a uniformly continuous semigroup and lat be its
infinitesimal generator. If the resolveRi(A: A) of A is compact for every € p(A), then
S(r) is a compact semigroup.

Let B, ={y eY: |y| <r}, forsomer > 0. We shall make the following hypotheses.

(i) D(o) c D(9) and the restriction of to D(o) is continuous relative to graph norm
of D(o).

(i) The operatordA E~1 is the infinitesimal generator of @ semigroup? (r) on Z and
there exists a constaM > 0 such that| T (¢)|| < M.

(i) There exists a linear continuous opera®rU — Z such thato E~1B € L(U, Z),
6(Bu) = Byu, for all u € U. Also, Bu(t) is continuously differentiable anjpBu|| <
C||B1u| for all u € U, whereC is a constant.

(iv) Forallr e (0,b] andu € U, T(1)Bu € D(AE~1). Moreover, there exists a positive
functionv € L1(0, ) such thall AE~1T (1) B|| < v(¢), a.e.t € (0, b).

Let y(#) be the solution of (2). Then define the functioim) = y(¢) — Bu(z). From the
assumptions, it follows that(r) € D(AE~1). Hence (2) can be written in terms dfand
B as

V) =AE () + o ET Bu(t) + f(t, ETNy (1), 1€,
y(@) =z(t) + Bu(?),
y(0) = yo.

If u is continuously differentiable of®, 5], thenz can be defined as a mild solution to the
Cauchy problem
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Z(t) = AE" 2(t) + o E"*Bu(t) — Bu'(t) + f (1, E7Ly (1)),
z(0) = y(0) — Bu(0),

and the solution of (2) is given by

y(t) =T (0)[y(0) — Bu(0)] + Bu(t)
'
—I—/T(t—s)[crEilBu(s)—Bu/(s)—i—f(s, Efly(s))] ds. 3)
0

Since the differentiability of the contralrepresents an unrealistic and severe requirement,
it is necessary to extend the concept of a solution for general inpats.t(J, U).
Integrating (3) by parts, yields

t
y(®) =T ()y(0) + /[T(t —$)0E™*B — AE7 T (t — 5) BJu(s) ds

0
t

+/T(t —$)f(s, E7ty(s)) ds,
0
which is well defined. Hence the mild solution of system (1) is given by
t
x(1) = E"T(t)Ex(0) + / ENTt—-5)0E B~ AE™'T(t — 5)Blu(s)ds

0
t

+/E_1T(t—s)f(s,x(s))ds. (4)
0

Definition 2.2. System (1) is said to beontrollableon intervalJ if for every xgp, x1 € Y,
there exists a contrad € L2(J, U) such that the solution(-) of (1) satisfiest (b) = x1.

Further, assume the following conditions.

(v) There exist constant¥, K > 0 such thagf(f v(t)dt < K and|E~1 < N.
(vi) The linear operatoW from L2(J, U) into Y defined by

b
Wu = / E7NT(b—s5)0E™B— AE7 T (b — 5)Blu(s)ds
0

induces an invertible opelatd?/ defined onL2(J, U)/kergv, and there exists a
constant1 > 0 such thaf W —1|| < K1. The construction oV ~1 in general Banach
spaces is outlined in [22].
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(vii) f:J xY — Zis continuous and there exist constamts, M> > 0 such that for all
Y1, Y2 € By
| £y — £ y2) | < Milys— el
and
Mz =max|f(t,0).
teJ

(i) NM||Exo| + N[bM|lc E"1B| + K1K1[|x1] + NM| Exol + L] + L < r, where
L =bNM[M1r + M>].
(iX) Letg =bNMM1[NK1(bM|oc E~1B| + K) + 1] be such that & ¢ < 1.

3. Controllability of nonlinear system

Theorem 3.1. If the hypothese§)—(ix) are satisfied, then the boundary control nonlinear
system(1) is controllable onJ.

Proof. Using hypothesis (vi), for an arbitrary functiati-), define the control

b
u(t) = VT/—l[xl —E YT () Exg — / E7IT (b —9)f(s,x(5)) dsi| (1).
0
LetV = C(J, B,). Using this control, it will now be shown that the operadodefined by
t
&x(t) = E"1T(t)Exo + / E7YNT(t —s)oE7'B— AE7'T(t —s)B]W !
0
b
x |:x1 — E7YT(b)Exo— / E7'T®b - r)f(t,x(t))dt](s)ds

0
t

+/E_1T(t — ) f(s,x(5)) ds
0

has a fixed point. This fixed point is then a solution of (1).

Clearly @x(b) = x1, which means that the controlsteers the system from the initial
statexg to x1 in time b provided the operatep has a fixed point.

First to see tha® mapsV into itself, letx € V then

t
/E*l[T(t ~$)0ET B — AE T (1 — 5)B]W 1
0

|@x(1)| <|ETIT (1) Exo +

b
x |:x1— E1T(b)Exo—/E1T(b—r)f(t,x(t))dt](s)ds
0
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t

/E_lT(t — ) f (s, x(s)) ds
0

+

<|ETY|T(0)Exo| +/|E‘1\[HT<f—s>H |oE~"B|
+|AETIT @ —5)B||]| W |:|x1| +|E7Y|| T ) Exo
+ [IEHIT6 =Dl x@) - F2. 0] + | o>n]dr}zs

+/|E‘1IHT0—s>||[Hf(s7x(s>) — [0 + [ £ 0f]ds

<NM|Exoll + N[bM||c E7*B| + K]Ka[lx1l + NM| Exol + L] + L

<r.

Thus,® mapsV into itself.
Now, forxy,xo€ V

t
|@x1() = Px2(1)| < fIE’l|[HT<t =9 leE7 B + [AET T — 9 B|]| W
0

b
x |:/|El| [7® =0 f(z. x1(x)) = f(z,x2(D)) | dt] ds
0

t
+ [1EHITC =91 £50x2660) = Fls.x2060) | ds
0

SONMM[NK1(bM o E72B| + K) + 1]|x1(t) — x2(1)|
< qlx1(0) — x2(0)].

Therefore @ is a contraction mapping.
Hence there exists a unique fixed paint Y such thatbx () = x(¢). Any fixed point

of @ is a mild solution of (1) or/ satisfyingx(b) = x1. Thus, system (1) is controllable
onJ. O

4. Controllability of integrodifferential system

Consider the boundary control integrodifferential system of the form
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t
(Ex(t))’=ax(t)+fk(r,s)f(s,x(s))ds, rel,
0
Ox(t) = Bu(1),
x(0) = xo, (5)

wherek:J x J — R is a continuous function ang:J x Y — Z is given. Using the
similar argument as in the previous section, the mild solution of the system (5) is given by

t
x(1) = E7IT(1)Ex(0) + / ENT(t—-5)0E B~ AE™'T(t — 5)Blu(s)ds

0
b s

+/E_1T(t—s)</k(s, r)f(r,x(r))dr) ds.

0 0
Consider the following conditions:

(A1) There exists a constait; > 0 such thatk(z, s)| < N1.

(A2) NM||Exo| + NK1[bM|loc E-1B| + K1[|x1| + NM| Exoll + L] + L < r, where
L = b2NMN1[Myr + M>).

(A3) Letq =b2NMNiM1[NK1(bM|ocE~1B| + K)+ 1] be such that & ¢ < 1.

Theorem 4.1. If the hypothese)—(vii) and (A1)—(A3) are satisfied, then the boundary
control integrodifferential systerd) is controllable onJ.

Proof. Using the hypothesis (vi), for an arbitrary functiot), define the control

ut) = Wl[xl —ET()Exo

b s

—/ElT(b—s)(/k(s, r)f(t,x(t))dt) ds:|(t).

0 0

Using this control, the operatar defined by

Ox(t)=E T (t)Exg
t

+ / EMT(t—s5)0E*B—AE'T(1 - s)B]vT/—l[xl —E"Th)Exo

0
b T

—/ElT(b—t)</k(t, n)f(n,x(n))dn> dr](s)ds
0

0
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t s

+/E_1T(t—s)</k(s, r)f(t,x(t))dt) ds

0 0

has a fixed point. To see this, first note tllatnapsV into itself. Forx € V,

t
x| < [EHITOEw] + [1EH[ITC =50 B]
0

+|AETIT (e —5)B||]| W |:|x1| +|E7Y|| T ®)Exo|

b T
 [leiro ol [kl s.m0n)
0

0

— 16,0+ £, 0 ||]dn> dt] s

t s
[l ira-ol( flkeoiflstexo)
0

0

- f@ 0|+ /(.0 H]dr) ds

< NM|Exol + NK1[pbM|o E7*B|| + K][|x1] + NM||Exoll + L] + L

<r.

Thus,® mapsV into itself.
Now, forxy,xo€ V

|Px1(t) — Dxa(t)|

</\E‘1\[HT0—S>|| loE72B] + [AET T — B[] W

b T
x{!w1WNwww(!wmmWHmnm»

— f(n. x2(m) | dn) df} ds

+/|E—1|}|T(t—s)||</\k(s, || f(z. x1(0)) — f(z. x2(0)) | dt) ds
0

0
SOENMNIMi[NK1(bM||o E72B| + K) + 1] |x1(r) — x2(1)|
< qlx1(t) — x2(0)|.

453
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Hence, by the Banach fixed point theorem, there exists a unique fixed yeirit
which is a mild solution of (5) oy satisfyingx (b) = x1. Thus, system (5) is controllable
onJ. O

5. Controllability of nonlinear delay system

Consider the boundary control nonlinear delay system of the form

(Ex(t))/ =ox(t)+ f(t, x(yl(t)), x(yz(t)), cee, x(y,,(t))), teld,
Ox(t) = Bru(t),
x(0) = xo, (6)

wherey;(t):J — J,i=1,2,...,n, are continuous functions and the nonlinear operator
f:J x Y"— Zis continuous. The mild solution of the system (6) is given by

t
x(t)=E T (t)Exo + / ENT(—-5)EoB—AE™'T(t — s)Blu(s)ds

0
t

+ / E7MT(t — ) f (5, x(2(9)), x(2(9)), - ., x (yu())) ds.
0
In addition to the above assumptions, assume the following conditions.

(C1) f:J xY"— Zis continuous and there exist constamts and M, such that for all
vi,w; €B,,i=12,...,n,

n
Hf(t,vl,vz,...,v,,)—f(t,wl,wz,...,w,,)” <M32|v,- —w;
i=1

and
My=ma t,0,...,0)|.
a=max| f(t, )|
(C2) There exists a constaptsuch that for alkq, xo € Y

, fori=1,2,...n.

|x1(yi (1)) — x2(yi ()| < p|x1(t) — x2(1)

(C3) NM|Exoll + N[bM|loc E-1B| + K1K1[|x1] + NM||Exo| + L] + L < r, where
L=bNM(Manr + My).
(C4) Letg =bnpNMM3[NK1(bM| o E~1B| + K) + 1].

Theorem 5.1. If the hypothesef)—(vi) and (C1)—(C4) are satisfied, then the boundary
control nonlinear delay syste®) is controllable onJ.

Proof. Using the hypothesis (vi), for an arbitrary functiet), define the control
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ut) = W—l[xl —E T Ex

b

— / EilT(t — s)f(s, x(yl(s)), x(yz(s)) ..... x(y,, (s))) ds:| (1).
0
We shall show that, when using this control, the operdtatefined ony by

Ox(t)=E T (t)Exg
t

+ / ENT(t—s5)0E*B—AE'T(t —s)B]W ™! |:x1 — E7T(b)Exo
0

+ | ETMT@ =) (5, x(1(9)), x (12(5)), - ., x(ya(s))) ds

|
/

has a fixed point.
First, we show that mapsV into itself. Forx € V,

ox0] < |E Y |T0Ew| + [[E (|76~ o 5|
0

+|AEIT @ —5)B||]| W |:|x1| +|E7Y||T ) Exo

— f(5,0,...,0)| + [ fs.0,...,0)[ ] ds
< NM||Exol| + N[bM o ET2B| + K]Ka[lx1| + NM|| Exoll + L] + L
<r.

Thus,® mapsV into itself.
Now, forxy,xo€ V
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|@x1(1) — Px2(0)|

t
</|E’1|H|T(f—S>|| loE= ]+ [AETT @ - B[] W
0

b

x [ / [E7Y| Tk -] f @ x1(1(@). x1(r2(D)). . ... x1(va (D))
0

— f(t. x2(r1(D). x2(y2(0)). - ... x2(¥u (D)) | df:| ds

t
- /|E*l| 17 =) | £ (s x2(32(5)), x1(v2(5)), - . ., x1(¥u(5)))
0

— [ (s, x2(1(5)), x2(y2(9)). . . .. x2(yu (5)) ) | ds
<[(bM| o E71B| + K)K1bN*M M3 + bN M M3][|x1(y1(1)) — x2(y1(7))
+ |x1(y2(0)) = x2(y2(0) | + - - + [x21(¥a () — x1(ya (D) |]
<bngNMM3[NK1(bM |0 E72B| + K) + 1]|x1(t) — x2(1)|

< plxa() — x2(0)|.

Hence,® is a contraction mapping and has a unique fixed peiatY. This fixed
point is a mild solution of (6) oy satisfyingx(b) = x1. Thus, system (6) is controllable
onJ. O

6. Controllability of delay integrodifferential system

Consider the boundary control delay integrodifferential system of the form
13
(Ex(t)), =ox(t)+ f(t,x(yl(t)), /k(t, s)g(s,x(yz(s)))ds), tel,

0
Ox(t) = Byu(1),

x(0) = xo, (7)

wherek : J x J — R is a continuous function and the nonlinear operajorg x ¥ x Y —
Z andg:J x Y — Y are given.
To establish the results we shall assume the following conditions.

(@) f:J xY x Y — Z is continuous and there exist constamts, Mg > 0 such that for
all v1, v2 € B, andwy, w» € Y we have

| £, v, w1) — £, v2, w2) | < Ms[|vr — v2] + w1 — wa|]
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and
Mg = rpeajxﬂf(t, 0,0).

(b) g:J x Y — Y is continuous and there exist constahts L2 > 0 such that for all
v1, V2 € B,

lg(t, v1) — g(t, v2) || < L1lv1 — v2|
and
Lo = rpea}x”g(t, 0)|.
(c) There exists a constain such that
|k(t,s)| < N1 for(t,s) € J x J.

(d) There exists a constaptsuch that for alky, x> € Y

|x1(vi (1) — x2(vi ()] < plxr(t) — x2(0)|, fori=1,2.

(e) NM||Exoll + NK1[bM|lo E~*B|| + K]1[|x1] + NM||Exoll + L1+ L <r, whereL =
bNM[Ms(r + bN1(L1r + L2)) + Mg].
(f) Letqg = bpNMMs[1+bN1L1][NK1(Mb|oc E-1B||+K)+1] besuchthat& ¢ < 1.

The mild solution of the system (7) is given by

t
x(t)=E T (t)Exo+ / ENT4—-s)0E*B—AE™'T(t — s)Bu(s)ds
0

t N

+ / ET@ - s)f(s, x(y1(9)), /k(s, 1)g(7, x(y2(1))) dl’) ds.

0 0

Theorem 6.1. If the hypothese@)—(vi) and(a)—(f) are satisfied, then the boundary control
delay integrodifferential syste) is controllable onJ.

Proof. Using the hypothesis (vi), for an arbitrary functiet), define the control

ut) = Wl[xl —ET)Exo

b s

- / E~1T(kh - s)f(s, x(y1(9), /k(s, 1)g(7, x(y2(1))) dl’) ds:| @).

0 0
We shall show that, when using this control, the operétalefined ony by
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Ox(t)=E T (t)Exg
t

+ / ENT(t-s5)0EB—AET(t —s)B]W ™! |:x1 — E7T(b)Exo

0
b T
+/E1T(b—f)f(f,x(yl(t)),/k(r, n)g(n,X(Vz(n)))dnﬂ(s)ds
0 0
t N
+ / E7T( - s)f(s, x(yl(s)), /k(s, t)g(r, x(yz(t))) dr) ds
0 0

has a fixed point.
First it is shown thatt mapsV into itself. Forx € V,

|§Dx(t)|

<|ETHIT 0 Exo +f|E‘1|[HT<f—S)H loE= ]+ |AETIT( —9)B|]

b
. »erﬂ[w +HEI @B + [1E |70 -]
0

T

x [Hf(f,X(n(r)), /k(r, n)g(n,X(Vz(n)))dn) — f(z.0,0)

0

+ || f(x,0,0) ||] dr:| ds

N

+/|El|HT(t—s)|||:Hf<s,x(y1(s)),/k(s, T)g(T,X(J/Z(T)))dT)

0

— f(s,0,0)

+ || £ .0, O)H] ds

< NM|Exoll + N[bM||c ET B + K]Ka[lx1l + NM| Exol + L] + L

<.

Thus,® mapsV into itself. Now, forxy, xo € V,

|@x1(0) — Pxa(0)]

</\E’l\[HT<f—S>|| loE=2B] + [AET TG - B[] W
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b
| JlEHlire-ol
0

- f(t,xz(yl(t)), /k(t, n)g(n,xz(yz(n)))dn)

0

4

f(f, xl(yl(r)),/k(t, n)g(n,xl(yz(n)))dn)

0
dt:| ds
s

‘f(s,m(yl(S)),/k(s,T)g(r, xl(yz(r)))dr)

0

t
+ [lEHIra -9
0

- f(s,xz(yl(s)), /k(s, f)g(f,xz(yz(t)))dr>
0
< pbNMMs(1+bN1L1)[NK1(Mb|o E71B| + K) + 1]|x1(r) — x2(0)|
<q|xa0) — x2(0)].
Therefore,@ is a contraction mapping. Hence there exists a unique fixed point’

which is a mild solution of (7) oy satisfyingx () = x1. Thus, system (7) is controllable
onJ. O

ds

7. Applications

Theorem 7.1. Let 2 be a bounded, open subsetrf, and letI” be a sufficiently smooth
boundary off2. Consider the following boundary control system

3 .

E(z(t, y) — Az(t,y)) — Az(t, y) = p(t, z(t,y)), in Q= (0,b) x £2,
z2(t,0)=u(,0), onX=(0,b)x1TI,te[0,b],

z2(t,y)=0, z(0,y)=zo(y), foryes, (8)

whereu € L2(X), zo € L2(£2) and u € L2(Q). If conditions(i)—(ix) of TheorenB.1 are
satisfied, then syste(8) is controllable.

Proof. The above problem can be formulated abstractly into the boundary control system
(1) by suitably choosing = Z = L2(2), X = H Y%(I"), U = L3I"), By = I, the
identity operator, the operataf: D(E) C Y — Z defined by Fw = w — Aw with

D(E) = H%(£2) and

D(o)={ze L3(£2); Aze LA(2)}, oz=Az

The operatop is the “trace” operator such that = z| is well defined and belongs to
H~Y2(I") for eachz € D(0) (see [20]).
Define the operataA : D(A) C Y — Z by

AE"'w=AE'w with D(AE™Y) = H3(2) U H*(2).
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Here H*(£2), H*(I") are the usual Sobolev spaces®@nl". ThenA andE can be written,
respectively, as

o
Aw = an(w, wy)wn, w € D(A),
n=1

Z 1+n? (w wy)w,, w e D(E),

wherew, (y) = v2sinny, n = 1,2,3, ..., is the orthogonal set of eigenvectors &f
Furthermore, fotw € Y

E~ w Z 2(U) wn)wnv

2
_ n
AFE lw=2 m(w’wn)wnv
n=1

o0 n2
—t
THw = Ze1+'12 (w, wp)wy.

n=1

It is easy to see that E~1 generates a strongly continuous semigréup) on Z. Hence,
assumptions (i) and (ii) are satisfied.

To verify (iii) and (iv) define the linear operatdr: L2(I") — L2(£2) by Bu = v,,, where
vy, is the unique solution to the Dirichlet boundary value problem

Av, =0 ing,
vu=u Iinrl.

In other words (see [19])

/vum dx —/u—dx forall y € H}(2) U H*(£2), (9)

where 3‘/’ denotes the outward normal derivativefofThis outward normal is well defined
as an element aff /2(I"). From (9), it follows that

lvullz22) < Callul y-vacry,  forallu e HV2(I),

and
lvull g2y < Callull grzcry.  forallu e HYA(I).

From the above estimates it follows by an interpolation argument [23] that
HAE‘lT(t)BHL(LZ(F) L2(ry < < Cxt~ 34, forallr > 0 with v(r) = Cat /4,

whereC;, i =1, 2, 3, are positive constants independent:of
Assume the nonlinear functiqin satisfies

|t v1) = (e, v2) | < Kallvg —v2ll,  vi€ B, K1>0,
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and the bounded invertible operafdr exists. Choosé and other constants such that the
conditions (viii) and (ix) are satisfied. Hence all the conditions stated in Theorem 3.1 are
satisfied and so the system (8) is controllablé@mb]. O

Theorem 7.2. Consider the boundary control system

9 .
E(Z(I’ y) — Az(t,y)) — Az(t, y) = u(t, z(t, y)), inQ,

92(t,0
A0 L Bt 0)=u(t.0), on%. e,
n

z2(t,y)=0, z(0,y)=zo(y), foryeg, (10)

where zg € L2(£2), u € L"), u € L%(Q) and 8 is a nonnegative constant. Then
system(10) is controllable provided the conditions of Theor8r are satisfied.

Proof. To formulate this as a boundary control problem (1), suitably choose the spaces
Y, Z, U, X and the operatorg&, B, o andé as follows. LetY = Z = L2(2),U=X =
L?(I"), By = I, the identity operator, angk = 8z + g—fl The operatoE:D(E)CY — Z
is defined byEz = z — Az with domain D(E) = H2(£2) andoz = Az with D(o) =
H?(£2). The operatoA is given by

AETz=AE"Y with D(AE™) = |z e H¥(2); 0E"1z=0)}.
Then A and E can be written as in the previous example, and it can be easily seen that
AE~1is the infinitesimal generator of a strongly continuous semigrbup. Define the
linear operatoB : L2(I") — L?(£2) by Bu = v,, wherev, € H1(£2) is the unique solution
to the Neumann boundary value problem,

v, —Av, =0 ing,
vy .
,BUu+a—n=M |nF. (11)

Consider on the product spaée'(£2) x H1(£2) the bilinear functional

h(y, ¥) = /(yl// + grady grady) dx — /(u — By)Y do, (12)
2 r

whereu € H=Y%(I"). Here [ uy do is the value ofu aty € HY?(I'). Sinceh is
coercive, there is a, € H1(R2) satisfyingh(v,, ¥) = 0 for all ¥ € H1(£2). Hence,
v, = Bu is the solution to (11). From (12) it follows that

v < Cllu .
l u||1—11(_Q)\ l ”Hf%(l‘)

Since the operator A E~1 is self-adjoint and positive
b
|AE™2T (0)yo)% 2,0, dt < Cllyol? (13)
Yo LZ(Q) X Yo D((fAE_l)l/z)’
0
forall yo e D(—AE~1H)Y2) = H1(2).
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Let § be the scalar function defined by
S(t)=nILmooianA,,T(t)HL(Hl(Q)’Lz(Q)), t €[0,b],
whereA, = AE~Y(I +n 1AE~1)~1 forn=1,2,.... Obviously,

JAET T O L oy 1202y < 8@, fori e (0,b]. (14)
Also, (13) implies
b
/HA,,T(t)Hi(Hl(Q)!LZ(Q))dtgC, for all n.
0

Therefore, by Fatou’s lemma it follows th&ie L2(0, b) and hence from (13) and (14)

HAE_lT(t)BuHLZ(Q) < C8O)lull 2y, forallz e (0,b), ue LA(I),

with v(r) = C8(r) € L?(0,b). Thus, assumptions (i)—(iv) are satisfied. Further, the
nonlinear functionu satisfies

|, v1) — (@, v2)| < Killve —v2ll, vi€B,, K1>0.

Assume the bounded invertible operatiirexists and choosk and other constants in
such a way that the conditions (viii) and (ix) are satisfied. Hence, all of the conditions
stated in Theorem 3.1 are satisfied, and system (10) is controllalile bh O

Example 7.3. Consider the partial delay integrodifferential equation of the form

t

%(Z(tv )’) - AZ(L )’)) - AZ(I, )7)=Z(f—h» y)+/3inZ(s —h, y)ds1 in Qv
0
az(t,0)

n

z2(t,y)=0, z(0,y)=zo(y), foryeg, (15)

wherezg € L2(2), u € L?(I") andp is a nonnegative constant.

LetY = Z=L%(2),U = X = L%(I"), By = I, the identity operatofiz = Bz + & and
oz = Az with domainD (o) = H?(£2). Define the operatorg: D(E) C Y — Z, andA
by

+Bz(t,0)=u(t,0), onX, tel,

Ez=z— Az withdomainD(E) = H3(2),
AETLz=AE"Y; with D(AE™Y) = [z € H?(2): 0E~1z =0},

respectively, wherel and E are as in Theorem 7.1. It can be seen that ! generates a
strongly continuous semigroufXz), t > 0.
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Let us take

t t

/k(t, s)g(s, z(s — h))(y) ds =/Sinz(s —h,y)ds,

0 0
t

t
flt,z(t —h), /k(t, s)g(s, z(s — h)) ds |(y) =z —h,y) +/Sinz(s —h,y)ds,
0 0
wherek(z, s) = 1. Obviously

t 1

Z(t—h,y)+/sinz(s—h,y)ds — x(t—h,y)+/3inx(s—h’y)ds
0 0
SA+D)|zls —h, y) = x(s = h, ).

Using the similar argument as in Theorem 7.2, we see that the conditions (i)—(iv) are
satisfied. Assume that the bounded invertible oper&foexists. Choose and other
constants such that the conditions (e) and (f) of Theorem 6.1 are satisfied. Hence the
system (15) is controllable d®, b].
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