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Abstract
Criteria for stability, asymptotical stability and instability of the nontrivial solutions of the impul-
sive system
dx
7y =S, 1 #6i(),
Axl=g; (x) = 1; (x), ieN={(12..1},

whereAx|,—p := x(6+) —x(8), x(60+) = lim,_, y+ x(¢) are obtained by Lyapunov’'s second method.
The construction of a reduced system in the neighbourhood of a nontrivial solution is a central aux-
iliary result of the paper.
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1. Introduction

The problem of stability of solutions holds a very significant place in the theory of
impulsive differential equations (see [3,8,15] and references cited therein). Milman and
Myshkis [12] investigate the stability of the zero solution of differential equations with
fixed moments of impulse actions by using the second Lyapunov method. Later, the method
was used for differential equations with impulses at variable times, impulsive hybrid sys-
tems, for stability criteria in terms of two measures and integro-differential equations [2—6,
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8,10,13,15]. To the best of our knowledge only papers [9,11] deal with the stability of the
nontrivial solution of an impulsive system with variable time of the impulse action via
Lyapunov direct method. The results of [9] are based on the idea that the surfaces of dis-
continuity degenerate into vertical planes as time increases infinitely and the assumption
that the distance between different solutions does not increase after jumps. In present paper
we consider a more general form of the problem without using the conditions mentioned
above. It deserves to be emphasised that, apparently, the construction of a reduced system
for systems with variable time of impulsive action is done for the first time.
Let G, C R" be a bounded domain a®l= {(z,i,x): t € RT, i e N, x € G,.}, where
to € R is fixed, R* = [tg, +o0), N ={1,2,3,...}. The main object of the paper is the
following system of differential equations with impulse actions on surfaces:
dx
i f@x), t#06i(x),
Ax|=6;(x) = Ii (%), 1)
which is considered on the s6tand whose solutions are piecewise continuous, with dis-
continuities of the first kind, left continuous functions.
Let |x|| denote the Euclidean norm efe R", andR = [0, 00).

Definition 1.1. A function h € C[R4, R ] is said to belong to clas# if 4 is strictly
increasing and (0) = 0.

Definition 1.2. A functiona € C[R4, R4] is said to belong to clasd if «(0) =0 and
a(s) > 0fors > 0.

We will use the following conditions:

(C1) f(t,x):R* x G, — R" is a piecewise continuous function with discontinuities of
the first kind at boundary points of surfaces 9;(x), i € N, where it is left contin-
uous with respectto, I; € C[G,, R"], 0; € C[G,, RT],i e N;

(C2) sup; I (1, )| =M < o0;

(C3) There exist a functiop € H and a numbet > 0 such that

|7 (x1) = i (x2) | < v (Ilx1 — x2ll), |6; (x1) — 6; (x2)| < 1llx1 — x2

foralli e N, {x1, x2} € Gy;
(C4) 19 < 01(x) < bO2(x) < ---, 0;(x) > oo asi — oo for everyx € Gy;
(C5) 0;(x + I; (x)) < 0;(x) foralli e N, x € Gy;
(C6) O;11(x + I;(x)) > 0;(x) foralli e N, x € Gy;
(C7) The existence and uniqueness of solutiondphold.

We should note that the system considered in this paper belongs to a class of systems with
impulses at nonfixed moments and, therefore, it needs conditions of the absence of beating
[8,15]. We assume that (C5) is valid addl < 1. Then beating is absent for (1). It is
easily seen that conditions (C1) and (C6) on functioass; (x) guarantee that a solution

of (1) meets every surface of discontinuity if the range of the funatierd; (x),i € NV, is
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included into the domain of the solution. So we can assume that the following condition of
general character is valid:

(C8) A solutionx () : [tg, a] — R" of (1), wherea € R, a > 1y, Or a = oo, intersects any
of the surfaces = 6;(x), i € A/, not more than once. And, if SYpoi(x) <a, then
x(t) intersects = 6; (x) exactly once.

Let xo(7) be a solution of (1) discontinuousat t;, i € . It follows from assumptions
(C3), (C4) and (C8) on the surfaces of discontinuity that the sequence- 1,2, 3,...,
does not have a finite limit point. Thus {if;}, i € NV, is an infinite sequence, then— oo
asi — oo. Notice that (C4) impliegy # 7; forall i e V.

A solutionxg(¢) of (1) is called continuable to the rightif(r) : R* — R" andr; — oo
asi — oo.

Let T C R be a fixed interval. Define a séfy of functionsu : T — R™ which are left
continuous with discontinuities of the first kind. Assume that the set of discontinuity points
of every functioru € Uy is not more than countable and does not have a finite limit point
inR.Fixee R, e >0.

Definition 1.3. A function u» € Uy is said to belong t@-neighbourhood ofi; € Uy if:
(1) every discontinuity point ofi2(¢) lies in e-neighbourhood of a discontinuity point of
u1(t); (2) forallr € T, which are not ire-neighbourhoods of discontinuity pointsof(z),
the inequalityllu1 () — u2(2)|| < € is valid.

Definition 1.4. Hausdorff’s topology, which is built on the basis of atheighbourhoods,
0 < € < 00, of all elements: € Ur, will be called By -topology.

Let xo(¢) be a continuable to the right solution of (1).

Definition 1.5. The solutionxo(z) is said to beB-stable in Lyapunov sense if for any
positivee € R there exists a number > 0, such that every solution(s) of (1) which
satisfied|xo(t0) — x(t0) || < § belongs ta:-neighbourhood ofg(¢) in Bg+-topology.

Definition 1.6. A B-stable solutionxg(z) of (1) is calledB-asymptotically stable, if there
exists a numben > 0, such that, ifc(7) is a solution of (1) which satisfies an inequality
lx(t0) — xo(t0) || < A4, then for any > 0, a numbeE > 1g, exists such that the(z) lies in
e-neighbourhood ofo(7) in Bjg,«0)-topology.

Definition 1.7. A solution xg(z) of (1) is calledB-unstable, if either it is not continuable
to the right or for some > 0, and anys > 0, a solutionxs(z) of (1) exists such that
lxs (f0) — x(t0) || < 8 andx;(¢) is not ine-neighbourhood afg () in Br+-topology.

Remark 1.1. The definitions of stability of nontrivial solutions for systems with nonfixed
moments of impulse actions were given in [8,9,15]. The authors of [8,9] name this kind of
stability as quasistability. Our definitions [1] are based on the ideas of [7] which were used
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to define a discontinuous almost periodic function. One can show that Definitions 1.5-1.7
and the definitions of quasistability are equivalent.

Remark 1.2. It is easy to see that by using the languageBefopology one can give
definitions of all kinds of stability of solutions as well as of integral manifolds. If the
moments of impulse effects are fixed then the definitions of stability coincide with the
classic definitions [14].

Fix h% € R, h° > 0, denoteG® = {(r,x) | t € R, |lx|| < h°}, and letV (s, x) €
CYG® RylandV(t,0)=0forallr € Rt.

Definition 1.8. The functionV (z, x) is said to be positive definite o° if there exists
a € H such thatV (¢, x) > a(||x||) for all (z,x) € G% it is called positive semidefinite
on G2 if V(r,x) >0 for all (t,x) € G° The functionV (¢, x) is called negative definite
(negative semidefinite) o&i° if —V (¢, x) is positive definite (positive semidefinite) 6if.

We will use the notation

aV(t,x)
0x

n
aVv

i=1 !

Vit x) =

wherex = (x1,...,xp) and f (¢, x) = (f1, ..., fn).

2. B-reduced system

Let xo(¢) be a continuable to the right solution of (1), andi € N, be discontinuity
points ofxo(?), i.e.,7; = 0; (xo(%;)),i € M. Assumethat (t) : RT — R" is another solution
of (1) andy;, i € NV, are discontinuity points of(¢), y; = 6;(x(y:)),i € N'. One can show
that the difference(r) = x(¢) — xo(¢) satisfies the following system of equations:

dz
i [t xo@) +2) = f(t.x00), t#u, t#y,
Azli—g = —1i(x0(1)),  AzZli=y, = Li(x (1)),
AZlimy=g, = Li(x () — i (x0(r))), i€N. )

As the points = y;, i € V, depend on a solutian(z), it is not easy to investigate stability
of the zero solution of (2). So we suggest to use another way of investigation as follows.
Fixi e M, x € G, and leté(¢) be a solution of the system

dx
- , 3
P ft,x) )
with initial condition&(z;) = x. Letr = ¢; be a meeting moment such that= 6; (£(¢;)).
Further we shall accept;, ¢;] as well agt;, ¢;] as oriented intervals, that is
— _ . u] ifg <,
[z, il = { [z, ¢i] otherwise.
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Assuming that solution§(r) and &1(z) of (3), £1(&;) = £(&) + 11(6(¢;)) are given on
interval[z;, ¢;] we construct a mag; : {tr;} x G, — {t;} x R" such that

<15(X)—/f £(s) dS+I<X+/f JE(s))d ) /f ,€1(5)) d

Denote
ho =
teRt

x€dGy

ho >0,

whered G, is the boundary of the domai®, and introduce new functions

1+3IM s 2AM IMs
k)= 1—1Ms+’/(1—zM>’ “(s)zl—lMH’/(l—zM)’
2IM s
7(s) = 1—lMS+y(1—lM)’
wheres > 0. Obviously,{«, u, 7} C H. Leth € R be such that > 0 andk (k) = ho, and

G = {x e Gy | ||x —xo(t,')” < h}, Gl.+ = {x e Gy | ||x —xo(t,'+)H < h},

; Lh lh n
G=7,'i—1 , T + x G UG/,

—IM 1—IM
<h} (UG)

ieN

={(t,x)eG|reR",

wherex is the sign of the Cartesian product.
Let us consider the system

d

S =fey). t#m

Ay|l‘=‘[i :®l(y) (4)
Definition 2.1. Systems (1) and (4) are said to Beequivalent onG;, x N, if for every

solutionx (¢) : [tg,a) = R", a € R™(a = 00), (¢, x(¢)) € Gy, of (1), there exists a solution
y(1), y(to) = x(tg), of (4), such that

2=y, telna\ @l (5)
ieN
Specifically,
x(t)=y(m), xGH=y&) ifn<y, (6)
() =yE+), x@=y&) ifrn>¢. (7)

And, conversely, for every solution(¢) : [tg, a) — R",a € RT (a = 00), of (4), (¢, y(1)) €
G, there exists a solution(z), x (o) = y(t0), of (1), which satisfies (5)—(7).
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Lemma 2.1. The following assertions are valid

(i) ®i(xo(ri)) = I;(x0(17)), i €N,
(i) ®;:G;i— R",ieN;
(ii)) 1®i(x) = L) < u(llx = xo(z)|) forall i e NV, x € Gi;
(V) 11®i (x) — i (xo(z: ) || < (l|lxo(z:) — x|) forall i e N, x € G;.

Proof. Assertion (i) immediately follows from definition ob; (x). We have, for fixed
x € Gy, thaté(r) = x + f,’l. f(s,6(s))ds, t € [7i,&], and&1(1) = §(&) + LiE(&)) +
JL G g ds, e (%, &1. Then

&) —xo®) | < [|x — x0(w)|| + Mg — 7] (8)

forall € [1;, ¢;]. Hence|t; — &i| = 16; (xo(1:)) — 0; (6 (&) < I(llxo(ti) —x || + M|7; — &i])
and

llx — xo(z)l

It — &l <1 Y, 9)
From (8) and (9) it follows that
&) — xo( | < XX ig ¢ 7 (10)

1-IM
and

|€1() = xo(mi+) | = "«5(&') + L (5©) + / f(s.81(s)) ds — xo(z) — Ii (xo(%:)) H
;l

<x([voe) ~ x]) )

for all t € [, ¢;]. The equalityd; (x) = &1(t;) — x and (10) and (11) imply thad; (x) is
defined onG; and assertions (iii) and (iv) are true. The lemma is proved.

Theorem 2.1. System¢l) and(4) are B-equivalent orG, x N. The functiont = xo(¢) is
a solution of systemd) and(4) simultaneously.

Proof. Letx(z) andy(z) be solutions of (1) and (4), respectively, such thab) = y(to).
Without loss of generality we can assume thrgtz1] is an interval of continuity of solu-
tionsx(z) andy(¢) and, hence(z, x(¢)) € G, for all ¢ € [tg, 71]. It is obvious that1 > 1.
Since the case; = 3 is trivial, we shall consider only the cage> ;1. If (¢, x(2)) € Gy,

t € [11, £1], then

|y — x| =

t
¥(e1) + B1(y(e) + f F(s.y(5)) ds
71

t
— xo(t1) — I1(xo(t1)) — / £ (s, x0(s)) ds

1
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Mh
1-IM
If it is known that(¢, x) € G’ for all ¢ € [r1, 1], then similarly to (10) one can show that

<h+m(h) +

=« (h) = ho.

[x(@) = xo(r0)|| =

t
y(r1) + / f(s.x(s))ds — xo(1)
T

< 1= < k(h) = ho.

Moreover,x(£1+) = y(¢1); in view of the definition of®1(x). Thus, (C7) implies that
x(t) = y(¢) if ¢ is a continuity point and > ¢1. Then one can verify that conditions of
Definition 2.1 are valid for all € [7g, a). The assertion aboub(?) is trivial. The theorem
is proved. O

Let x(#) be a solution of (1) and an integral curvexgf) belongs toG;. Let y(¢) be a
solution of (1),y(t0) = x(t0), which corresponds te(r) by B-equivalence irG, x N. If
u=y(t) — xo(t) thenu(r) satisfies the following system:

W paw), 14

— = F(t,u), T,

dt '

A=y, = Ji (u) + W;(u), (12)
where

F(t,u)= f(t,x0(t) +u) — f(t, x0(1)), Ji(u) = I; (xo(ti) 4+ u) — I; (xo(%i)),
Wi (u) = @; (xo(zi) +u) — I (xo(zi) + u). (13)

Definition 2.2. System (12) is said to beRrreduced system for (1) in the vicinity @§(z).
Theorem 2.2 ||W; () || < p(llul)) if lull < h.

Proof. The validity of the theorem follows immediately from condition (iii) of Lemma 2.1
and the last equality in (13).0

Remark 2.1. It is obvious thatW; are functionals of solutions of (3) and, hence, they
cannot be defined explicitly as well @& and J;. But our intention is to use a qualitative
property of W; which is given by Theorem 2.2.

3. Stability

In this section we will formulate and prove the theorems of stability and unstability.
They are analogues of Lyapunov and Chetaev theorems [8,14,15].

Lemma 3.1. Suppose that oG° the following conditions are fulfilled
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(I1) V(,x) is positive definitg

(I2) Vr(z, x) is negative semidefinite

(I3) There exists a functiom € A such thatV (z;, x) — V(t;, x + J; (x)) < —a(||x]);
(Is) There exists a functiofi € A such thatjoV /ax| < B(llx]);

(Is) B(s)u(s) —a(s) <0if s > Ois sufficiently small.

Then the trivial solution of12) is stable.

Proof. The conditions imply that

V (i, x + Ji (x) + W; (x)) — V(7 %)
=V(t,x+Jix) =V, x) = V(r,x + Ji() + V(ti, x + Ji(x) + Wi (x))
< B(IIx ) w(llxl) —e(lxl) <0

if ||x] is sufficiently small. Thus, all the assumptions of Theorem 47 of [15] are fulfilled
and the proof is complete.O

Theorem 3.1. Suppose that conditiof€1)—(C8)and (l1)—(Is) are fulfilled. Then the so-
lution xo(¢) of (1) is B-stable.

Proof. Fix € > 0 and denote; = e min(1, (1 —IM)/1). Since (12) is the reduced system
[15] of (4), then by above lemma the solutiog(s) of (4) is stable, i.e., there exisis> 0,
such thatify(¢), ||y (fo) —xo(t0) || < 8, is a solution of (4), thefiy (¢) —xo(?)|| < €1,t € RT.
Let x(¢), x(t0) = y(t0), be a solution of (1). Th&-equivalence implies that

[x(®) —xo)| <e1, t¢(m. &l ieN, (14)
wherez;, i € NV, are the discontinuity points af(z). Assume without any loss of generality
thaty; > 7. We have thag; —7; = 6; (x (&) — 0i (x (7)) < {([lx (&) —xo(i) ) <I(llx (i) —
xo(t) || + M (¢ — 7)) and

le1
;,—r,<1_lM_e. (15)

The proof of the theorem follows from (14) and (15)2

Lemma 3.2. Suppose that conditior{s1)—(l4) are valid and, moreover, the following as-
sumption is fulfilled

(Ig) There exists a functiopr € A such that8(||x|)u(llx])) —a(x]) < =¥ (V (1, x)) for
sufficiently small|x]||.

Then the zero solution ¢12)is asymptotically stable.
Proof. Similarly to the proof of Lemma 3.1 one can find thatz;, x + J; (x) + W; (x)) —

Vi, x) < —¥(V(z, x)) for sufficiently small|| x| and, hence, all the conditions of The-
orem 47 of [15] for the asymptotic stability are fulfilled o
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Theorem 3.2. Suppose that conditiof€1)—(C8)and (11)—(14), (1) are fulfilled. Then the
solutionxg(z) of (1) is asymptotically stable.

Proof. Since all conditions of Theorem 3.1 are valid, then the solutign) of (1), is B-

stable. Moreover, (12) is the reduced system for (4) and all the conditions of Lemma 3.2 are
fulfilled. Hence xo(z) is an asymptotically stable solution of (4). That is, &r> 0 there
existss1 > 0, such that ify(¢), || y(t0) — xo(20)|| < J1, is a solution of (4), then there exists
E€R,E=E(y,€),§ > 10, suchthally(r) —xo(r)|| < €1, >§. Letx(?), x(t0) = y(t0), be

a solution of (1). Then similarly to the proof of Theorem 3.1 one can show that (14) and
(15) are valid for > &. That is,x(¢) is in e-neighbourhoods; = e min(1, (1 —IM)/1), of

x0(?) in the Big ) -topology. The theorem is provedO

We shall formulate the following Theorems 3.3 and 3.4 without proof. They can be
verified by the same techniques as Theorems 3.1 and 3.2 using Theorems 48 and 49 of
[15].

Theorem 3.3. Suppose that condition€1)—(C8) (I1), (14) are fulfilled. Moreover, the
following assumptions are valid

(Vo) There exists a numb@ér> 0: inf;(tj+1 — 7;) = 0;

(V1) There exists a functiop € A such thatVy (¢, x) < —¢(V (1, x)) for all (¢, x) € G°;

(V2) There exists a functiotr € A such thatV (z;, x + J; (x)) < ¥ (V (7, x)) — B(Ix|) x
w(||lx|) for all i € A and sufficiently smalx||;

(V3) There exist numbergy > 0 andv > 0 such thatfa‘/’(“)(l/ms))ds <6 —v for all
a € (0, ag].

Then the solutiomg(z) of (1) is B-stable ifv = 0 and it is B-asymptotically stable if > 0.

Theorem 3.4. Let conditiongC1)—(C8) (I1), (1), (V2) be valid and, moreover, the follow-
ing assumptions be fulfilled

(V4) There exist®; € R, 61 < o0, such thasyg(t,'_H_ — 1) =01;
(Vs) There exists a functiop € A such thatVg (¢, x) < ¢ (V (¢, x)) for all (¢, x) € G%
(Vs) There exist numberg > 0 andv > 0 such thatfg(a)(1/¢(s))ds > 61 + v for all
a € (0, ag].
Then the solutiomg(?) of (1) is B-stable ifv = 0 and it is B-asymptotically stable if > O.
Let us make an additional assumption that

(C9) inf[infg, 6;+1(x) — sup;, i (x)] =g > 0.

Lemma 3.3. If conditions(C1)—(C9)are fulfilled, thenB-stability of the solutiong(r) of
(1) implies that it is a stable solution ¢4).
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Proof. Fix e € R, 0< ¢ < q/(1+2M), and denote; = e(1 +2M)"1, T ={r € R |
|t — 7| > €1, i € N}. There existss = §(e1) > 0 such that a solution (), |lx(t0) —
xo(to)|| < 8, of (1) satisfies the inequalities; — ¢;| < €1,i € N, and|x(t) — xo(?)| < €1,
t € T, whereg;, i € N, are the points of discontinuity af(z). Let y(z), y(t0) = x(tp), be a
solution of (4). Sinceg N m =@,i e N, itistruethat|y() —xo(®)|| <e1<e,teT.
Lettr ¢ T. Then the following cases are possible: (&) (z;, ¢;], i € N; (b) there exists
j €N, suchthat € (;g\j]. We shall consider these cases in turn.
(a) Letus assume that < ¢; <t, [t;,1]NT = (other possibilities can be considered
similarly). Denote

" =1j+e1 (16)

Using (C9) one can verify that

Jx(*) —x0(t™) || e, x(t*)=y(t*). (17)
Then
t t
|y(@) —xo)| = | y@*) + / f(s.y(9)) ds — xo(t*) — / f(s.x0(s)) ds
t* t*

<€e14+2Me1 =e. (18)

(b) Now lett; <t < ¢; (similarly, one can investigate the case< ¢ < t;). Defining
t* again by (16) and (17), one can see that (18) is valid and the lemma follaws.

Lemma 3.4. Suppose that conditiofl4) is fulfilled and the following assumptions are
valid:

(W1) The intersection of the domail = {(¢, x) € G° | V(z, x) > 0}, and the plane =
constis a nonempty open set adherent to the origin for agyR™;

(W2) V(t,x) is bounded orP;

(W3) Vr(t,x) is positive semidefinite oR;

(W4) There exists a functiopr € A suchthatV (z;, x + J; (x)) =V (i, x) > ¥ (V(7;, x)) +
BllxDu(lx|) foralli e N, x € P.

Then, the zero solution ¢12)is unstable.
The proof follows from Theorem 50 of [15] similarly to the proof of Lemma 3.2.

Theorem 3.5. Suppose that conditio€1)—(C9)and (W1)—(Wa) are fulfilled. Then the
solutionxg(z) of (1) is B-unstable.

Proof. The proof follows immediately from Lemmas 3.3 and 3.42
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4. Examples

Example 4.1. Consider the following system with nonfixed moments of impulse actions:

dxq dxo ; .
=Y o= (=D*tsinxg, 1 #6;(x),
;1=
Ax1li=,(x) =ax1+bxo+ 7| (=1 — a# ,
1— (=1)

Ax2|i=6;(x) = —bx1+ axz + b # (19)
wherex = (x1, x2) € R? anda andb are constants such that

(a+1°+p°<1 (20)
and

. ; A ; ,

0;(x) =i0 — (=1)irx1+ox2 — 7(1—(—1)'), ieN, (21)
wherea, 9, o are constants such that- 0, A > 0 and

0 > Am. (22)

Denoteh = 1 — (a + 1) — b? and
G:{(t,i,x)|t>t0, ieN, |x| <%}

whererg € R, 0 < 19 < 60, is fixed. We assume thatand|o| are sufficiently small such
that surfaces = 6;(x), i € AV, do not intersect irG. Thus, the seG is a partition of sets
Gi,i € N, whereG is a part ofG which is between the surfaces= 7o andt = 61(x),
andG; is a part ofG which is between surfaces= 0;_1(x) andr = 6; (x), and the surface
t =6;(x) isincluded inG;. In G;,i =2k — 1,k € N, system (19) has a form

dx1 dx sin t#£6;(x)

— = X2, — X1, (x),

dt 2 dt 1 i

Ax1li=g;(x) = ax1+ bxz — (a + D,

Ax2|i=¢;(x) = —bx1+ axz + b, (23)

whered; (x) =i6 + A(x1 — ) + ox2.
If i =2k,i € N/, then system (19) has another formep,

dx1 D2 _ _ginxg, 1 6;(x)

— = X2, _— = X1, i (X),

dt 2 ur ! !

Ax1|=g;(x) = ax1+bx2 + 7,

Ax2li=p;(x) = —bx1+ ax2, (24)

whered; (x) = i6 — Ax1 + ox2. One can verify that a piecewise constant functon =
(@), ¥ (1)), where

7 if t € lto, 01U (i6, (i 4+ 1)O],
¢ = { 0 ifreU_p_ 406, (i + D6l
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andy (r) =0, forallr € RT, is a solution of (19) ((23}- (24)) andr; =i6,i € NV, are dis-
continuity points of (7). Notice thats () intersects every surface of discontinuity exactly
one time. Indeed, if =2k — 1,k € \V, then

0(6(mi) + A&(1i)) =i60 — A < i =06;(£(x)),
0(6(w)) =0 < (i + 10 — A = 641 (6(6) + AE(%:)). (25)
The last inequality is true in view of (22). Andif= 2k, k € NV, then

9($(t,~) + AE(I,-)) =i —Amr <if=06; (g(n)),
6(&(m)) =i6 < (i + 1O =6,41(£(6) + AE(w)). (26)

Thus, (25) and (26) imply that conditions (C5) and (C6) are fulfilled. Denot€byhe
union of n-neighbourhoodsy € R, > 0, of the points(0; 0) and (r; 0) in R?, M =
supco(x§ + sirf(x1)), I = (1/2)max, |o ), I1 = (1/2) max(al, |b|). One can choosg

so thati/M < 1. Moreover, inequalities (25) and (26) are valid uniformly with respect to
i € N and the functions = ¢; (x) are uniformly continuous for alle /. Thus, in view of
continuity of the functions in the impulse part of (19) and of functioaso; (x), one can
conclude that there is a neighbourha®¥of & (1) in Bg+-topology such that every solution
x(r) € GY t € RT, intersects exactly one time every surface of discontinuity. Denote

2

X .
V(x) =1~ cosxs + ?2 Fi(t,x)=x2,  Fa(t,x) = —sinxy,
IV@ =axi+bxo, TP (x) = —bx1 +axz.
The system
dx1

e, B2 B, 146,
— = s s — = ,X), i(X),
dt 1 dt 2 !

1 2
Axtliey = TP @), Axalimy = 1P (), (27)

is a B-reduced system of Eq. (19) in a neighbourhood @§. It is not difficult to verify
that

Vr(x) <0 (28)

and

h
V()= V(x+Jix)= [5 +K(x>} Ix112,

wherekx (x) — 0 as||x|| — O.
Fix a numbek € R, 0 < € < h/2, and denote(s) = (h/2+ €)s2. Then

V()= V(x+ Jix) <a(llxl) (29)

if ||x|| is sufficiently small. Moreover,

|52 ] <p0) (30)
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for B(s) = 2s if ||x| is sufficiently small. Thus,

h 2AM2+1
) = B0n(hh) = 5 + €= 2T 2

whereu(s) =2IM(2+11)s/(1—IM). Let
h 2IM(2+11)

2T T 1M

One can verify thaV (x) = ||x||2/2 + ¢ (x), where the series far(x) starts with not less
than the third degree. Hence, there exists a funafioa A such that||x |2 = ¥ (V (x)).
Denoting

> 0.

h 2AMQ2+1
y(V) = [E +e— ﬁ}w(vu)),

we have that all conditions of Theorem 3.2 are valid &l is a B-asymptotically stable
solution of (19). As¢ is arbitrarily small one can conclude thgk) is B-asymptotically
stable ifiM(2+11)/(1 —IM) < h/4.

Example 4.2. Consider the following system:

d - d 1 .
Tt (D sty S = (D sinnad A6,
i 1— (-
Ax1li=g,(x) =ax1+bxo+ 7| (1) — a# ,
b ;
AX2|1=0;(x) = —bx1+ax2 + 7[1 — (=1 ] (32)

We will stick to system (31) from the previous example: the Gethe surfaces of dis-
continuity (21), relations (20) and (22) and constamtd, /1. Also assume thatM < 1.

One can show that the functidriz) from Example 4.1 is also a solution of (31) and this
solution satisfies relations (25) and (26). The reduced system for (31) in a neighbourhood
of £(¢) has the form (27), where

Fi(t,x) =xa+si(x1),  Fa(t,x) = —sin(x1) + x3,
IV@ =axi+bx2, TP (x) = —bx1 +axz.

Thus, we have that every solution of (31) intersects every surface of discontinuity exactly
once if it belongs to a sufficiently small neighbourhood &) in Bg+-topology.
Take again as a Lyapunov function the expres$ign) = 1 — cosxy +x22/2. Itis easily

seen thaVr(x) = sinf(x1) + x5 < V2(x) if |x|| is sufficiently small. Moreover,

h
V(x+Ji(x) = V(x)= [_E + K(X)} Ix11, (32)

wherex (x) — 0 as||x|| — 0. We will show that the inequality
IM2+1) h

1—IM 2
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implies thatt (1) is B-asymptotically stable. Denote
_ h IM2+1)
T2 1o

Let ||x|| be sufficiently small such thét (x)| < €, wheree, 0 < € < h1, is fixed. Then (32)
and inequality & (x) < ||x||2 imply that

h
V(x+Ji(x) =Vx) - <§ - K(X)> Ix11?
<SV[1—=2(h1—e)] = B(llxll) e (llxll),

whereB(s) and u(s) are as defined in the previous example. If we denpte) = [1 —
2(h1 — €)]s, then the condition (Y) is valid and

[ ds [ods  2h—e
ol / 27 a(l+2(e — )
v (a) (1-2(h1—e€))a
Since the inequality
2(h1—€)

—_— = >014+v, 61=6,

a(l+2€—h))~ !

is true ifa is sufficiently small, we can conclude that conditiors{V¥6 also valid and ()
is a B-asymptotically stable solution of (31) by Theorem 3.4.
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