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Abstract

Criteria for stability, asymptotical stability and instability of the nontrivial solutions of the im
sive system

dx

dt
= f (t, x), t �= θi (x),

∆x|t=θi (x) = Ii (x), i ∈ N = {1,2, . . .},
where∆x|t=θ := x(θ+)−x(θ), x(θ+)= limt→θ+ x(t) are obtained by Lyapunov’s second meth
The construction of a reduced system in the neighbourhood of a nontrivial solution is a centr
iliary result of the paper.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The problem of stability of solutions holds a very significant place in the theor
impulsive differential equations (see [3,8,15] and references cited therein). Milma
Myshkis [12] investigate the stability of the zero solution of differential equations
fixed moments of impulse actions by using the second Lyapunov method. Later, the m
was used for differential equations with impulses at variable times, impulsive hybrid
tems, for stability criteria in terms of two measures and integro-differential equations
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8,10,13,15]. To the best of our knowledge only papers [9,11] deal with the stability o
nontrivial solution of an impulsive system with variable time of the impulse action
Lyapunov direct method. The results of [9] are based on the idea that the surfaces
continuity degenerate into vertical planes as time increases infinitely and the assu
that the distance between different solutions does not increase after jumps. In presen
we consider a more general form of the problem without using the conditions men
above. It deserves to be emphasised that, apparently, the construction of a reduced
for systems with variable time of impulsive action is done for the first time.

LetGx ⊂Rn be a bounded domain andG= {(t, i, x): t ∈R+, i ∈ N , x ∈Gx}, where
t0 ∈ R is fixed,R+ = [t0,+∞), N = {1,2,3, . . .}. The main object of the paper is th
following system of differential equations with impulse actions on surfaces:

dx

dt
= f (t, x), t �= θi(x),

∆x|t=θi(x) = Ii(x), (1)

which is considered on the setG and whose solutions are piecewise continuous, with
continuities of the first kind, left continuous functions.

Let ‖x‖ denote the Euclidean norm ofx ∈ Rn, andR+ = [0,∞).

Definition 1.1. A function h ∈ C[R+,R+] is said to belong to classH if h is strictly
increasing andh(0)= 0.

Definition 1.2. A function a ∈ C[R+,R+] is said to belong to classA if a(0) = 0 and
a(s) > 0 for s > 0.

We will use the following conditions:

(C1) f (t, x) :R+ ×Gx → Rn is a piecewise continuous function with discontinuities
the first kind at boundary points of surfacest = θi(x), i ∈ N , where it is left contin-
uous with respect tot , Ii ∈ C[Gx,R

n], θi ∈ C[Gx,R
+], i ∈N ;

(C2) supG ‖f (t, x)‖ =M <∞;
(C3) There exist a functionγ ∈ H and a numberl > 0 such that∥∥Ii(x1)− Ii(x2)

∥∥� γ
(‖x1 − x2‖

)
,

∣∣θi(x1)− θi(x2)
∣∣� l‖x1 − x2‖

for all i ∈N , {x1, x2} ∈Gx;
(C4) t0 < θ1(x) < θ2(x) < · · · , θi(x)→ ∞ asi → ∞ for everyx ∈Gx;
(C5) θi(x + Ii(x)) < θi(x) for all i ∈ N , x ∈Gx;
(C6) θi+1(x + Ii(x)) > θi(x) for all i ∈ N , x ∈Gx;
(C7) The existence and uniqueness of solutions of(1) hold.

We should note that the system considered in this paper belongs to a class of syste
impulses at nonfixed moments and, therefore, it needs conditions of the absence of
[8,15]. We assume that (C5) is valid andMl < 1. Then beating is absent for (1). It
easily seen that conditions (C1) and (C6) on functionst = θi(x) guarantee that a solutio
of (1) meets every surface of discontinuity if the range of the functiont = θi(x), i ∈ N , is
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included into the domain of the solution. So we can assume that the following condit
general character is valid:

(C8) A solutionx(t) : [t0, a] → Rn of (1), wherea ∈ R, a > t0, or a = ∞, intersects any
of the surfacest = θi(x), i ∈ N , not more than once. And, if supGx

θi(x) < a, then
x(t) intersectst = θi(x) exactly once.

Let x0(t) be a solution of (1) discontinuous att = τi , i ∈ N . It follows from assumptions
(C3), (C4) and (C8) on the surfaces of discontinuity that the sequenceτi, i = 1,2,3, . . . ,
does not have a finite limit point. Thus, if{τi}, i ∈ N , is an infinite sequence, thenτi → ∞
asi → ∞. Notice that (C4) impliest0 �= τi for all i ∈N .

A solutionx0(t) of (1) is called continuable to the right ifx(t) :R+ →Rn andτi → ∞
asi → ∞.

Let T ⊆ R be a fixed interval. Define a setUT of functionsu :T → Rn which are left
continuous with discontinuities of the first kind. Assume that the set of discontinuity p
of every functionu ∈ UT is not more than countable and does not have a finite limit p
in R. Fix ε ∈ R, ε > 0.

Definition 1.3. A function u2 ∈ UT is said to belong toε-neighbourhood ofu1 ∈ UT if:
(1) every discontinuity point ofu2(t) lies in ε-neighbourhood of a discontinuity point o
u1(t); (2) for all t ∈ T , which are not inε-neighbourhoods of discontinuity points ofu1(t),
the inequality‖u1(t)− u2(t)‖< ε is valid.

Definition 1.4. Hausdorff’s topology, which is built on the basis of allε-neighbourhoods
0< ε <∞, of all elementsu ∈ UT , will be calledBT -topology.

Let x0(t) be a continuable to the right solution of (1).

Definition 1.5. The solutionx0(t) is said to beB-stable in Lyapunov sense if for an
positive ε ∈ R there exists a numberδ > 0, such that every solutionx(t) of (1) which
satisfies‖x0(t0)− x(t0)‖< δ belongs toε-neighbourhood ofx0(t) in BR+ -topology.

Definition 1.6. A B-stable solutionx0(t) of (1) is calledB-asymptotically stable, if ther
exists a number∆> 0, such that, ifx(t) is a solution of (1) which satisfies an inequal
‖x(t0)− x0(t0)‖<∆, then for anyε > 0, a numberξ > t0, exists such that thex(t) lies in
ε-neighbourhood ofx0(t) in B[ξ,∞)-topology.

Definition 1.7. A solutionx0(t) of (1) is calledB-unstable, if either it is not continuab
to the right or for someε > 0, and anyδ > 0, a solutionxδ(t) of (1) exists such tha
‖xδ(t0)− x(t0)‖< δ andxδ(t) is not inε-neighbourhood ofx0(t) in BR+ -topology.

Remark 1.1. The definitions of stability of nontrivial solutions for systems with nonfix
moments of impulse actions were given in [8,9,15]. The authors of [8,9] name this k
stability as quasistability. Our definitions [1] are based on the ideas of [7] which were
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to define a discontinuous almost periodic function. One can show that Definitions 1
and the definitions of quasistability are equivalent.

Remark 1.2. It is easy to see that by using the language ofB-topology one can give
definitions of all kinds of stability of solutions as well as of integral manifolds. If
moments of impulse effects are fixed then the definitions of stability coincide with
classic definitions [14].

Fix h0 ∈ R, h0 > 0, denoteG0 = {(t, x) | t ∈ R+, ‖x‖ < h0}, and letV (t, x) ∈
C1[G0,R+] andV (t,0)= 0 for all t ∈R+.

Definition 1.8. The functionV (t, x) is said to be positive definite onG0 if there exists
a ∈ H such thatV (t, x) � a(‖x‖) for all (t, x) ∈ G0; it is called positive semidefinit
onG0 if V (t, x) � 0 for all (t, x) ∈ G0. The functionV (t, x) is called negative definit
(negative semidefinite) onG0 if −V (t, x) is positive definite (positive semidefinite) onG0.

We will use the notation

V̇f (t, x)= ∂V (t, x)

∂x
+

n∑
i=1

∂V

∂xi
fi(t, x),

wherex = (x1, . . . , xn) andf (t, x)= (f1, . . . , fn).

2. B-reduced system

Let x0(t) be a continuable to the right solution of (1), andτi , i ∈ N , be discontinuity
points ofx0(t), i.e.,τi = θi(x0(τi)), i ∈ N . Assume thatx(t) :R+ →Rn is another solution
of (1) andγi, i ∈ N , are discontinuity points ofx(t), γi = θi(x(γi)), i ∈N . One can show
that the differencez(t)= x(t)− x0(t) satisfies the following system of equations:

dz

dt
= f

(
t, x0(t)+ z

)− f
(
t, x0(t)

)
, t �= τi, t �= γi,

∆z|t=τi = −Ii
(
x0(τi)

)
, ∆z|t=γi = Ii

(
x(γi)

)
,

∆z|t=γi=τi = Ii
(
x(γi)

)− Ii
(
x0(τi)

)
, i ∈N . (2)

As the pointst = γi , i ∈N , depend on a solutionx(t), it is not easy to investigate stabili
of the zero solution of (2). So we suggest to use another way of investigation as follo

Fix i ∈N , x ∈Gx , and letξ(t) be a solution of the system

dx

dt
= f (t, x) (3)

with initial conditionξ(τi)= x. Let t = ζi be a meeting moment such thatζi = θi(ξ(ζi)).

Further we shall accept̂[τi, ζi ] as well as(̂τi , ζi] as oriented intervals, that is

[̂τi, ζi] =
{ [ζi, τi] if ζi � τi ,

[τ , ζ ] otherwise.
i i
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Assuming that solutionsξ(t) and ξ1(t) of (3), ξ1(ζi) = ξ(ζi) + I1(ξ(ζi)) are given on
interval [̂τi, ζi] we construct a mapΦi : {τi} ×Gx → {τi} ×Rn such that

Φi(x)=
ζi∫
τi

f
(
s, ξ(s)

)
ds + Ii

(
x +

ζi∫
τi

f
(
s, ξ(s)

)
ds

)
+

τi∫
ζi

f
(
s, ξ1(s)

)
ds.

Denote

h0 = inf
t∈R+
x∈∂Gx

∥∥x0(t)− x
∥∥, h0 > 0,

where∂Gx is the boundary of the domainGx and introduce new functions

κ(s)= 1+ 3lM

1− lM
s + γ

(
s

1− lM

)
, µ(s)= 2lM

1− lM
s + γ

(
lMs

1− lM

)
,

π(s)= 2lM

1− lM
s + γ

(
s

1− lM

)
,

wheres � 0. Obviously,{κ,µ,π} ⊂H. Let h ∈ R be such thath > 0 andκ(h)= h0, and

Gi = {
x ∈Gx | ∥∥x − x0(τi)

∥∥< h
}
, G+

i = {
x ∈Gx | ∥∥x − x0(τi+)

∥∥< h
}
,

Gi =
[
τi − lh

1− lM
, τi + lh

1− lM

]
×Gi ∪G+

i ,

Gh = {
(t, x) ∈G | t ∈ R+,

∥∥x − x0(t)
∥∥< h

} ∪
( ⋃

i∈N
Gi

)
,

where× is the sign of the Cartesian product.
Let us consider the system

dy

dt
= f (t, y), t �= τi,

∆y|t=τi =Φi(y). (4)

Definition 2.1. Systems (1) and (4) are said to beB-equivalent onGh × N , if for every
solutionx(t) : [t0, a)→ Rn, a ∈ R+(a = ∞), (t, x(t)) ∈Gh, of (1), there exists a solutio
y(t), y(t0)= x(t0), of (4), such that

x(t)= y(t), t ∈ [t0, a)
∖ ⋃
i∈N

(̂τi , ζi]. (5)

Specifically,

x(τi)= y(τi), x(ζi+)= y(ζi) if τi � ζi, (6)

x(τi)= y(τi+), x(ζi)= y(ζi) if τi > ζi. (7)

And, conversely, for every solutiony(t) : [t0, a)→ Rn, a ∈ R+ (a = ∞), of (4), (t, y(t)) ∈
Gh, there exists a solutionx(t), x(t0)= y(t0), of (1), which satisfies (5)–(7).
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Lemma 2.1. The following assertions are valid:

(i) Φi(x0(τi))= Ii(x0(τi)), i ∈N ;
(ii) Φi :Gi → Rn, i ∈N ;
(iii) ‖Φi(x)− Ii(x)‖ � µ(‖x − x0(τi)‖) for all i ∈N , x ∈Gi ;
(iv) ‖Φi(x)− Ii(x0(τi))‖ � π(‖x0(τi)− x‖) for all i ∈N , x ∈Gi.

Proof. Assertion (i) immediately follows from definition ofΦi(x). We have, for fixed
x ∈ Gx , that ξ(t) = x + ∫ t

τi
f (s, ξ(s)) ds, t ∈ [̂τi, ζi], and ξ1(t) = ξ(ζi) + Ii(ξ(ζi)) +∫ t

ζi
f (s, ξ1(s)) ds, t ∈ [̂τi, ζi]. Then∥∥ξ(t)− x0(t)

∥∥�
∥∥x − x0(τi)

∥∥+M|ζi − τi | (8)

for all t ∈ [̂τi, ζi]. Hence,|τi −ζi | = |θi(x0(τi))−θi(ξ(ζi))| � l(‖x0(τi)−x‖+M|τi −ζi |)
and

|τi − ζi | � l
‖x − x0(τi)‖

1− lM
. (9)

From (8) and (9) it follows that∥∥ξ(t)− x0(τi)
∥∥� ‖x0(τi)− x‖

1− lM
if t ∈ [̂τi, ζi ] (10)

and

∥∥ξ1(t)− x0(τi+)
∥∥=

∥∥∥∥∥ξ(ζi)+ Ii
(
ξ(ζ )

)+
t∫

ζi

f
(
s, ξ1(s)

)
ds − x0(τi)− Ii

(
x0(τi)

)∥∥∥∥∥
� κ

(∥∥x0(τi)− x
∥∥) (11)

for all t ∈ [̂τi, ζi]. The equalityΦi(x)= ξ1(τi)− x and (10) and (11) imply thatΦi(x) is
defined onGi and assertions (iii) and (iv) are true. The lemma is proved.✷
Theorem 2.1. Systems(1) and(4) areB-equivalent onGh ×N . The functionx = x0(t) is
a solution of systems(1) and(4) simultaneously.

Proof. Let x(t) andy(t) be solutions of (1) and (4), respectively, such thatx(t0)= y(t0).
Without loss of generality we can assume that[t0, τ1] is an interval of continuity of solu
tionsx(t) andy(t) and, hence,(t, x(t)) ∈Gh for all t ∈ [t0, τ1]. It is obvious thatζ1 � τ1.
Since the caseζ1 = τ1 is trivial, we shall consider only the caseζ1 > τ1. If (t, x(t)) ∈Gh,
t ∈ [τ1, ζ1], then

∥∥y(t)− x0(t)
∥∥=

∥∥∥∥∥y(τ1)+Φ1
(
y(τ1)

)+
t∫

τ1

f
(
s, y(s)

)
ds

− x0(τ1)− I1
(
x0(τ1)

)−
t∫
f
(
s, x0(s)

)
ds

∥∥∥∥∥

τ1
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1− lM
= κ(h)= h0.

If it is known that(t, x) ∈Gi for all t ∈ [τ1, ζ1], then similarly to (10) one can show tha

∥∥x(t)− x0(τ1)
∥∥=

∥∥∥∥∥y(τ1)+
t∫

τ1

f
(
s, x(s)

)
ds − x0(τ1)

∥∥∥∥∥
<

h

1− lM
< κ(h)= h0.

Moreover,x(ζ1+) = y(ζ1); in view of the definition ofΦ1(x). Thus, (C7) implies tha
x(t) = y(t) if t is a continuity point andt > ζ1. Then one can verify that conditions
Definition 2.1 are valid for allt ∈ [t0, a). The assertion aboutx0(t) is trivial. The theorem
is proved. ✷

Let x(t) be a solution of (1) and an integral curve ofx(t) belongs toGh. Let y(t) be a
solution of (1),y(t0)= x(t0), which corresponds tox(t) by B-equivalence inGh ×N . If
u= y(t)− x0(t) thenu(t) satisfies the following system:

du

dt
= F(t, u), t �= τi,

∆u|t=τi = Ji(u)+Wi(u), (12)

where

F(t, u)= f
(
t, x0(t)+ u

)− f
(
t, x0(t)

)
, Ji(u)= Ii

(
x0(τi)+ u

)− Ii
(
x0(τi)

)
,

Wi(u)=Φi

(
x0(τi)+ u

)− Ii
(
x0(τi)+ u

)
. (13)

Definition 2.2. System (12) is said to be aB-reduced system for (1) in the vicinity ofx0(t).

Theorem 2.2. ‖Wi(u)‖ � µ(‖u‖) if ‖u‖< h.

Proof. The validity of the theorem follows immediately from condition (iii) of Lemma 2
and the last equality in (13).✷
Remark 2.1. It is obvious thatWi are functionals of solutions of (3) and, hence, th
cannot be defined explicitly as well asF andJi. But our intention is to use a qualitativ
property ofWi which is given by Theorem 2.2.

3. Stability

In this section we will formulate and prove the theorems of stability and unstab
They are analogues of Lyapunov and Chetaev theorems [8,14,15].

Lemma 3.1. Suppose that onG0 the following conditions are fulfilled:
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(I1) V (t, x) is positive definite;
(I2) V̇F (t, x) is negative semidefinite;
(I3) There exists a functionα ∈A such thatV (τi, x)− V (τi, x + Ji(x))� −α(‖x‖);
(I4) There exists a functionβ ∈A such that‖∂V /∂x‖ � β(‖x‖);
(I5) β(s)µ(s)− α(s)� 0 if s > 0 is sufficiently small.

Then the trivial solution of(12) is stable.

Proof. The conditions imply that

V
(
τi , x + Ji(x)+Wi(x)

)− V (τi , x)

= V
(
τi , x + Ji(x)

)− V (τi, x)− V
(
τ, x + Ji(x)

)+ V
(
τi , x + Ji(x)+Wi(x)

)
� β

(‖x‖)µ(‖x‖)− α
(‖x‖)� 0

if ‖x‖ is sufficiently small. Thus, all the assumptions of Theorem 47 of [15] are fulfi
and the proof is complete.✷
Theorem 3.1. Suppose that conditions(C1)–(C8)and (I1)–(I5) are fulfilled. Then the so
lution x0(t) of (1) is B-stable.

Proof. Fix ε > 0 and denoteε1 = εmin(1, (1− lM)/l). Since (12) is the reduced syste
[15] of (4), then by above lemma the solutionx0(t) of (4) is stable, i.e., there existsδ > 0,
such that ify(t), ‖y(t0)−x0(t0)‖< δ, is a solution of (4), then‖y(t)−x0(t)‖< ε1, t ∈R+.
Let x(t), x(t0)= y(t0), be a solution of (1). TheB-equivalence implies that∥∥x(t)− x0(t)

∥∥< ε1, t /∈ (τi, ζi], i ∈N , (14)

whereζi , i ∈ N , are the discontinuity points ofx(t). Assume without any loss of generali
thatζi � τi . We have thatζi−τi = θi(x(ζi))−θi(x(τi)) < l(‖x(ζi)−x0(τi)‖)� l(‖x(τi)−
x0(τi)‖ +M(ζi − τi)) and

ζi − τi <
lε1

1− lM
= ε. (15)

The proof of the theorem follows from (14) and (15).✷
Lemma 3.2. Suppose that conditions(I1)–(I4) are valid and, moreover, the following a
sumption is fulfilled:

(I6) There exists a functionψ ∈ A such thatβ(‖x‖)µ(‖x‖)−α(‖x‖)� −ψ(V (τi, x)) for
sufficiently small‖x‖.

Then the zero solution of(12) is asymptotically stable.

Proof. Similarly to the proof of Lemma 3.1 one can find thatV (τi, x + Ji(x)+Wi(x))−
V (τi, x)� −ψ(V (τi, x)) for sufficiently small‖x‖ and, hence, all the conditions of Th
orem 47 of [15] for the asymptotic stability are fulfilled.✷
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Theorem 3.2. Suppose that conditions(C1)–(C8)and(I1)–(I4), (I6) are fulfilled. Then the
solutionx0(t) of (1) is asymptotically stable.

Proof. Since all conditions of Theorem 3.1 are valid, then the solutionx0(t) of (1), isB-
stable. Moreover, (12) is the reduced system for (4) and all the conditions of Lemma 3
fulfilled. Hence,x0(t) is an asymptotically stable solution of (4). That is, forε1 > 0 there
existsδ1 > 0, such that ify(t), ‖y(t0)− x0(t0)‖< δ1, is a solution of (4), then there exis
ξ ∈R, ξ = ξ(y, ε), ξ > t0, such that‖y(t)− x0(t)‖< ε1, t � ξ . Let x(t), x(t0)= y(t0), be
a solution of (1). Then similarly to the proof of Theorem 3.1 one can show that (14
(15) are valid fort � ξ . That is,x(t) is in ε-neighbourhood,ε1 = εmin(1, (1− lM)/l), of
x0(t) in theB[ξ,∞)-topology. The theorem is proved.✷

We shall formulate the following Theorems 3.3 and 3.4 without proof. They ca
verified by the same techniques as Theorems 3.1 and 3.2 using Theorems 48 an
[15].

Theorem 3.3. Suppose that conditions(C1)–(C8), (I1), (I4) are fulfilled. Moreover, the
following assumptions are valid:

(V0) There exists a numberθ > 0: infi (τi+1 − τi)= θ ;
(V1) There exists a functionφ ∈ A such thatV̇F (t, x)� −φ(V (t, x)) for all (t, x) ∈G0;
(V2) There exists a functionψ ∈ A such thatV (τi, x + Ji(x))�ψ(V (τi, x))− β(‖x‖)×

µ(‖x‖) for all i ∈N and sufficiently small‖x‖;
(V3) There exist numbersa0 > 0 and ν � 0 such that

∫ ψ(a)
a

(1/φ(s)) ds � θ − ν for all
a ∈ (0, a0].

Then the solutionx0(t) of (1) isB-stable ifν = 0 and it isB-asymptotically stable ifν > 0.

Theorem 3.4. Let conditions(C1)–(C8), (I1), (I4), (V2) be valid and, moreover, the follow
ing assumptions be fulfilled:

(V4) There existsθ1 ∈ R, θ1<∞, such thatsupi (τi+1 − τi)= θ1;
(V5) There exists a functionφ ∈ A such thatV̇F (t, x)� φ(V (t, x)) for all (t, x) ∈G0;
(V6) There exist numbersa0 > 0 and ν � 0 such that

∫ a
ψ(a)(1/φ(s)) ds � θ1 + ν for all

a ∈ (0, a0].

Then the solutionx0(t) of (1) isB-stable ifν = 0 and it isB-asymptotically stable ifν > 0.

Let us make an additional assumption that

(C9) infi[infGx θi+1(x)− supGx
θi(x)] = q > 0.

Lemma 3.3. If conditions(C1)–(C9)are fulfilled, thenB-stability of the solutionx0(t) of
(1) implies that it is a stable solution of(4).
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ed

re
Proof. Fix ε ∈ R, 0< ε < q/(1+ 2M), and denoteε1 = ε(1 + 2M)−1, T = {t ∈ R+ |
|t − τl | > ε1, i ∈ N }. There existsδ = δ(ε1) > 0 such that a solutionx(t), ‖x(t0) −
x0(t0)‖< δ, of (1) satisfies the inequalities|τi − ζi |< ε1, i ∈N , and‖x(t)− x0(t)‖< ε1,
t ∈ T , whereζi , i ∈ N , are the points of discontinuity ofx(t). Let y(t), y(t0)= x(t0), be a
solution of (4). SinceT ∩ [̂τi, ζi] = ∅, i ∈ N , it is true that‖y(t)− x0(t)‖< ε1 < ε, t ∈ T .

Let t /∈ T . Then the following cases are possible: (a)t /∈ (τi, ζi], i ∈ N ; (b) there exists
j ∈ N , such thatt ∈ (̂τj , ζj ]. We shall consider these cases in turn.

(a) Let us assume thatτj � ζj < t , [τj , t] ∩T = ∅ (other possibilities can be consider
similarly). Denote

t∗ = τj + ε1. (16)

Using (C9) one can verify that

∥∥x(t∗)− x0(t
∗)
∥∥� ε1, x(t∗)= y(t∗). (17)

Then

∥∥y(t)− x0(t)
∥∥=

∥∥∥∥∥y(t∗)+
t∫

t∗
f
(
s, y(s)

)
ds − x0(t

∗)−
t∫

t∗
f
(
s, x0(s)

)
ds

∥∥∥∥∥
< ε1 + 2Mε1 = ε. (18)

(b) Now let τj < t � ζj (similarly, one can investigate the caseζj < t � τj ). Defining
t∗ again by (16) and (17), one can see that (18) is valid and the lemma follows.✷
Lemma 3.4. Suppose that condition(I4) is fulfilled and the following assumptions a
valid:

(W1) The intersection of the domainP = {(t, x) ∈ G0 | V (t, x) > 0}, and the planet =
constis a nonempty open set adherent to the origin for anyt ∈ R+;

(W2) V (t, x) is bounded onP ;
(W3) V̇F (t, x) is positive semidefinite onP ;
(W4) There exists a functionψ ∈A such thatV (τi, x+Ji(x))−V (τi , x)�ψ(V (τi, x))+

β(‖x‖)µ(‖x‖) for all i ∈N , x ∈P .

Then, the zero solution of(12) is unstable.

The proof follows from Theorem 50 of [15] similarly to the proof of Lemma 3.2.

Theorem 3.5. Suppose that conditions(C1)–(C9)and (W1)–(W4) are fulfilled. Then the
solutionx0(t) of (1) is B-unstable.

Proof. The proof follows immediately from Lemmas 3.3 and 3.4.✷
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ns:
4. Examples

Example 4.1. Consider the following system with nonfixed moments of impulse actio

dx1

dt
= x2,

dx2

dt
= (−1)i+1 sinx1, t �= θi(x),

∆x1|t=θi(x) = ax1 + bx2 + π

[
(−1)i − a

1− (−1)i

2

]
,

∆x2|t=θi(x) = −bx1 + ax2 + bπ
1− (−1)i

2
, (19)

wherex = (x1, x2) ∈R2 anda andb are constants such that

(a + 1)2 + b2< 1 (20)

and

θi(x)= iθ − (−1)iλx1 + σx2 − πλ

2

(
1− (−1)i

)
, i ∈ N , (21)

whereλ, θ, σ are constants such thatθ > 0, λ > 0 and

θ > λπ. (22)

Denoteh= 1− (a + 1)2 − b2 and

G=
{
(t, i, x) | t � t0, i ∈ N , ‖x‖< π

h

}
,

wheret0 ∈ R, 0< t0 < θ , is fixed. We assume thatλ and |σ | are sufficiently small such
that surfacest = θi(x), i ∈ N , do not intersect inG. Thus, the setG is a partition of sets
Gi , i ∈ N , whereG1 is a part ofG which is between the surfacest = t0 and t = θ1(x),
andGi is a part ofG which is between surfacest = θi−1(x) andt = θi(x), and the surface
t = θi(x) is included inGi . In Gi , i = 2k − 1, k ∈N , system (19) has a form

dx1

dt
= x2,

dx2

dt
= sinx1, t �= θi(x),

∆x1|t=θi(x) = ax1 + bx2 − (a + 1)π,

∆x2|t=θi(x) = −bx1 + ax2 + bπ, (23)

whereθi(x)= iθ + λ(x1 − π)+ σx2.

If i = 2k, i ∈N , then system (19) has another form inGi ,

dx1

dt
= x2,

dx2

dt
= −sinx1, t �= θi(x),

∆x1|t=θi(x) = ax1 + bx2 + π,

∆x2|t=θi(x) = −bx1 + ax2, (24)

whereθi(x)= iθ − λx1 + σx2. One can verify that a piecewise constant functionξ(t) =
(φ(t),ψ(t)), where

φ(t)=
{
π if t ∈ [t0, θ ]⋃i=2k(iθ, (i + 1)θ ],
0 if t ∈⋃ (iθ, (i + 1)θ ],
i=2k−1
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tly

t to

n

andψ(t)= 0, for all t ∈ R+, is a solution of (19) ((23)+ (24)) andτi = iθ , i ∈ N , are dis-
continuity points ofξ(t). Notice thatξ(t) intersects every surface of discontinuity exac
one time. Indeed, ifi = 2k − 1, k ∈N , then

θ
(
ξ(τi)+∆ξ(τi)

)= iθ − λπ < iθ = θi
(
ξ(τi)

)
,

θ
(
ξ(τi)

)= iθ < (i + 1)θ − λπ = θi+1
(
ξ(θi)+∆ξ(τi)

)
. (25)

The last inequality is true in view of (22). And ifi = 2k, k ∈ N , then

θ
(
ξ(τi)+∆ξ(τi)

)= iθ − λπ < iθ = θi
(
ξ(τi)

)
,

θ
(
ξ(τi)

)= iθ < (i + 1)θ = θi+1
(
ξ(θi)+∆ξ(τi)

)
. (26)

Thus, (25) and (26) imply that conditions (C5) and (C6) are fulfilled. Denote byC0 the
union of η-neighbourhoods,η ∈ R, η > 0, of the points(0;0) and (π;0) in R2, M =
supC0(x2

2 + sin2(x1)), l = (1/2)max(λ, |σ |), l1 = (1/2)max(|a|, |b|). One can chooseη
so thatlM < 1. Moreover, inequalities (25) and (26) are valid uniformly with respec
i ∈N and the functionst = θi(x) are uniformly continuous for alli ∈N . Thus, in view of
continuity of the functions in the impulse part of (19) and of functionst = θi(x), one can
conclude that there is a neighbourhoodG0 of ξ(t) in BR+ -topology such that every solutio
x(t) ∈G0, t ∈ R+, intersects exactly one time every surface of discontinuity. Denote

V (x)= 1− cosx1 + x2
2

2
, F1(t, x)= x2, F2(t, x)= −sinx1,

J
(1)
i (x)= ax1 + bx2, J

(2)
i (x)= −bx1 + ax2.

The system

dx1

dt
= F1(t, x),

dx2

dt
= F2(t, x), t �= θi(x),

∆x1|t=τi = J
(1)
i (x), ∆x2|t=τi = J

(2)
i (x), (27)

is aB-reduced system of Eq. (19) in a neighbourhood ofξ(t). It is not difficult to verify
that

V̇F (x)� 0 (28)

and

V (x)− V
(
x + Ji(x)

)=
[
h

2
+ κ(x)

]
‖x‖2,

whereκ(x)→ 0 as‖x‖ → 0.
Fix a numberε ∈ R, 0< ε < h/2, and denoteα(s)= (h/2+ ε)s2. Then

V (x)− V
(
x + Ji(x)

)
� α

(‖x‖) (29)

if ‖x‖ is sufficiently small. Moreover,∥∥∥∥∂V
∥∥∥∥� β

(‖x‖) (30)

∂x
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-

his
rhood

xactly
for β(s)= 2s if ‖x‖ is sufficiently small. Thus,

α
(‖x‖)− β

(‖x‖)µ(‖x‖)=
[
h

2
+ ε0 − 2lM(2+ l1)

1− lM

]
‖x‖2,

whereµ(s)= 2lM(2+ l1)s/(1− lM). Let

h

2
+ ε − 2lM(2+ l1)

1− lM
> 0.

One can verify thatV (x)= ‖x‖2/2 + ζ(x), where the series forζ(x) starts with not less
than the third degree. Hence, there exists a functionΨ ∈ A such that‖x‖2 = Ψ (V (x)).

Denoting

ψ
(
V (x)

)=
[
h

2
+ ε − 2lM(2+ l1)

1− lM

]
Ψ
(
V (x)

)
,

we have that all conditions of Theorem 3.2 are valid andξ(t) is aB-asymptotically stable
solution of (19). Asε is arbitrarily small one can conclude thatξ(t) is B-asymptotically
stable iflM(2+ l1)/(1− lM) < h/4.

Example 4.2. Consider the following system:

dx1

dt
= x2 + (−1)i sin3(x1),

dx2

dt
= (−1)i+1 sinx1 + x3

2, t �= θi(x),

∆x1|t=θi(x) = ax1 + bx2 + π

[
(−1)i − a

1− (−1)i

2

]
,

∆x2|t=θi(x) = −bx1 + ax2 + πb

2

[
1− (−1)i

]
. (31)

We will stick to system (31) from the previous example: the setG, the surfaces of dis
continuity (21), relations (20) and (22) and constantsM, l, l1. Also assume thatlM < 1.
One can show that the functionξ(t) from Example 4.1 is also a solution of (31) and t
solution satisfies relations (25) and (26). The reduced system for (31) in a neighbou
of ξ(t) has the form (27), where

F1(t, x)= x2 + sin3(x1), F2(t, x)= −sin(x1)+ x3
2,

J
(1)
i (x)= ax1 + bx2, J

(2)
i (x)= −bx1 + ax2.

Thus, we have that every solution of (31) intersects every surface of discontinuity e
once if it belongs to a sufficiently small neighbourhood ofξ(t) in BR+ -topology.

Take again as a Lyapunov function the expressionV (x)= 1−cosx2 +x2
2/2. It is easily

seen thatV̇F (x)= sin4(x1)+ x4
2 � V 2(x) if ‖x‖ is sufficiently small. Moreover,

V
(
x + Ji(x)

)− V (x)=
[
−h

2
+ κ(x)

]
‖x‖2, (32)

whereκ(x)→ 0 as‖x‖ → 0. We will show that the inequality

lM(2+ l1)
<
h

1− lM 2



M.U. Akhmet / J. Math. Anal. Appl. 288 (2003) 182–196 195

paper.

tions,

nov

Hor-

ns of

ntial

ethod,

68 (in

Sci-
implies thatξ(t) isB-asymptotically stable. Denote

h1 = h

2
− lM(2+ l1)

1− lM
.

Let ‖x‖ be sufficiently small such that|κ(x)|< ε, whereε, 0< ε < h1, is fixed. Then (32)
and inequality 2V (x)� ‖x‖2 imply that

V
(
x + Ji(x)

)= V (x)−
(
h

2
− κ(x)

)
‖x‖2

� V (x)
[
1− 2(h1 − ε)

]− β
(‖x‖)µ(‖x‖),

whereβ(s) andµ(s) are as defined in the previous example. If we denoteψ(s) = [1 −
2(h1 − ε)]s, then the condition (V2) is valid and

a∫
ψ(a)

ds

φ(s)
≡

a∫
(1−2(h1−ε))a

ds

s2 = 2(h1 − ε)

a(1+ 2(ε − h1))
.

Since the inequality

2(h1 − ε)

a(1+ 2(ε − h1))
� θ1 + ν, θ1 = θ,

is true if a is sufficiently small, we can conclude that condition (V5) is also valid andξ(t)
is aB-asymptotically stable solution of (31) by Theorem 3.4.
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