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Abstract

It is shown that on certain Banach spaces, includiii@, 1] and L1[0, 1], there is no strongly
continuous semigroufi’;)o-; ~1 consisting of weakly compact operators such {fajg.; -1 is an
R-bounded family. More general results concerning approximating sequences are included and some
variants of R-boundedness are also discussed.
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1. Introduction

Recentwork on semigroup theory [13,24] hagttighted the importance of the concept
of R-boundedness. Let us recall the definition eb&nded families of operators (cf. [2,
7,9)).

Definition 1.1. A family 7 of operators in(X, Y) is calledR-bounded with R-bounded-
ness constard > 0 if letting (e;)7> ; be a sequence of independent Rademachers on some
probability space then for evemy, ..., x, € X andTx,..., T, € 7 we have
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n 2\ 1/2 n 2\ 172
(E Z exTixy ) <C (E Z €k Xk ) . (1.2)
k=1 k=1

By the Kahane—Khintchinmequality we can replace 2 above by any other exponent
1< p < oo to obtain an equivalent definition. We will also need the following definition
introduced in [13].

Definition 1.2. A family 7 of operators in£(X,Y) is called WR-bounded with WR-
boundedness constafit> 0 if for everyxs,...,x, € X, yi,...,yr e Y* andTy,..., T,

€7 we have
2\ 1/2 2\ 1/2
) (E ) | 12)

n n n
Z|<Tkxk, Yl < C(]E ZEka Zéky;f
k=1 k=1 k=1

Itis clear by the Cauchy—Schwarz inequality that R-boundedness implies WR-bounded-
ness. The converse is not true in general, but it holds for spaces with non-trivial type [13,
20].

In [13] it was shown that no reasonable differential operatolgrtan have arH *°-
calculus. In this note we consider the related question whether a differential-type operator
on L1 can generate an R-bounded semigroup. Note thatsfan R-sectorial operator (cf.
[13]) with R-sectoriality angle less thary2 then the semigrou@ —'4)o-, 1 is necessar-
ily R-bounded. In general, one expects a semigrgenerated by a differential operator
on a bounded domain to consist of weakly compact operators. We are thus led to consider
the question whether one can have a strongly continuous semigfogp; <1 on L1 such
that eachr; is weakly compact (or equialently compact, sincé; has the Dunford—Pettis
property) and such that the familyf;)o;<1 is R-bounded. In fact this leads to consid-
ering versions of the approximation property; the only property of the semigroup needed
is commutativity. We consider the general gtien whether on a given separable Banach
space one can find an R-bounded sequéfigk, .y Oof commuting weakly compact oper-
ators such that lig, o 7,x = x for all x € X. Our main results show that for the spaces
L1[0, 1], C(K) (exceptco) and the disk algebra (D) this is impossible. These results
may be regarded as extensions of classical results that the shga@ek) do not have
unconditional bases [15].

In the case of.1 we are led to consider a natural weakening of R-boundedness, where
we use the definition (1.1) but only for single vectors.

Definition 1.3. A family 7 of operators inC(X, Y) is calledsemi-R-bounded if there is a
constaniC > 0 such that forevery € X, a1, ...,a, € CandTy, ..., T, € T we have

n 2\ 172 n 1/2
(E > exarTex ) <C<Z|ak|2) ]l (1.3)
k=1

k=1
We note that semi-R-boundedness is edeivtto R-boundedness for operatorsion

In Theorem 2.2 we actually characterize ggbhces where semi-R-boundedness is equiva-

lent to R-boundedness as spaces which are either Hilbert spaces or GT-spaces of cotype 2

in the terminology of Pisier [19].
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2. R-boundedness and WR-boundedness

In this section, we make some remarks about R-boundedness and related notions.
Note that in a space of type 2, any uniformly bounded collecfion L (X, X) is semi-
R-bounded. The converse is also true:

Proposition 2.1. A Banach space X has type 2 if and only if uniform boundedness is
equivalent to semi-R-boundedness.

Proof. Suppose that every uniformly bounded family of operators is already semi-R-
bounded. Pick any € X andx™ € X* such that|x|| = ||x*|| = 1 andx*(x) = 1. Notice
that the familyZ = {x* ® u: ||u| = 1} is uniformly bounded with constant one and hence
semi-R-bounded by assumption. LEtbe the semi-R-boundedness constanZofSe-
lect anyx1,...,x, € X and writex; = ||xx|lux, where|lug|l = 1. Then{x* ® uy: k =
n
D el (* @ up)x

1,...,n}C7 and
2\ 1/2 2\ 1/2
k=1

n
(E Zekxk
k=1
n 2\ 1/2 n 1/2
<C<E > erllxlix ) =C||x||<2||xk||2)
k=1 k=1
n 1/2
=C<Z||xk||2) :
k=1

Thus,X has type 2. O

For some spaces, semi-R-boundedness is equivalent to R-boundedness and we are able
to completely characterize these spaces @ribxt theorem. Let us recall that a Banach
spaceX is called aGT-spaceif every bounded operatdr: X — ¢ is absolutely summing.
Examples of GT-spaces of cotype 2 drg, the quotient ofL, by a reflexive subspace
[14,19], andL1/H; [8]. It is unknown whether every GT-space has cotype 2.

Theorem 2.2. Suppose X is separable. Then the following are equivalent:

(i) Every semi-R-bounded family of operatorson X is R-bounded.
(i) X isisomorphicto ¢, or X isa GT-space of cotype 2.

Proof. First we prove that (i) implies (ii). Suppose that every semi-R-bounded family of
operators orX is R-bounded. Let us note that this implies the existence of a conktant
so that if7 has semi-R-boundedness constarihen it has R-boundedness const&nd;

for otherwise we could find a sequenggof families with semi-R-boundedness constant
one and R-boundedness constant at leasthen the family J, -, 277, contradicts our
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assumption. Fix > 1 and takex € X. Choose: € N. By Dvoretzky’s theorem [16] we
canfindes, ..., ¢, € X such that for anyi, ..., a, € C we have

n 1/2 n n 1/2
Ml(Dauz) <| D aer| < M<Z|ak|2> :
k=1 k=1 k=1
Consider the family of operatofg, = {u* ® ex: |lu*|| =1, k=1,...,n}. Then each
7, is semi-R-bounded with constaM as follows. A finite subfamily of7, is of the

form {uzj @Dep: L<k<n 1< j<my} for somems,...,m, € N. Then for every
ai, ..., anm, € C we have (letting;;; denote independent Rademachers)
ZZekjakjuzj(x)ek Zekjuzj(x)akj

2\ 172 n 2\ 1/2
S ) < )
k=1j=1 j=1
mg

k=1
N 2\ 1/2 noomy 1/2
gM(ZE kajl/t;’;j(x)akj ) <M(22|akj|2> [lx]l.
k=1 j=1

k=1 j=1
Our assumption implies that ea@h is R-bounded with constarf M. Let x1, ..., x,
€ X and writex; = ||xk|lux, where|ju, || = 1. Chooses;; € X* such thatu; (ux) = 1 and
luzll = 1. Now we have
2> 1/2

. 1/2
(Z ||xk||2> < M(
k=1
= M(IE ZeknxklluZ(uk)ek

no mg my

n
E| > exllxllex
k=1
2) 1/2
2) 1/2
2\ 1/2 2\ 1/2
) :KMTE ).
This shows thak has cotype 2.

Let us assume that has non-trivial type. Then by results of Pisier [19] and also by
Figiel and Tomczak-Jaegermann [12],is uniformly complemented iX . Thus, for some
constan(C, for everyn € N we can choose a biorthogonal systéx, ¢;): k=1,...,n}
in X x X* such that

n n 1/2
S acer <c(z|ak|2>
k=1 k=1

k=1

n
M|E Zekllxkll(MZQbek)(uk)

k=1

gKM{E

n
> el llux
k=1

n
D et
k=1

and

n n 1/2
S et <c(z|ak|2>
k=1 k=1
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forall ay, ..., a, € C. Note that for any € X andazy, ..., a, € C,

) 0 1/2
Zake‘: x)|<C ( Z |ak|2> flx|]
k=1 k=1

and so

" 1/2
<Z|e;:<x)|2> < Clix]l.
k=1

Consider the family of operator§, = {¢; ® u: ull =1, k=1,...,n}. Letx € X.
Then for anyas, ..., a, € C and everyuy, ..., u, € X of norm one we have

n n n
E Zekak(e,f Qui)(x)| =E Zekakez(x)uk < ZHakez(x)uk I
k=1 k=1 k=1
n n 2 , 1/2 n 1/2
=Y laxlle; (0] < (Z |ak|2> <Z|e;:(x>|2) < C(Z |ak|2> ).
k=1 k=1 k=1 k=1

We conclude thaf/,, is semi-R-bounded with constaft and henceZ,, is R-bounded
for constantk C independent ofi. This implies thatX has type 2 as follows. Choose any
X1, ..., X, € X and writexg = ||xx ||ux, where|lug|| = 1. Then

. 2\ 1/2 n 2\ 1/2
(E Zekxk ) =<E ka“xknuk )
k=1 k=1
. 2\ 1/2
:(]E Zeknxklle,f(ek)uk )
2\ 1/2
k=1 )

k=1
n 2\ 1/2 n 1/2
gKC(IE > el liex ) <KC2<Z||xk||2) (21
k=1 k=1

Now, X has type 2 and cotype 2 and is therefore isomorphit toy Kwapien’s theorem
[25].

Now suppose on the contrary théthas trivial type. We will show thaX is a GT-space,
i.e., anyT: X — £z is 1-summing. FixT : X — £ of norm one. SinceX has cotype 2
we can equivalently show that any su€his 2-summing [11]. It suffices to check that
for anyn € N and operatosS: £, — X such that||S|| < 1 we haverx(TS) < C, where
C does not depend om [25]. One can assume thatsS: ¢35 — ¢5 and thatT' S is diag-
onal with respect to the canonical orthonormal bagj9 in ¢4, i.e., T Sex = Arei for
someas, ..., Ay. Then it suffices to show uniform boundedness of the Hilbert—Schmidt
norms|| 7 Sllus = (Y}_q I T Sex 2)Y/2. Write f¥ = T*e} € X* and f; = Sex € X. Con-
sider{f ®u: k=1,...,n, |ul]l =1}. We will show that this family is semi-R-bounded

= (IE Zeknxkll (e?: &® uk)(ek)
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with constant one. Takes, ..., u, € X of norm one andi, ...,a, € C. Then forx € X
we have

n n n 12, 5 1/2
2
E| Y exar ffur| < larl | fF )] < (Dam) (Z\e:(m\ )
k=1 k=1 k=1 k=1
n 1/2 n 1/2
= <Z|ak|2> ITx) < <Z|ak|2> lx]]-
k=1 k=1

Therefore{f ®u: k=1,...,n, |lull = 1} is R-bounded with constaik.
SinceX has trivial type, it containg; uniformly [19]. Hence, for fixeds > 1 and every
n € Nthere arey1, ..., y, € X with ||y || = 1 for 1< k < n such that

n n
S a
k=1

Z lar| < M
k=1

Choose any scalafis, . .., b,. Now using R-boundedness and Kahane’s inequality for
p =1 with constantA we have

. (2.2)

n n n 2\ 1/2
Z|bk|lxk|=2|bk||fk*(fk>|<M(E D e £ (fi) v )
k=1 k=1 k=1
n 2\ 1/2 n 2\ 1/2
=M<E > ebi(fiE @ y) (fo) ) <KM<IE > ebifi )
k=1 k=1
n 2\ 1/2 n 1/2
gKM(]E Zekbkek ) <KM<Z|bk|2> .
k=1 k=1
Thus,

n 1/2
(Zlmz) <KM,
k=1

and so| T S|lus < K M. Therefore, any operatdr: X — ¢5 is 2-summing. This completes
the proof of (i) implies (ii).

Now we will show that (ii) implies (i). Suppose that is a GT-space of cotype 2,
and that7 is a family of semi-R-bounded operators. We will show tfiats R-bounded.
SinceX is separable, there is a quotient map¢; — X. First, we show that any semi-R-
bounded family of operators fro#h into X is already R-bounded. L& be such a family
with semi-R-boundedness constant one. Suppgse., S, € S andxy, ..., x, € £1. Then
Xp = Z?‘;l &jke;, where(e;) is the canonical basis @f.

Let us denote by the constant in the Kahane—Khintchine inequality for any Banach

space:
2\ 1/2
) < CE

(E

n
D e
k=1

n
D e
k=1
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Thus
n 2\ 1/2 n
(E ZGkSkxk ) < CE ZGkSkxk .
k=1 k=1
Then
n n o o0 n
E Zekskxk =E ZGkSkZ"Ejkej QZE Zekéijkej
=1 =1 j=1 =1 k=1
<Z<]E ZEkEijkEj ) <Z( |§jk|2> :
=1\ k=1 J=1 \k=1

Combining and using the Khintchine inequality again we obtain

n 2\ 1/2 o0 n 00 n
(E ZekSka ) <C22E €xjk =C2]E<Z Zéké'jk)
k=1 j=1 k=1 j=1lk=1
© n n 00
= C%E ZZGkéjkej =C%E ZGkZé&jkff’j
j=1k=1 Iz k=1 j=1
n
=C’E Zekxk .
k=1

Combining the previous two computations gives tfas R-bounded.

Now let 7 be a family of operators oiX with semi-boundedness constant one. Let
Q:¢1 — X be a quotient map and note that the fandly= (T Q: T € 7} is R-bounded
with some constanB by the above calculation.

We will apply a characterization of G3paces of cotype 2 due to Pisier [19].

Proposition 2.3 (Pisier).X isa GT-space of cotype 2 if and only if thereisa constant C > 0

such that for any n € N, x1,...,x, € X, thereare y1, ..., y, € £1 such that Qy; = xx,
k=1,...,n,and

n n
> an > ek

Now taken e N, Ty, ..., T, € T andxy, ..., x, € X. Chooseys, ..., y, € £1 according
to Proposition 2.3. Then

n n n
> T > aTi O > e
k=1 k=1 k=1

Thus,7 is R-bounded. The proof is completer

(2.3)

E < CE

E —E <BE < CBE

n
D e

k=1

For a set7 of bounded linear operators we will use the notatiGn= {T*: T € 7}.
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Lemma2.4.

(i) If 7 isR-bounded then 7** is R-bounded (with the same constant).
(i) If 7 isWR-bounded then 7* and 7** are WR-bounded (with the same constant).
(iii) If 7 issemi-R-bounded then 7** is semi-R-bounded (with the same constant).

Proof. The proofs of (i) and (iii) are similar. For (i) suppo%g, ..., T, € 7 and that7
has R-boundedness constant one.fet {—1, 1}" with P normalized counting measure
on £2. Let ¢, be the sequence of coordinate mapstanLet Rad$2; X) be the subspace
of L2(£2,P; X) generated by the functiorg ® x for 1 < k <n andx € X (this space

is isomorphic toX"). Then Rads2; X**) can be identified naturally with a subspace of
Rad £2; X)**. Consider the map : Rad £2; X) — Rad £2; X) defined by

n n
T(Zek ®xk> = Zek & Ty xg.
k=1 k=1

Then|T| < 1and sq|T**| < 1 and (i) follows.
Let us now prove (ii). SupposE is WR-bounded with constantone afd ..., 7, € 7.
Suppose, ..., x; € X* are such that

" 2\ 1/2
(E > ex; ) <1
k=1

Then, using the identification of R&@, X**) as the bidual of Rad2, X) we observe that
the set of functions of the fory_;_; exx;* in Rad($2, X**) such that

n
2T ) <1
k=1

is weak-closed and contains the unit ball of R&2l X). By Goldstine’s theorem it con-
tains the unit ball of Ra@2, X**) and this implies tha? * is WR-bounded with constant
one. O

Now it is time to give an example of a family of operators that is uniformly bounded
but not WR-bounded. The previous lemma will imply that the corresponding dual family
is semi-R-bounded but not WR-bounded.

Example. Let X =¢,, 1 < p < 2. Pick any non-zero elemente X and choose™* € X*
of norm one such that*(x) # 0. DefineT;, = u™ ® ex, where(ey) is the canonical basis
of X. The family {T}} is uniformly bounded| 7y || = 1, but we will show that it is not
WR-bounded. Consider the dual bagi$) in (£,)*. Then

Z‘(Tkx,e,f)‘ =Z‘<u*(x)ek,e,’:>| :n‘u*(x)|. (2.4)
k=1 k=1



M. Hoffmann et al. / J. Math. Anal. Appl. 294 (2004) 373-386 381

On the other hand, we have
" 2\ 1/2 "
(E Zekx ) (E Zeke,f
k=1 k=1

Hereq satisfies Ip+1/g =1.1f p <2theng >2and ¥2+1/g <1,soforl< p <2
the family {7} cannot be WR-bounded.

We haveT" = ¢;* @ u* on X* = {,, where 2< g < co. Considerg # oo. Since by
reflexivity 7, = T and using Lemma 2.4 we see th&['} is not WR-bounded. However,
X* has type 2 and hendé;’} is semi-R-bounded by Proposition 2.1.

2\ 1/2
) = ||x |24, (2.5)

3. Themain results

SupposeX is any Banach space. We shall say that a sequénee(T;);2 ; is anap-
proximating sequence if lim;_ o [[x — Txx|| = O for everyx € X. We will say that7 is
compact (relatively, weakly compact) if ea&h is compact (relatively, weakly compact).
We will say that7 is commuting if we hav@} T; = T; Ty for [, k € N.

If 7 is a commuting approximating sequence, let us define the sub&pacé X* to
be the closed linear span pf, 7,*(X*). The following lemma is trivial.

Lemma 3.1. If 7 isa commuting approximating sequence then E is a norming subspace
of X*,i.e, for some C we have

x| <C sup |x*(x)|, xeX,
B

* -
beT

and, if 7 isweakly compact, lim,_, o, 7, x* = x* weakly for x* € E7.

Let us recall that a Banach spa&ehas property (V) of Petchski if every uncon-
ditionally converging operatof' : X — Y is weakly compact. The spac€yK) have
property (V) [17] and more generally any*-algebra has property (V) [18]. The disk
algebraA (D) also has property (V) [10,14]; see also [23]. We also recall that a Banach
spaceX is said to have propertgv*) if whenever(x,) is a bounded sequence ¥ then
either

(i) (x,) has a subsequence which is weakly Cauchy or
(i) (x,) has a subsequence,) such that for some sequen¢gl) in X* ands > 0 we
have|y;‘:()’n)| >éand

n
2w
k=1

Property(V*) was introduced by Pefcigki [17]. We note that Bombal [4] shows that
every Banach lattice not containirg has propertyV*). Any subspace of a space with
property(V*) also has propertgv*).

< max |ag|, ai,...,a,€C, neN.
1<ksn
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Lemma3.2. Let X, Y be Banach spacesand let 7 = (T)2 ; beany sequence of operators
in £(X,Y). Suppose either

(i) 7 issemi-R-bounded or
(i) 7 isWR-boundedand Y has property (V*).

Then for every x € X the sequence (Tx);2 ; has a weakly Cauchy subsequence.

Proof. If not, by passing to a subsequence we can supplse;?” ; is equivalent to the
canonicak1-basis [21,22]. If7 is semi-R-bounded we observe that for sothere have

n
Z exarTrx
k=1

This gives a contradiction.
In case (ii), we can pass to a subsequence and assume the existeheerdfsuch that

" 1/2
E <C(2|ak|2> Ixll, at1,...,an€C, neN.

k=1

n

> ayi

k=1
and|y}(T,x)| > é§ > 0 for alln. Then

n
>
k=1

This also yields a contradiction.O

glmax lag|, ai1,...,a,€C, neN,

<k<n
2\ 1/2

Theorem 3.3. Let X be a Banach space with a commuting weakly compact approximating
sequence 7 . Suppose either that

2\ 1/2
) < Cy/n.

n
P
k=1

n
nd <Y |y (To)| < C<E

k=1

(i) 7 issemi-R-bounded and X isweakly sequentially complete or
(iiy 7 isWR-bounded and X has property (V*).

Then X isisomorphic to a dual space.

Proof. In either case we consider the family* c £(X**, X). By Lemma 3.2 for each
x* e X* we can find a subsequen@'ﬁ*x** SO0 thatTkj*(x**) is weakly convergent to
somey € X. Then forx™* € X*,

(Tiy) = lim x* (T T x™) = lim x*(Ty, T x ™)
n—00 n n—00

so thatTyy = T;*x**. Hence lim - |y — T;*x*™*| = 0.

We now show thak™- can be identified withX. Clearly X canonically embeds i’
sinceE7 is norming. If f* € E%- then by the Hahn—Banach theorem there exiStse X**
with [[x**] = || f*|| andx™ (x*) = f*(x™) for x* € E7. Lety = limy_, o T;"*x™*. Then
forx* e ET,
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x*(y) = lim x*(Tk**x**) = lim x**(Tk*x*) = f*(x").
k— 00 k— 00
¥ __
HenceEZ=X. O

Theorem 3.4. The space L1(0, 1) does not have a commuting weakly compact approxi-
mating sequence which is either semi-R-bounded or WR-bounded.

Proof. Lj is nota dual space [25].0
Of course a semi-R-bounded sequencgins actually R-bounded.

Theorem 3.5. Let X be a separable Banach space with property (V). If X hasa commut-
ing weakly compact approximating sequence (7,),,2 ; which is WR-bounded, then X* is
separable, and has a WR-bounded commuting weakly compact approximating sequence.

Proof. SinceX has (V), it follows thatX* has propertyV*). We show that lim_, o 7, x*

= x* weakly forx* € X*. IndeedT,x* converges wedkto x* and it must have a weakly
convergent subsequence by Lemma 3.2. Herfce E7 so X* = E7. Now T, (Bx+) is
weakly compact by Gantmaehs theorem also and we&knetrizable, hence norm sepa-
rable. ThusX* is separable, and so by Mazur’s theorem, and a diagonal argument, we can
find a sequence of convex combinatiais§);2 ; of (7,)°°; which is an approximating
sequence. O

Coroallary 3.6. If K is an uncountable compact metric space then C(K) has no WR-
bounded commuting weakly compact approximating sequence. The disk algebra has no
WR-bounded weakly compact approximating sequence.

We now consideC(K) whenK is countable. In this cas€(K) is homeomorphic to
a spaceC(a) = C([1, «]), wherea is a countable ordinal. There is a characterization of
suchC(K) due to Bessaga and Petémki [3].

Theorem 3.7 (Bessaga—Pelchgki). If o < 8, C(w* - k) isisomorphicto C(w” - n) if and
onlyif 8 < « - . Consequently, C(w®"), 0< y < w1, isa complete list of representatives
of the isomorphism classes of C(K) for K a countable compact metric space.

The following lemma can be obtained as an applicatiorfg ohdices [1,5,6]. However,
for convenience of the reader we will give a direct proof by construction.

Lemma 3.8. Let @ be a countable ordinal with & > w®. Then there exists f € C(a)** so
that whenever f, € C(a) convergesto f € C(a)** weak* then for any m € N there exist
ni, ..., n, €N suchthat

m
Z €k fnk
k=1

1
>§m, eg==x1, k=12,...,m.
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Proof. In this caseC («)** can be identified witl o, (). It is easy to see that it suffices to
consider the case = w®.

Considerf € X** defined byf (3I_oo*lx) = (—1) X0k and f(w®) = 1. Writing K
for the spacdl, w®] let K (?) denote thepth derived set ok. Thenk (P) consists of all
ordinals of the formy_;_ 'l together withw®. For eachp € N, K ?) is non-empty.
Furthermore for each € K ?) and every open neighborhoddof o« we have thaif takes
both valuest1 onV N K (?—D,

Let f,, € C(K) be any sequence such tl{g},) converges tgf weak’.

Fix 0 <8 < 1/2 andm € N. We construci(f;,, ..., fu,) inductively. We start from
K ™. By definition of f we can picky], a3 € K ) such thatf (o)) = (=1)/ for j =1,2.
Then findn1 € N such that ﬁzl(a}) — (=1 <8. Since f;, is continuous we can choose
open neighborhoocisl of al such that f,,, (@) — (=1)/| < forall o« € Ui.

For the inductive step, suppose t}‘(ap), Y ")2 _, and open set$U")2k have
been chosen so that € U¥. Then fori=1,..., 2 find pomtswéfll,agfl eUFN
K m=k+1) with f(o/‘*l) = (—1)/. By pointwise convergence, we can selegt; > ny
such thaufnkﬂ(ak“) (-17| < 8. Sincef,,, is continuous, there are neighborhoods
Ut USTt c UF i =1, 2%, such that for alk € U5 we havel £, (@) — (=1
< 8

In the mth iteration this will give 2' neighborhoods ane: functions f,,, ..., fu, SO
that for anyey, ..., €, € {—1, +1} there isx contained in one of these neighborhoods such
that| fi (@) — x| <8 forallk=1,...,m. Hence

m
Z €k fnk
k=1

Theorem 3.9. Let K beacompact metric space. Supposethereisan R-bounded commuting
weakly compact approximating sequencein C(K). Then C(K) isisomorphic to cg.

= (1 -456)m. m]

Proof. By Corollary 3.6 we need only consider the case wikeis countable. By Theo-
rem 3.7 it suffices to consider the case whege- [1, «], wherea > w®. Pick f € C(K)**
satisfying the hypotheses of Lemma 3.8.

SupposeT,,) is an R-bounded weakly compact approximating sequenceCf(K)
Then (7)) is an approximating sequence f6r(K)* by Theorem 3.5 and henc&™ f
converges tq‘ weak:. It follows that for anym we can choosey, ..., n, so that

1
—m, € = £1.
Hence

2\ 1/2

This contrad|cts the fact thdj, is R-bounded (or even semi-R-boundedi

n.

NI =
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Remark. We can replace the assumption of R-boundedness by the assumpti¢f,that
and(7;’) are both semi-R-bounded. By Theorem 2.2 this hypothesis would implyZ&}iat
is actually R-bounded and hence tii#}) is WR-bounded. We only used the fact thi&})

is both semi-R-bounded and WR-bounded.

Let us conclude by stating our main result with respect to semigroups. (Actually our
results are somewhat stronger than stated below.)

Theorem 3.10. Let X be a separable Banach space with an R-bounded strongly continuous
semigroup (73)s-0 consisting of weakly compact operators. Then if

(1) X = L1(pn) for some measure u then X isisomorphicto ¢1 (i.e., n is purely atomic).
(2) X =C(K) then X isisomorphic to cg.
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