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Abstract

It is shown that on certain Banach spaces, includingC[0,1] andL1[0,1], there is no strongly
continuous semigroup(Tt )0<t<1 consisting of weakly compact operators such that(Tt )0<t<1 is an
R-bounded family. More general results concerning approximating sequences are included an
variants of R-boundedness are also discussed.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Recent work on semigroup theory [13,24] has highlighted the importance of the conce
of R-boundedness. Let us recall the definition of R-bounded families of operators (cf. [
7,9]).

Definition 1.1. A family T of operators inL(X,Y ) is calledR-bounded with R-bounded-
ness constantC > 0 if letting (εk)

∞
k=1 be a sequence of independent Rademachers on

probability space then for everyx1, . . . , xn ∈ X andT1, . . . , Tn ∈ T we have

✩ The authors acknowledge support from NSF grant DMS-9870027.
* Corresponding author.

E-mail addresses: hoffmann@math.sc.edu (M. Hoffmann), nigel@math.missouri.edu (N. Kalton),
tamara@math.missouri.edu (T. Kucherenko).

1 Current address: Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA.
0022-247X/$ – see front matter 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2003.10.048



374 M. Hoffmann et al. / J. Math. Anal. Appl. 294 (2004) 373–386

nent
ion

nded-
e [13,

erator
f.
-
tor
nsider

s
id-
eeded
ch

r-
es

lts

here

iva-
otype 2
(
E

∥∥∥∥∥
n∑

k=1

εkTkxk

∥∥∥∥∥
2)1/2

� C

(
E

∥∥∥∥∥
n∑

k=1

εkxk

∥∥∥∥∥
2)1/2

. (1.1)

By the Kahane–Khintchineinequality we can replace 2 above by any other expo
1 � p < ∞ to obtain an equivalent definition. We will also need the following definit
introduced in [13].

Definition 1.2. A family T of operators inL(X,Y ) is called WR-bounded with WR-
boundedness constantC > 0 if for everyx1, . . . , xn ∈ X, y∗

1, . . . , y∗
n ∈ Y ∗ andT1, . . . , Tn

∈ T we have
n∑

k=1

∣∣〈Tkxk, y
∗
k

〉∣∣ � C

(
E

∥∥∥∥∥
n∑

k=1

εkxk

∥∥∥∥∥
2)1/2(

E

∥∥∥∥∥
n∑

k=1

εky
∗
k

∥∥∥∥∥
2)1/2

. (1.2)

It is clear by the Cauchy–Schwarz inequality that R-boundedness implies WR-bou
ness. The converse is not true in general, but it holds for spaces with non-trivial typ
20].

In [13] it was shown that no reasonable differential operator onL1 can have anH∞-
calculus. In this note we consider the related question whether a differential-type op
onL1 can generate an R-bounded semigroup. Note that ifA is an R-sectorial operator (c
[13]) with R-sectoriality angle less thanπ/2 then the semigroup(e−tA)0<t<1 is necessar
ily R-bounded. In general, one expects a semigroup generated by a differential opera
on a bounded domain to consist of weakly compact operators. We are thus led to co
the question whether one can have a strongly continuous semigroup(Tt )0<t<1 onL1 such
that eachTt is weakly compact (or equivalently compact, sinceL1 has the Dunford–Petti
property) and such that the family(Tt )0<t<1 is R-bounded. In fact this leads to cons
ering versions of the approximation property; the only property of the semigroup n
is commutativity. We consider the general question whether on a given separable Bana
space one can find an R-bounded sequence(Tn)n∈N of commuting weakly compact ope
ators such that limn→∞ Tnx = x for all x ∈ X. Our main results show that for the spac
L1[0,1], C(K) (exceptc0) and the disk algebraA(D) this is impossible. These resu
may be regarded as extensions of classical results that the spacesL1,C(K) do not have
unconditional bases [15].

In the case ofL1 we are led to consider a natural weakening of R-boundedness, w
we use the definition (1.1) but only for single vectors.

Definition 1.3. A family T of operators inL(X,Y ) is calledsemi-R-bounded if there is a
constantC > 0 such that for everyx ∈ X, a1, . . . , an ∈ C andT1, . . . , Tn ∈ T we have(

E

∥∥∥∥∥
n∑

k=1

εkakTkx

∥∥∥∥∥
2)1/2

� C

(
n∑

k=1

|ak|2
)1/2

‖x‖. (1.3)

We note that semi-R-boundedness is equivalent to R-boundedness for operators onL1.
In Theorem 2.2 we actually characterize allspaces where semi-R-boundedness is equ
lent to R-boundedness as spaces which are either Hilbert spaces or GT-spaces of c
in the terminology of Pisier [19].



M. Hoffmann et al. / J. Math. Anal. Appl. 294 (2004) 373–386 375

s.

i-R-

ce

are able
ch
.
e

ly of
nt

ant
2. R-boundedness and WR-boundedness

In this section, we make some remarks about R-boundedness and related notion
Note that in a space of type 2, any uniformly bounded collectionT ⊂ L(X,X) is semi-

R-bounded. The converse is also true:

Proposition 2.1. A Banach space X has type 2 if and only if uniform boundedness is
equivalent to semi-R-boundedness.

Proof. Suppose that every uniformly bounded family of operators is already sem
bounded. Pick anyx ∈ X andx∗ ∈ X∗ such that‖x‖ = ‖x∗‖ = 1 andx∗(x) = 1. Notice
that the familyT = {x∗ ⊗ u: ‖u‖ = 1} is uniformly bounded with constant one and hen
semi-R-bounded by assumption. LetC be the semi-R-boundedness constant ofT . Se-
lect anyx1, . . . , xn ∈ X and writexk = ‖xk‖uk , where‖uk‖ = 1. Then{x∗ ⊗ uk: k =
1, . . . , n} ⊂ T and

(
E

∥∥∥∥∥
n∑

k=1

εkxk

∥∥∥∥∥
2)1/2

=
(

E

∥∥∥∥∥
n∑

k=1

εk‖xk‖(x∗ ⊗ uk)x

∥∥∥∥∥
2)1/2

� C

(
E

∥∥∥∥∥
n∑

k=1

εk‖xk‖x
∥∥∥∥∥

2)1/2

= C‖x‖
(

n∑
k=1

‖xk‖2

)1/2

= C

(
n∑

k=1

‖xk‖2

)1/2

.

Thus,X has type 2. �
For some spaces, semi-R-boundedness is equivalent to R-boundedness and we

to completely characterize these spaces in the next theorem. Let us recall that a Bana
spaceX is called aGT-space if every bounded operatorT :X → �2 is absolutely summing
Examples of GT-spaces of cotype 2 areL1, the quotient ofL1 by a reflexive subspac
[14,19], andL1/H1 [8]. It is unknown whether every GT-space has cotype 2.

Theorem 2.2. Suppose X is separable. Then the following are equivalent:

(i) Every semi-R-bounded family of operators on X is R-bounded.
(ii) X is isomorphic to �2 or X is a GT-space of cotype 2.

Proof. First we prove that (i) implies (ii). Suppose that every semi-R-bounded fami
operators onX is R-bounded. Let us note that this implies the existence of a constaK

so that ifT has semi-R-boundedness constantC then it has R-boundedness constantKC;
for otherwise we could find a sequenceTn of families with semi-R-boundedness const
one and R-boundedness constant at least 4n; then the family

⋃
n�1 2−nTn contradicts our
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by
assumption. FixM > 1 and takex ∈ X. Choosen ∈ N. By Dvoretzky’s theorem [16] we
can finde1, . . . , en ∈ X such that for anya1, . . . , an ∈ C we have

M−1

(
n∑

k=1

|ak|2
)1/2

�
∥∥∥∥∥

n∑
k=1

akek

∥∥∥∥∥ � M

(
n∑

k=1

|ak|2
)1/2

.

Consider the family of operatorsTn = {u∗ ⊗ ek: ‖u∗‖ = 1, k = 1, . . . , n}. Then each
Tn is semi-R-bounded with constantM as follows. A finite subfamily ofTn is of the
form {u∗

kj ⊕ ek: 1 � k � n, 1 � j � mk} for somem1, . . . ,mn ∈ N. Then for every
a11, . . . , anmn ∈ C we have (lettingεkj denote independent Rademachers)(

E

∥∥∥∥∥
n∑

k=1

mk∑
j=1

εkj akju
∗
kj (x)ek

∥∥∥∥∥
2)1/2

� M

(
E

n∑
k=1

∣∣∣∣∣
mk∑
j=1

εkj u
∗
kj (x)akj

∣∣∣∣∣
2)1/2

� M

(
n∑

k=1

E

∣∣∣∣∣
mk∑
j=1

εkj u
∗
kj (x)akj

∣∣∣∣∣
2)1/2

� M

(
n∑

k=1

mk∑
j=1

|akj |2
)1/2

‖x‖.

Our assumption implies that eachTn is R-bounded with constantKM. Let x1, . . . , xn

∈ X and writexk = ‖xk‖uk , where‖uk‖ = 1. Chooseu∗
k ∈ X∗ such thatu∗

k(uk) = 1 and
‖u∗

k‖ = 1. Now we have(
n∑

k=1

‖xk‖2

)1/2

� M

(
E

∥∥∥∥∥
n∑

k=1

εk‖xk‖ek

∥∥∥∥∥
2)1/2

= M

(
E

∥∥∥∥∥
n∑

k=1

εk‖xk‖u∗
k(uk)ek

∥∥∥∥∥
2)1/2

= M

(
E

∥∥∥∥∥
n∑

k=1

εk‖xk‖
(
u∗

k ⊗ ek

)
(uk)

∥∥∥∥∥
2)1/2

� KM2

(
E

∥∥∥∥∥
n∑

k=1

εk‖xk‖uk

∥∥∥∥∥
2)1/2

= KM2

(
E

∥∥∥∥∥
n∑

k=1

εkxk

∥∥∥∥∥
2)1/2

.

This shows thatX has cotype 2.
Let us assume thatX has non-trivial type. Then by results of Pisier [19] and also

Figiel and Tomczak-Jaegermann [12],�n
2 is uniformly complemented inX. Thus, for some

constantC, for everyn ∈ N we can choose a biorthogonal system{(ek, e
∗
k): k = 1, . . . , n}

in X × X∗ such that∥∥∥∥∥
n∑

k=1

akek

∥∥∥∥∥ � C

(
n∑

k=1

|ak|2
)1/2

and ∥∥∥∥∥
n∑

ake
∗
k

∥∥∥∥∥ � C

(
n∑

|ak|2
)1/2
k=1 k=1
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for all a1, . . . , an ∈ C. Note that for anyx ∈ X anda1, . . . , an ∈ C,∣∣∣∣∣
n∑

k=1

ake
∗
k (x)

∣∣∣∣∣ � C

(
n∑

k=1

|ak|2
)1/2

‖x‖

and so(
n∑

k=1

∣∣e∗
k(x)

∣∣2)1/2

� C‖x‖.

Consider the family of operatorsTn = {e∗
k ⊗ u: ‖u‖ = 1, k = 1, . . . , n}. Let x ∈ X.

Then for anya1, . . . , an ∈ C and everyu1, . . . , un ∈ X of norm one we have

E

∥∥∥∥∥
n∑

k=1

εkak

(
e∗
k ⊗ uk

)
(x)

∥∥∥∥∥ = E

∥∥∥∥∥
n∑

k=1

εkake
∗
k(x)uk

∥∥∥∥∥ �
n∑

k=1

∥∥ake
∗
k (x)uk

∥∥

=
n∑

k=1

|ak|
∣∣e∗

k (x)
∣∣ �

(
n∑

k=1

|ak|2
)1/2( n∑

k=1

∣∣e∗
k (x)

∣∣2)1/2

� C

(
n∑

k=1

|ak|2
)1/2

‖x‖.

We conclude thatTn is semi-R-bounded with constantC and henceTn is R-bounded
for constantKC independent ofn. This implies thatX has type 2 as follows. Choose a
x1, . . . , xn ∈ X and writexk = ‖xk‖uk , where‖uk‖ = 1. Then(

E

∥∥∥∥∥
n∑

k=1

εkxk

∥∥∥∥∥
2)1/2

=
(

E

∥∥∥∥∥
n∑

k=1

εk‖xk‖uk

∥∥∥∥∥
2)1/2

=
(

E

∥∥∥∥∥
n∑

k=1

εk‖xk‖e∗
k (ek)uk

∥∥∥∥∥
2)1/2

=
(

E

∥∥∥∥∥
n∑

k=1

εk‖xk‖
(
e∗
k ⊗ uk

)
(ek)

∥∥∥∥∥
2)1/2

� KC

(
E

∥∥∥∥∥
n∑

k=1

εk‖xk‖ek

∥∥∥∥∥
2)1/2

� KC2

(
n∑

k=1

‖xk‖2

)1/2

. (2.1)

Now, X has type 2 and cotype 2 and is therefore isomorphic to�2 by Kwapien’s theorem
[25].

Now suppose on the contrary thatX has trivial type. We will show thatX is a GT-space
i.e., anyT :X → �2 is 1-summing. FixT :X → �2 of norm one. SinceX has cotype 2
we can equivalently show that any suchT is 2-summing [11]. It suffices to check th
for any n ∈ N and operatorS : �n

2 → X such that‖S‖ � 1 we haveπ2(T S) � C, where
C does not depend onn [25]. One can assume thatT S : �n

2 → �n
2 and thatT S is diag-

onal with respect to the canonical orthonormal basis(ek) in �n
2, i.e., T Sek = λkek for

someλ1, . . . , λn. Then it suffices to show uniform boundedness of the Hilbert–Sch
norms‖T S‖HS = (

∑n
k=1 ‖T Sek‖2)1/2. Write f ∗

k = T ∗e∗
k ∈ X∗ andfk = Sek ∈ X. Con-

sider{f ∗ ⊗ u: k = 1, . . . , n, ‖u‖ = 1}. We will show that this family is semi-R-bounde
k
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with constant one. Takeu1, . . . , un ∈ X of norm one anda1, . . . , an ∈ C. Then forx ∈ X

we have

E

∥∥∥∥∥
n∑

k=1

εkakf
∗
k (x)uk

∥∥∥∥∥ �
n∑

k=1

|ak|
∣∣f ∗

k (x)
∣∣ �

(
n∑

k=1

|ak|2
)1/2( n∑

k=1

∣∣e∗
k (T x)

∣∣2)1/2

=
(

n∑
k=1

|ak|2
)1/2

‖T x‖ �
(

n∑
k=1

|ak|2
)1/2

‖x‖.

Therefore,{f ∗
k ⊗ u: k = 1, . . . , n, ‖u‖ = 1} is R-bounded with constantK.

SinceX has trivial type, it contains�n
1 uniformly [19]. Hence, for fixedM > 1 and every

n ∈ N there arey1, . . . , yn ∈ X with ‖yk‖ = 1 for 1� k � n such that

n∑
k=1

|ak| � M

∥∥∥∥∥
n∑

k=1

akyk

∥∥∥∥∥. (2.2)

Choose any scalarsb1, . . . , bn. Now using R-boundedness and Kahane’s inequality
p = 1 with constantA we have

n∑
k=1

|bk||λk| =
n∑

k=1

|bk|
∣∣f ∗

k (fk)
∣∣ � M

(
E

∥∥∥∥∥
n∑

k=1

εkbkf
∗
k (fk)yk

∥∥∥∥∥
2)1/2

= M

(
E

∥∥∥∥∥
n∑

k=1

εkbk

(
f ∗

k ⊗ yk

)
(fk)

∥∥∥∥∥
2)1/2

� KM

(
E

∥∥∥∥∥
n∑

k=1

εkbkfk

∥∥∥∥∥
2)1/2

� KM

(
E

∥∥∥∥∥
n∑

k=1

εkbkek

∥∥∥∥∥
2)1/2

� KM

(
n∑

k=1

|bk|2
)1/2

.

Thus,(
n∑

k=1

|λk|2
)1/2

� KM,

and so‖T S‖HS � KM. Therefore, any operatorT :X → �2 is 2-summing. This complete
the proof of (i) implies (ii).

Now we will show that (ii) implies (i). Suppose thatX is a GT-space of cotype 2
and thatT is a family of semi-R-bounded operators. We will show thatT is R-bounded
SinceX is separable, there is a quotient mapQ : �1 → X. First, we show that any semi-R
bounded family of operators from�1 into X is already R-bounded. LetS be such a family
with semi-R-boundedness constant one. SupposeS1, . . . , Sn ∈ S andx1, . . . , xn ∈ �1. Then
xk = ∑∞

j=1 ξjkej , where(ej ) is the canonical basis of�1.
Let us denote byC the constant in the Kahane–Khintchine inequality for any Ban

space:(
E

∥∥∥∥∥
n∑

εkxk

∥∥∥∥∥
2)1/2

� CE

∥∥∥∥∥
n∑

εkxk

∥∥∥∥∥.
k=1 k=1
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Thus (
E

∥∥∥∥∥
n∑

k=1

εkSkxk

∥∥∥∥∥
2)1/2

� CE

∥∥∥∥∥
n∑

k=1

εkSkxk

∥∥∥∥∥.

Then

E

∥∥∥∥∥
n∑

k=1

εkSkxk

∥∥∥∥∥ = E

∥∥∥∥∥
n∑

k=1

εkSk

∞∑
j=1

ξjkej

∥∥∥∥∥ �
∞∑

j=1

E

∥∥∥∥∥
n∑

k=1

εkξjkSkej

∥∥∥∥∥
�

∞∑
j=1

(
E

∥∥∥∥∥
n∑

k=1

εkξjkSkej

∥∥∥∥∥
2)1/2

�
∞∑

j=1

(
n∑

k=1

|ξjk |2
)1/2

.

Combining and using the Khintchine inequality again we obtain(
E

∥∥∥∥∥
n∑

k=1

εkSkxk

∥∥∥∥∥
2)1/2

� C2
∞∑

j=1

E

∣∣∣∣∣
n∑

k=1

εkξjk

∣∣∣∣∣ = C2
E

( ∞∑
j=1

∣∣∣∣∣
n∑

k=1

εkξjk

∣∣∣∣∣
)

= C2
E

∥∥∥∥∥
∞∑

j=1

n∑
k=1

εkξjkej

∥∥∥∥∥
�1

= C2
E

∥∥∥∥∥
n∑

k=1

εk

∞∑
j=1

ξjkej

∥∥∥∥∥
= C2

E

∥∥∥∥∥
n∑

k=1

εkxk

∥∥∥∥∥.

Combining the previous two computations gives thatS is R-bounded.
Now let T be a family of operators onX with semi-boundedness constant one.

Q : �1 → X be a quotient map and note that the familyS = {T Q: T ∈ T } is R-bounded
with some constantB by the above calculation.

We will apply a characterization of GT-spaces of cotype 2 due to Pisier [19].

Proposition 2.3 (Pisier).X is a GT-space of cotype 2 if and only if there is a constant C > 0
such that for any n ∈ N, x1, . . . , xn ∈ X, there are y1, . . . , yn ∈ �1 such that Qyk = xk ,
k = 1, . . . , n, and

E

∥∥∥∥∥
n∑

k=1

εkyk

∥∥∥∥∥ � CE

∥∥∥∥∥
n∑

k=1

εkxk

∥∥∥∥∥. (2.3)

Now taken ∈ N, T1, . . . , Tn ∈ T andx1, . . . , xn ∈ X. Choosey1, . . . , yn ∈ �1 according
to Proposition 2.3. Then

E

∥∥∥∥∥
n∑

k=1

εkTkxk

∥∥∥∥∥ = E

∥∥∥∥∥
n∑

k=1

εkTkQyk

∥∥∥∥∥ � BE

∥∥∥∥∥
n∑

k=1

εkyk

∥∥∥∥∥ � CBE

∥∥∥∥∥
n∑

k=1

εkxk

∥∥∥∥∥.

Thus,T is R-bounded. The proof is complete.�
For a setT of bounded linear operators we will use the notationT ∗ = {T ∗: T ∈ T }.
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Lemma 2.4.

(i) If T is R-bounded then T ∗∗ is R-bounded (with the same constant).
(ii) If T is WR-bounded then T ∗ and T ∗∗ are WR-bounded (with the same constant).
(iii) If T is semi-R-bounded then T ∗∗ is semi-R-bounded (with the same constant).

Proof. The proofs of (i) and (iii) are similar. For (i) supposeT1, . . . , Tn ∈ T and thatT
has R-boundedness constant one. LetΩ = {−1,1}n with P normalized counting measu
on Ω . Let εk be the sequence of coordinate maps onΩ . Let Rad(Ω;X) be the subspac
of L2(Ω,P;X) generated by the functionsεk ⊗ x for 1 � k � n andx ∈ X (this space
is isomorphic toXn). Then Rad(Ω;X∗∗) can be identified naturally with a subspace
Rad(Ω;X)∗∗. Consider the mapT : Rad(Ω;X) → Rad(Ω;X) defined by

T

(
n∑

k=1

εk ⊗ xk

)
=

n∑
k=1

εk ⊗ Tkxk.

Then‖T‖ � 1 and so‖T∗∗‖ � 1 and (i) follows.
Let us now prove (ii). SupposeT is WR-bounded with constant one andT1, . . . , Tn ∈ T .

Supposex∗
1, . . . , x∗

n ∈ X∗ are such that

(
E

∥∥∥∥∥
n∑

k=1

εkx
∗
k

∥∥∥∥∥
2)1/2

� 1.

Then, using the identification of Rad(Ω,X∗∗) as the bidual of Rad(Ω,X) we observe tha
the set of functions of the form

∑n
k=1 εkx

∗∗
k in Rad(Ω,X∗∗) such that

n∑
k=1

∣∣〈T ∗
k x∗

k , x∗∗
k

〉∣∣ � 1

is weak∗-closed and contains the unit ball of Rad(Ω,X). By Goldstine’s theorem it con
tains the unit ball of Rad(Ω,X∗∗) and this implies thatT ∗ is WR-bounded with constan
one. �

Now it is time to give an example of a family of operators that is uniformly boun
but not WR-bounded. The previous lemma will imply that the corresponding dual fa
is semi-R-bounded but not WR-bounded.

Example. Let X = �p , 1� p < 2. Pick any non-zero elementx ∈ X and chooseu∗ ∈ X∗
of norm one such thatu∗(x) 	= 0. DefineTk = u∗ ⊗ ek, where(ek) is the canonical basi
of X. The family {Tk} is uniformly bounded,‖Tk‖ = 1, but we will show that it is no
WR-bounded. Consider the dual basis(e∗

k) in (�p)∗. Then

n∑∣∣〈Tkx, e∗
k

〉∣∣ =
n∑∣∣〈u∗(x)ek, e

∗
k

〉∣∣ = n
∣∣u∗(x)

∣∣. (2.4)

k=1 k=1
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r,

t).

k
nach

at
th
On the other hand, we have(
E

∥∥∥∥∥
n∑

k=1

εkx

∥∥∥∥∥
2)1/2(

E

∥∥∥∥∥
n∑

k=1

εke
∗
k

∥∥∥∥∥
2)1/2

= ‖x‖n1/2n1/q . (2.5)

Hereq satisfies 1/p + 1/q = 1. If p < 2 thenq > 2 and 1/2+ 1/q < 1, so for 1� p < 2
the family{Tk} cannot be WR-bounded.

We haveT ∗
k = e∗∗

k ⊗ u∗ on X∗ = �q , where 2< q � ∞. Considerq 	= ∞. Since by
reflexivity T ∗∗

k = Tk and using Lemma 2.4 we see that{T ∗
k } is not WR-bounded. Howeve

X∗ has type 2 and hence{T ∗
k } is semi-R-bounded by Proposition 2.1.

3. The main results

SupposeX is any Banach space. We shall say that a sequenceT = (Tk)
∞
k=1 is anap-

proximating sequence if lim k→∞ ‖x − Tkx‖ = 0 for everyx ∈ X. We will say thatT is
compact (relatively, weakly compact) if eachTk is compact (relatively, weakly compac
We will say thatT is commuting if we haveTkTl = TlTk for l, k ∈ N.

If T is a commuting approximating sequence, let us define the subspaceET of X∗ to
be the closed linear span of

⋃
k T ∗

k (X∗). The following lemma is trivial.

Lemma 3.1. If T is a commuting approximating sequence then ET is a norming subspace
of X∗, i.e., for some C we have

‖x‖ � C sup
x∗∈BET

∣∣x∗(x)
∣∣, x ∈ X,

and, if T is weakly compact, limn→∞ T ∗
n x∗ = x∗ weakly for x∗ ∈ ET .

Let us recall that a Banach spaceX has property (V) of Pełczýnski if every uncon-
ditionally converging operatorT :X → Y is weakly compact. The spacesC(K) have
property (V) [17] and more generally anyC∗-algebra has property (V) [18]. The dis
algebraA(D) also has property (V) [10,14]; see also [23]. We also recall that a Ba
spaceX is said to have property(V∗) if whenever(xn) is a bounded sequence inX then
either

(i) (xn) has a subsequence which is weakly Cauchy or
(ii) (xn) has a subsequence(yn) such that for some sequence(y∗

n) in X∗ andδ > 0 we
have|y∗

n(yn)| � δ and∥∥∥∥∥
n∑

k=1

aky
∗
k

∥∥∥∥∥ � max
1�k�n

|ak|, a1, . . . , an ∈ C, n ∈ N.

Property(V∗) was introduced by Pełczyński [17]. We note that Bombal [4] shows th
every Banach lattice not containingc0 has property(V∗). Any subspace of a space wi
property(V∗) also has property(V∗).
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Lemma 3.2. Let X,Y be Banach spaces and let T = (Tk)
∞
k=1 be any sequence of operators

in L(X,Y ). Suppose either

(i) T is semi-R-bounded or
(ii) T is WR-bounded and Y has property (V∗).

Then for every x ∈ X the sequence (Tkx)∞k=1 has a weakly Cauchy subsequence.

Proof. If not, by passing to a subsequence we can suppose(Tkx)∞k=1 is equivalent to the
canonical�1-basis [21,22]. IfT is semi-R-bounded we observe that for someC we have

E

∥∥∥∥∥
n∑

k=1

εkakTkx

∥∥∥∥∥ � C

(
n∑

k=1

|ak|2
)1/2

‖x‖, a1, . . . , an ∈ C, n ∈ N.

This gives a contradiction.
In case (ii), we can pass to a subsequence and assume the existence ofy∗

n ∈ Y ∗ such that∥∥∥∥∥
n∑

k=1

aky
∗
k

∥∥∥∥∥ � max
1�k�n

|ak|, a1, . . . , an ∈ C, n ∈ N,

and|y∗
n(Tnx)| � δ > 0 for all n. Then

nδ �
n∑

k=1

∣∣y∗
k (Tkx)

∣∣ � C

(
E

∥∥∥∥∥
n∑

k=1

εkx

∥∥∥∥∥
2)1/2(

E

∥∥∥∥∥
n∑

k=1

εky
∗
k

∥∥∥∥∥
2)1/2

� C
√

n.

This also yields a contradiction.�
Theorem 3.3. Let X be a Banach space with a commuting weakly compact approximating
sequence T . Suppose either that

(i) T is semi-R-bounded and X is weakly sequentially complete or
(ii) T is WR-bounded and X has property (V∗).

Then X is isomorphic to a dual space.

Proof. In either case we consider the familyT ∗∗ ⊂ L(X∗∗,X). By Lemma 3.2 for each
x∗∗ ∈ X∗∗ we can find a subsequenceT ∗∗

kn
x∗∗ so thatT ∗∗

kn
(x∗∗) is weakly convergent to

somey ∈ X. Then forx∗ ∈ X∗,

x∗(Tky) = lim
n→∞ x∗(TkT

∗∗
kn

x∗∗) = lim
n→∞ x∗(TknT

∗∗
k x∗∗)

so thatTky = T ∗∗
k x∗∗. Hence limk→∞ ‖y − T ∗∗

k x∗∗‖ = 0.
We now show thatE∗

T can be identified withX. ClearlyX canonically embeds inE∗
T

sinceET is norming. Iff ∗ ∈ E∗
T then by the Hahn–Banach theorem there existsx∗∗ ∈ X∗∗

with ‖x∗∗‖ = ‖f ∗‖ andx∗∗(x∗) = f ∗(x∗) for x∗ ∈ ET . Let y = limk→∞ T ∗∗
k x∗∗. Then

for x∗ ∈ ET ,
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y

a-
e can

of

,

x∗(y) = lim
k→∞ x∗(T ∗∗

k x∗∗) = lim
k→∞x∗∗(T ∗

k x∗) = f ∗(x∗).

HenceE∗
T = X. �

Theorem 3.4. The space L1(0,1) does not have a commuting weakly compact approxi-
mating sequence which is either semi-R-bounded or WR-bounded.

Proof. L1 is not a dual space [25].�
Of course a semi-R-bounded sequence inL1 is actually R-bounded.

Theorem 3.5. Let X be a separable Banach space with property (V). If X has a commut-
ing weakly compact approximating sequence (Tn)

∞
n=1 which is WR-bounded, then X∗ is

separable, and has a WR-bounded commuting weakly compact approximating sequence.

Proof. SinceX has (V), it follows thatX∗ has property(V∗). We show that limn→∞ T ∗
n x∗

= x∗ weakly forx∗ ∈ X∗. IndeedT ∗
n x∗ converges weak∗ to x∗ and it must have a weakl

convergent subsequence by Lemma 3.2. Hencex∗ ∈ ET so X∗ = ET . Now T ∗
n (BX∗) is

weakly compact by Gantmacher’s theorem also and weak∗-metrizable, hence norm sep
rable. ThusX∗ is separable, and so by Mazur’s theorem, and a diagonal argument, w
find a sequence of convex combinations(S∗

n)∞n=1 of (T ∗
n )∞n=1 which is an approximating

sequence. �
Corollary 3.6. If K is an uncountable compact metric space then C(K) has no WR-
bounded commuting weakly compact approximating sequence. The disk algebra has no
WR-bounded weakly compact approximating sequence.

We now considerC(K) whenK is countable. In this caseC(K) is homeomorphic to
a spaceC(α) = C([1, α]), whereα is a countable ordinal. There is a characterization
suchC(K) due to Bessaga and Pełczyński [3].

Theorem 3.7 (Bessaga–Pełczyński).If α < β , C(ωα · k) is isomorphic to C(ωβ · n) if and
only if β < α · ω. Consequently, C(ωωγ

), 0 � γ < ω1, is a complete list of representatives
of the isomorphism classes of C(K) for K a countable compact metric space.

The following lemma can be obtained as an applications of�1-indices [1,5,6]. However
for convenience of the reader we will give a direct proof by construction.

Lemma 3.8. Let α be a countable ordinal with α � ωω . Then there exists f ∈ C(α)∗∗ so
that whenever fn ∈ C(α) converges to f ∈ C(α)∗∗ weak∗ then for any m ∈ N there exist
n1, . . . , nm ∈ N such that∥∥∥∥∥

m∑
k=1

εkfnk

∥∥∥∥∥ � 1

2
m, εk = ±1, k = 1,2, . . . ,m.



384 M. Hoffmann et al. / J. Math. Anal. Appl. 294 (2004) 373–386

to

e

ds
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Proof. In this caseC(α)∗∗ can be identified with�∞(α). It is easy to see that it suffices
consider the caseα = ωω.

Considerf ∈ X∗∗ defined byf (
∑N

k=0 ωklk) = (−1)
∑N

k=0 lk andf (ωω) = 1. Writing K

for the space[1,ωω] let K(p) denote thepth derived set ofK. ThenK(p) consists of all
ordinals of the form

∑n
k=p ωklk together withωω. For eachp ∈ N, K(p) is non-empty.

Furthermore for eachα ∈ K(p) and every open neighborhoodV of α we have thatf takes
both values±1 onV ∩ K(p−1).

Let fn ∈ C(K) be any sequence such that(fn) converges tof weak∗.
Fix 0 < δ < 1/2 andm ∈ N. We construct(fn1, . . . , fnm) inductively. We start from

K(m). By definition off we can pickα1
1, α1

2 ∈ K(m) such thatf (α1
j ) = (−1)j for j = 1,2.

Then findn1 ∈ N such that|fn1(α
1
j ) − (−1)j | < δ. Sincefn1 is continuous we can choos

open neighborhoodsU1
j of α1

j such that|fn1(α) − (−1)j | < δ for all α ∈ U1
j .

For the inductive step, suppose that(nj )
k
j=1, (αk

j )2k

j=1 and open sets(Uk
j )2k

j=1 have

been chosen so thatαk
j ∈ Uk

j . Then for i = 1, . . . ,2k find pointsαk+1
2i−1, α

k+1
2i ∈ Uk

i ∩
K(m−k+1) with f (αk+1

j ) = (−1)j . By pointwise convergence, we can selectnk+1 > nk

such that|fnk+1(α
k+1
j ) − (−1)j | < δ. Sincefnk+1 is continuous, there are neighborhoo

Uk+1
2i−1,U

k+1
2i ⊂ Uk

i , i = 1, . . . ,2k, such that for allα ∈ Uk+1
j we have|fnk+1(α) − (−1)j |

< δ.
In the mth iteration this will give 2m neighborhoods andm functionsfn1, . . . , fnm so

that for anyε1, . . . , εm ∈ {−1,+1} there isα contained in one of these neighborhoods s
that|fk(α) − εk| < δ for all k = 1, . . . ,m. Hence∥∥∥∥∥

m∑
k=1

εkfnk

∥∥∥∥∥ � (1− δ)m. �

Theorem 3.9. Let K be a compact metric space. Suppose there is an R-bounded commuting
weakly compact approximating sequence in C(K). Then C(K) is isomorphic to c0.

Proof. By Corollary 3.6 we need only consider the case whenK is countable. By Theo
rem 3.7 it suffices to consider the case whenK = [1, α], whereα � ωω. Pickf ∈ C(K)∗∗
satisfying the hypotheses of Lemma 3.8.

Suppose(Tn) is an R-bounded weakly compact approximating sequence forC(K).
Then (T ∗

n ) is an approximating sequence forC(K)∗ by Theorem 3.5 and henceT ∗∗
n f

converges tof weak∗. It follows that for anym we can choosen1, . . . , nm so that∥∥∥∥∥
m∑

k=1

εkT
∗∗
nk

f

∥∥∥∥∥ � 1

2
m, εk = ±1.

Hence(
E

∥∥∥∥∥
m∑

k=1

εkT
∗∗
nk

f

∥∥∥∥∥
2)1/2

� 1

2
m.

This contradicts the fact thatTn is R-bounded (or even semi-R-bounded).�



M. Hoffmann et al. / J. Math. Anal. Appl. 294 (2004) 373–386 385

at

y our

Studia

9.
78.

nal,

94

orems,

ath-

Israel J.

.
225

ec-

t, Bull.

98
Remark. We can replace the assumption of R-boundedness by the assumption th(Tn)

and(T ∗
n ) are both semi-R-bounded. By Theorem 2.2 this hypothesis would imply that(T ∗

n )

is actually R-bounded and hence that(Tn) is WR-bounded. We only used the fact that(Tn)

is both semi-R-bounded and WR-bounded.

Let us conclude by stating our main result with respect to semigroups. (Actuall
results are somewhat stronger than stated below.)

Theorem 3.10. Let X be a separable Banach space with an R-bounded strongly continuous
semigroup (Tt )t>0 consisting of weakly compact operators. Then if

(1) X = L1(µ) for some measure µ then X is isomorphic to �1 (i.e., µ is purely atomic).
(2) X = C(K) then X is isomorphic to c0.
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