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Abstract

We study a parabolic system of two non-linear reaction—diffusion equations completely coupled
through source terms and with power-like diffusivity. Under adequate hypotheses on the initial data,
we prove that non-simultaneous blow-up is sometimes possible; i.e., one of the components blows up
while the other remains bounded. The conditions for non-simultaneous blow-up rely strongly on the
diffusivity parameters and significant differences appear between the fast-diffusion and the porous
medium case. Surprisingly, flat (homogeneous in space) solutions are not always a good guide to
determine whether non-simultaneous blow-up is possible.
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1. Introduction

We consider solutiong:, v) to the non-linear parabolic system

{ up = U™) gy + uPlipPrz,

vy = (V") nr + uPpP2, (x,t) eRx (0, T), (1)

with continuous, bounded and symmetric initial data

u(x, 0) =uo(x),
{v(x,O):vo(x), xeR. 2)

We assume;; > 0 andm, n > 0. In this range of parameters the diffusivities may become
degenerate or singular at the level zero. Moreover, the reaction terms may not be Lip-
schitz, leading to non-unigueness phenomena. To avoid the technicalities to which these
difficulties may lead, we will assume thag, vo > § > 0. Since we will be interested in the
behaviour of the system for large values of the solutions, this is not a significant restriction.
Solutions will be understood in a classical sense. We restrict ourselves to symmetric ini-
tial dataug, vo non-increasing withx|, such that,, v, > 0. Monotonicity and symmetry
assumptions are common for problems of this kind, see [1].

Systems of this kind are common in population dynamics. In this contexidv rep-
resent two different species with a symbiotic behaviour. The cooperation between them is
represented by the coupled source terms.

The constant” denotes the maximal existence time for the solution. If it is infinite, we
say that the solution iglobal. If it is finite, we have

limsup{|uC. 0 o + [vC. 0]~} = o0,
t /T

and we say that the solutidsfows up Solutions blow up if and only if the exponents;
verify any of the conditions

p11>1, p22>1 or (pun—D(p22—1) — p12p21<0.

This follows easily by comparison with global and blow-igt solutionsthat is, solutions
of (1) that are independent of Thus, they satisfy the ordinary differential system

u' (1) = uP(H)vP2(r), V() = uP?(t)vP22(t), (3)

with initial datau(0) = ug > 0, v(0) = vg > 0.

If a solution(u, v) blows up, a priori there is no reason why both componengndv,
should go to infinity simultaneously at the blow-up tirfieIndeed, for certain choices of
the parameterp;; there are initial data for which one of the components of the system
remains bounded while the other blows up. This phenomenon is known in the literature
asnon-simultaneous blow-uj2,3]. The aim of this paper is to characterize the range of
parameters for which non-simultaneous blow-up occurs for problem (1)—(2).

The possibility of having non-simultaneous blow-up for (1)—(2) was first mentioned
in [1]. However, the authors restrict themselves to flat solutions. System (3) has solutions
with non-simultaneous blow-up such thablows up and remains bounded if and only if
p11 > p21+ 1. However, in this case diffusion plays no role. A natural question arises: are
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there non-flat solutions with non-simultaneous blow-up (beirige blow-up component)
out of this range?

Non-simultaneous blow-up for non-flat solutions of a parabolic system was first con-
sidered in [2], where the authors study (1)—(2) in the case n = 1. The necessary
(under some restrictions on the initial data) and sufficient condition for the existence of
non-simultaneous blow-up is again; > p21 + 1. Hence flat solutions are a good guide
to determine the non-simultaneous blow-up range in the case of linear diffusion.

Our first result says that flat solutions still give the range for non-simultaneous blow-up
when the blow-up component, is in the porous medium case.

Theorem 1. Letm > 1. If u blows up whilev remains bounded, thepi; > p21 + 1.
Conversely, ifp11 > p21 + 1, then there exist initial datdug, vg) such thatu blows up
while v remains bounded.

Since p21 > 0, in order to have non-simultaneous blow-up we need in particular that
p11 > 1. Thusu can blow up by itself, without the help of Conditionp11 > p21+ 1 says
that p21 (which measures the influence®in the equation fow) is small compared with
p11 (which measures the capacity ofto blow up by itself); hence, whem blows up, it
does not necessarily carvyalong with it.

The surprising fact and the main novelty of this paper is that when the coefficient of
non-linear diffusion of the blow-up component is less than one® < 1, the result for
flat solutions is not a good guide any more, since diffusion plays a major role.

Theorem 2. Let 0 < m < 1. If u blows up whilev remains bounded, thepi; >
max{1, p21+ (m +1)/2}.

We are not able to prove the converse in full generality, but we show a partial result that
illustrates the general case.

Theorem 3. Let0 <m < 1. If p11 > maxX{1, p21 + (m + 1)/2} and p12 = 0, then there
exist initial data(ug, vg) such that« blows up whilev remains bounded.

Hence, for O< m < 1 there is non-simultaneous blow-up for a range of parameters for
which this phenomenon is not possible in the case of flat solutions. We believe that the
result remains true without the extra hypothesis = 0, but the proof of this fact seems
delicate, see Section 3.

Organization of the paper. The key to obtain the conditions for non-simultaneous blow-
up is a detailed knowledge of the blow-up behaviourafhenv is a bounded function.
This is done in Section 2, where in addition we find the blow-up set ¥fle postpone the
proof of the main results to Section 3. In Appendix A we prove that our results are valid
for the same system of equations, but now defined in a bounded interval with zero flux at
the boundaries.

Throughout the papeR; = (0, c0), andC andc denote positive constants that may
change from one line to another, or even in the same line.
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2. Non-simultaneous blow-up behaviour

Our purpose in this section is to establish the blow-up behavioundien blow-up is
non-simultaneous. To this aim we consideais a frozen coefficient. Since we are dealing
with symmetric solutions, we regardas a blow-up solution to

= W)y +ulth, (x,t)eRy x(0,7),
{ux(O, 1) =0, 1e(0,7), (4)
u(x,0) =ug(x), x eRy,

with u, <0,u, > 0. The functiom: = h(x, r) > ¢ > 0 is bounded, continuous and satisfies
hy <0, h; > 0. The behaviour of solutions to problem (4) has been widely studied when
h =1, see [1]. In the general case, sirkcis bounded both from above and from below, we
expectu to behave in a similar way. Therefore, we introduce the following numbers:

1 pi1—m

o= ———"7, — A/ A
pii—1 2(p11—1)

which are determined from the self-similar structure of the problem with1. In this
special case there is a self-similar solution whes 0 that takes the form

Ux,t)=(T — ) “F(x(T —n)7P), (5)
and satisfies

U, ) <Cx %P (x,1)eRyL x (0, T), (6)
see [1]. Observe that in the blow-up range for (#)1(> 1), we havex > 0.

In the next two lemmas we show that, even whes 1, the blow-up rate is self-similar.
Lemma 4. Let p11 > 1 andu a solution of (4). Then there exists a constafit> 0 such
that

u©,t) <C(T — 1) % (7)

Proof. Let us defineM (z) = |lu(-, t)|lco = u(0, 7). Following ideas from [4], we set

dm(y,s) =

1
M(I)M(ay,bs +1), y=0, —1/b<s5<0,
wherea = M"—r10/2 |, = p1=r11, Sinceu blows up,M ' oo ast / T. On the other
hand, sincep11 > 1,5\, 0.
We claim that there exists a positive consté@rguch that for every/ large enough

(pm)s(0,0) = C > 0. (8)

The blow-up rate follows from this inequality. Indeed, writing it in termsiéf we get
M~PuM’ > C, which, after integration fromto T yields (7).

The proof of (8) relies strongly of} being a family of uniformly bounded solutions
of

(Pm)s = (¢7V’1)yy +ohthu, 9)
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wherehy (y, s) = h(ay, bs + t). The uniform bound, & ¢y < 1, is a consequence of

u; > 0. Uniformly bounded solutions of (9) turn out to be equicontinuous in compact sub-
sets of their common domain, cf. [5]. Observe that for &ny 0, the domain contains
the compact sef0, L] x [—S, 0] if M is large enough. Therefore, giv€§¢Mj}, there is

a continuous functio®> and a subsequence, which we denote agaifyy,}, such that

¢m; — P asM; — oo, uniformly on[O, L] x [—S, 0]. Moreover,® (0, 0) = 1. Therefore,
there exists a neighbourhood @, 0), U, such that® > 1/2 in U. Since we have uni-
form convergence i/ (we can assume thét is compact), forj large enough we have
that /4 < ém; <1 in U. Thus, the functionaij are solutions of uniformly parabolic
equations inU. Since they are uniformly bounded, we get using well-known Schauder
estimates [6],

lpa; ll coratraz <C iU (10)

Now we proceed arguing by contradiction. Assume that there exists a sedi4engde
such that(¢uy;)s(0,0) — 0. Estimates (10) imply thatb; = (™)), + KPP, with
K =lim; »7 hy (v, s) andd,(0, 0) = 0. But, sinced, > 0 and(®;),(0, 0) =0, we have,
by Hopf’'s lemma,®; = 0, so that® does not depend an We get that® is a nonnega-
tive solution of (®™),, + K®?1 = 0 with @, < 0 and®(0) = 1. Henced is concave.
Moreover, sincek > 0, there must be at least a point whdrds strictly concave; other-
wise @ P11 = (Q, which is impossible. This implies thdt has to cross the-axis, which is
a contradiction. O

Lemmab. Let p11 > 1 andu a solution of (4). Then there exist constants ¢ > 0 such
that

u(x,)) =C(T -1~ ifx<c(T —0nP. (11)
Proof. Sinceu is a subsolution of; = (u™), . + Cu”11, by comparison with a flat solution
of this latter problem with the same blow-up time, we have that

u(0,t) > C(T —1)™°.

Otherwiseu would be below the flat solution at a certain time, which would imply that
both solutions would have different blow-up times, a contradiction.

To extend this estimate to sets of the fatne ¢(T — 1)#, we observe thai is a super-
solution of

I/t[ = (Mm))wm (X,t) € R-‘r X (07 T),
{u(O,t):C(T—t)“, te (0, 7), (12)
u(x,0) =ug(x), xeR,.

Problem (12) has a self-similar solutioki, with finite blow-up timeT, that takes the
form (5) (see [7] form =1, [8,9] form > 1 and [10] for O< m < 1). We introduce the
rescaled function(x,t) = AU(Bx,t). If A= BY, with y =2/(1 — m), thenu satisfies
the following problem:

iy = (" )xx, (x,1) eR4 x (0, T),
1(0,1)=AU0,1) = AC(T —1t)™%, te(0,T),
u(x,0)=AU(Bx,0), xeR,.
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ChoosingA small enough, by comparisoia(x, r) < u(x, t). Thus,
u(x,t) = AT — ) “F(AY"x(T =)™ P) > CA(T — )™

for x < £A™YY(T — )P, whereC = ming¢c[o 5, F (£). If we take& small,C > 0. O

Lemmas 4 and 5 and the existence of self-similar solutions are the results needed in the
proofs of our non-simultaneous theorems. For the sake of completeness, we carry on our
study of the blow-up behaviour afby describing its spatial structure near the origin close
to the blow-up time. As a byproduct, we obtain the blow-up set.

Let us define

X, xe(O, %),
¢(x)= —3x2+3x—l, xe(%,%),
1—x, xe(%,l).

Fore > 0 we setp, (x) = e¢ (e2x).

Lemma®. Let p11 > 1 andu be a solution td4) with u,, < 0. If p11 > m, then there exists
a constaniC > 0 such that

X =1/(m(y—1))
u(x,r) < (C/¢5(s)ds> (13)
0

forl<y < (p11— (1 —m))/m and(x,1) €[0,1/e2] x [0, T).

Proof. We follow ideas from [11,12]. The function = u™ verifies
g (wyw, = wyy + wPW™h, g(w) =w™.
We introduce
J(x, 1) = wye(x, 1) + e (" (x, 1),

and claim that’ < 0in [0, 1/2] x [0, T). Assume it is true, then

X X
Wy
/—ds < —f%(s)ds,
wY
0 0

which implies that
1 L [
—w, N7 < —/(bg(S)ds,
1-y
0

from where we get (13) if > 1.
We are therefore confronted with the proof of the claim. Using that= J — ¢ w?,
we compute
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, 1-—m\ wy
g-]t_-]xx+ Jx
m w

pui—1—my+m

—bJ — (]ﬁgwy + wPll/mhx + wpll/m""’_lhqbg

m
2my +m—-1 , _ my —1 o
+ ¥ e -y = uw¥ T,

whereb is a bounded function for @ x < 1/¢2 and O< ¢ < T. Therefore
1-m

g — T+ (—)ﬂJx —bI<0
m w

qbgwy—hxwpll/m+P11—1—my+m
Oe m
- ¥ Ty =Y T > 0

wh/m+y=1p

Hence, sincé, < 0 andmy < p11 — (1 —m), we need

pun—my —1l+m WP 2my +m—1 83¢/(82x) B 40" (20 )w
m m ¢ (£2x)

(14)

which is true ife is small enough.
On the other hand, sinae, (0, r) = 0 andw, (x, 0) < 0, we have

J(0,7) =0, J(1/¢%,1)<0 and J(x,0) <O,
and the claim follows from the maximum principle
Corollary 7. Let p11 > 1 andu be a solution tq4), with u, < 0. If p11 > m, then there
exists a constant’ > 0, depending only os, p11 andm, such that

ux, 1) < Cx~2/m=D for (x,1) € [0,1/(3¢?)] x [0, T). (15)
Remark 8. When O<m < 1 we havey < (p11— (1—m))/m < p11/m. Hence we are not

able to obtain the self-similar decay (6) for solutions of (4). As we will see, this forces us
to assumey12 =0 in Theorem 3.

Remark 9. If m > 1 we havep11 < p11 — (1 — m). Hence, we can take = p11/m and
get
u(x, 1) <Cx~P for (x,1) €[0,1/(3¢%)] x [0, T).
Next lemma determines the blow-up setoB (1), whenv is bounded; i.e., when blow-

up is non-simultaneous. As expected, the sigd,offhich depends on the relation between
p11 andm, determines the blow-up set, even whign, r) £ 1.
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Lemma 10. Letu be a solution of(4). The blow-up set af is given by

{0}, B >0,
B(M)=[[_0,L], p=0,
R+, ,3 <0.

Remark 11. Our proof does not exclude the possibility of havibg= co.

Proof. If 8 > 0, the blow-up set follows directly from estimate (15).
If B <0, we regard: as a supersolution of

ul‘ = (um)xX7 (-xvt) € R+ X (07 T)v
{u(O,t):C(T—t)_“, te0,7),
u(x,0) =ug(x), xeR,.

If & is a solution to this problem3 (i) € B(u). Itis known (see [13,14]) thaB (i) = R,
if 8<0andB(i)=[0, L]if B =0, and the result follows. O

3. Proofsof the main results
We now have the tools to prove the main theorems of the paper.

Proof of Theorem 1. If v is bounded, the functiom is a subsolution of
u; = (u”’)xx + CuPtt (16)

that has finite time blow-up. Solutions of (16) are global in time4i < 1. To see this
we can compare with a flat solution of (16) with initial daté, 0) = ||ug|| L. Hence we
must havepi1 > 1.

Next we prove thapi1 > p21 + 1. If we plug the blow-up rate (11) into the equation
for v, we have

v = (V") + VPP Xx<er—nh).
(T —t)yrut
Setw = v", which is bounded, strictly positive and verifies > 0 andw, < 0. We get,
C

1
cwr > ~w My > wyy + w2y o)
n (T — 1)1

The constant that appears in front of the time derivative does not play any fundamental
role. Hence we drop it in the sequel.
Now consider the following problem, whose solution is below

__pa21_
g =z +C(T —=1) M7 xcor-npy,  (x,1) Ry x (0, 7),
zx(0,1) =0, te(0,T), a7
z(x, 0) = zo(x) = wo(x), xeRy,
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with z, < 0 andz; > 0. We use the representation formula for solutions of the heat equation
to compute the solution of (17), cf. [15]. Lét be the fundamental solution of the heat
equation, namely

2

D=2\ Ty )
We get

z(0, l)=/1“(y,t)zo(y)dy

//F(y =T a1 X{y<e(T— T)ﬁ}dydr
0R, (T — -[) r11-1

//F(y t—f) a1 X{y<c(T—n)fy dy dT. (18)
bR -L-)plr
.

If we do the change of variables
y=st—1, dy =+t —tds, (29)
the last integral in (18) can be bounded from below, usingghatl/2, by

t c(Tft)'g’l/2 t
C — 2 4 C
/ 1 / e s%/ dS dT 2 / 1 dT.
o (T —7)rat 0 o (T —7)ruat

If p11 < p21+ 1, the last integral diverges as” T. Hencez blows up and so does
a contradiction.
The proof of the converse follows directly by considering flat solutions.

Proof of Theorem 2. We follow the same technique as in the proof of Theorem 1. In
particular, conditiorp1; > 1 holds.
To prove that 211 > 2p21 +m + 1, consider; a solution of (17). We obtain

2

“On= // g_s X< ez ds dT
(T —1)
t

1711

o(T-1)f~1/2 t
C C
2/7,,21 / efsz/4dsdt>/ dr.
o T—oyrt g ) (T -yl —+3

If p21/(p11—1) > B+1/2,the lastintegral diverges as” T. This leads to a contradiction
with the fact thatv is bounded. O

To prove Theorem 3 we cannot follow the ideas of the proof of Theorem 1 anymore.
Indeed, if we want to construct non-simultaneous blow-up solutions outside the range
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p11 > p21+ 1, we have to look among non-flat ones. It is at this point where we need
to imposep12 = 0. Under this condition we may use a self-similar solutidrof (4) with
h =1 as theu component. The spatial shape Gfplays a fundamental role. The main
difficulty in order to remove the restrictiop;> = 0 is to prove that solutions of (4) with
h # 1 have an approximately self-similar spatial shape.

Apart from the self-similar behaviour @f, we want to use the representation formula
to handle thew component. Hence we prove first an auxiliary result that establishes the
non-simultaneous blow-up condition when one of the components has linear diffusion and
the other one is self-similar.

Let (U, z) be a solution of

U =U")y +UPLL

z,tz Z(xx _|_)Z1?22/nUp21 (x,1) e Ry x (0, 7), (20)
with

Z:g te(0.1), (1)
and decreasing initial data

U(x,0) = Up(x),

(0 =z, EFE (22)

such thatU is self-similar andz; > 0. The assumption on the initial data excludes the
possibility of having flat solutions. We will also assumge> § > 0.

Lemma 12. Let 0 < m < 1. If p11 > maxX{1, po1 + (m + 1)/2}, there exist initial data
(Uo, zo) such thatU blows up whilez remains bounded.

Proof. SinceU verifies (5) and (6), we have

C(T -9 ifx<c(T —1)P,
Cx—o/B if x > c(T —1)P.

Observe that in the range of parameters involved, the exponents agefify 0.

If p22 > n, we fix zg such that|zo|lco < 1/4. We claim that(x, t) < z(0,r) < 1 for all
0<rt < T.Assume not and ley < T be the first time such that(0, 7o) = 1. Using the
representation formula, we get

U(x,t)g{

t
20,0 = / Iy, Dzo(y)dy + / / [y, 1 — )27/ (y, DUPA(y, ) dy d
R, 0 R,y

t
C
< z0(0) + 272" (0, t)/fl“(y,t O Xpy<er-npydydT
o R (T —7)runt
‘

t
_ %
+20 t)//r(%f —OCY M X(yser—opydy dT
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= 20(0) + 2722/ (0, 1) I1(t) + 2P%2/™(0, 1) I(1).

If we do the change of variables given by (19), we obtain

' (T-0)f/t—1)V/? '
C ) C
Il(t)</4,,2l [ 6732/4dsd‘[</‘—d1'
o c(T —7)rat 5 o (t—7)mt B+3
and
® 2po
L) < / (T-1) TR AT Grer dsdt

o(T—1)P /(1—7)Y2
t
__r21
< / C(T —t) rumdr.
0
Sincem < 1, we have8 > 1/2. This and the condition/®; < 2p11 — m — 1 imply that/
andI, are uniformly bounded if0, 79]. Moreover, they can be made as small as we please

by takingT small enough. Thus, if we choo$& large such that the blow-up timg of
Ux,t)=(T —t)"*F(x(T —1)"?) is small,

1
2(0,1) < z0(0) + = z"ﬂ/"(o 0. (23)
Sincez(0,7) < 1 for 0< t < g, z(0, 1)P22/" < z(0, t) and hence
1
2(0, 10) < z0(0) + Ezm/ (0, 10) < z0(0) + EZ(O’ f0).

We conclude that(0, #p) < 1/2, a contradiction.
If p22 < n, we takezg such that K ||zollco < 2. Hencez(0,7) > 1 forallr. Letig < T
be the first time such that0, 7o) = 6. If such a time does not exist, thens bounded for
all 0<t < T, and the result follows. Arguing as in the previous case, we conclude that
z(0, 1) verifies (23) for 0< r < fg andz (0, 1)P22/" < z(0, r). But this means that

1
3= EZ(O’ tg) < z0(0) <2

a contradiction. O

Proof of Theorem 3. Lemma 12 guarantees that we can téke zo such that the com-
ponent of the solution to (20)—(22) is bounded. Hedee z1/” is bounded. Moreover, it
verifies

nt" Ly, = (0", + 0722072, (x,1) e Ry x (0,T),
0, (0,1) =0, te(0,7),
B(x, 0) = 22" (x), xeR,.
Thus,v is a bounded supersolution ©f; = (v"),x + vP22U P21, The constant in front od,

can be dropped with a change of variables. By a comparison argument, we conclude that
any solutiorw of (1) with initial data small is bounded.O
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Appendix A. The Neumann problem
We study blow-up solutions of the same parabolic system considered in the previous
sections, but now in a bounded interval,

— (y™ + yP1iyP12
{ e s, (D€L X O.T), (A1)
- X ’

with Neumann boundary conditions

™) (=L,t) = @™)(L,t) =0,
{(v”)x(—L,t) — ") (L,n=0 '€ ©. 1), (A.2)
and initial data
{Zg 8; N 588)) x& (=L, D). (A.3)

As before, we will assume that andvg are strictly positive, continuous, bounded, sym-
metric and non-increasing fare Ry.

Theorem A. Theoremd—3hold true for(A.1)—(A.3).

First of all, let us briefly describe how to adapt the tools used in the proofs of the main
theorems when we deal with problem (A.1)—(A.3).

The proof of Lemma 4 still holds i8 > 0. However, if 8 < 0, the spatial interval
of definition of ¢y, [0, L/a], contracts to zero as ” T. To avoid this contraction, we
perform an even periodic extension to the positive real line. This extension is possible,
since(u™), (0, 1) = (u™), (L, t) = 0. In this situation we apply Lemma 4 of Section 2.

Concerning Lemma 5, the result holds true if we redefine problem (12) to the bounded
interval [0, L] by adding the boundary conditios™), (L, t) = 0. SinceU, < 0, the self-
similar solution of (12) inR . is a subsolution of the problem restricted to the interval.

Proof of Theorem A. The proof follows the same ideas as the proofs of Theo-
rems 1-3. Nevertheless, there is a slight difference when obtaining the condition for
non-simultaneous blow-up1; > p21 + 1 (respectively 211 > 2p21 + m + 1). Indeed,
mimicking the previous proofs, we consider the following boundary value problem:

P21
=2+ C(T =M X cor—npy, (6,1) €(0,L) x(0,7),
2:(0,1) =z (L, 1) =0, 1e0,7), (A-4)
z(x, 0) = zo(x) = vg (x), xe(,L).

We extendzp to the positive real line by defining a continuous, positive and non-
increasing functiorig, verifying Zo(x) = zo(x) in [0, L]. If z is the solution of (A.4) with
initial datazp andz the solution extended t&.. with initial datazp, a comparison argu-
ment in[0, L] x [0, T) yields z(x, t) > z(x, t). The functionz fulfills the hypotheses of
problem (17). O
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