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Abstract
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1. Introduction

We consider solutions(u, v) to the non-linear parabolic system{
ut = (um)xx + up11vp12,

vt = (vn)xx + up21vp22,
(x, t) ∈ R × (0, T ), (1)

with continuous, bounded and symmetric initial data{
u(x,0) = u0(x),

v(x,0) = v0(x),
x ∈ R. (2)

We assumepij � 0 andm,n > 0. In this range of parameters the diffusivities may beco
degenerate or singular at the level zero. Moreover, the reaction terms may not b
schitz, leading to non-uniqueness phenomena. To avoid the technicalities to which
difficulties may lead, we will assume thatu0, v0 � δ > 0. Since we will be interested in th
behaviour of the system for large values of the solutions, this is not a significant restr
Solutions will be understood in a classical sense. We restrict ourselves to symmet
tial datau0, v0 non-increasing with|x|, such thatut , vt � 0. Monotonicity and symmetr
assumptions are common for problems of this kind, see [1].

Systems of this kind are common in population dynamics. In this contextu andv rep-
resent two different species with a symbiotic behaviour. The cooperation between t
represented by the coupled source terms.

The constantT denotes the maximal existence time for the solution. If it is infinite,
say that the solution isglobal. If it is finite, we have

lim sup
t↗T

{∥∥u(·, t)∥∥
L∞ + ∥∥v(·, t)∥∥

L∞
} = ∞,

and we say that the solutionblows up. Solutions blow up if and only if the exponentspij

verify any of the conditions

p11 > 1, p22 > 1 or (p11 − 1)(p22 − 1) − p12p21 < 0.

This follows easily by comparison with global and blow-upflat solutions, that is, solutions
of (1) that are independent ofx. Thus, they satisfy the ordinary differential system

u′(t) = up11(t)vp12(t), v′(t) = up21(t)vp22(t), (3)

with initial datau(0) = u0 > 0, v(0) = v0 > 0.
If a solution(u, v) blows up, a priori there is no reason why both components,u andv,

should go to infinity simultaneously at the blow-up timeT . Indeed, for certain choices o
the parameterspij there are initial data for which one of the components of the sys
remains bounded while the other blows up. This phenomenon is known in the lite
asnon-simultaneous blow-up[2,3]. The aim of this paper is to characterize the rang
parameters for which non-simultaneous blow-up occurs for problem (1)–(2).

The possibility of having non-simultaneous blow-up for (1)–(2) was first mentio
in [1]. However, the authors restrict themselves to flat solutions. System (3) has so
with non-simultaneous blow-up such thatu blows up andv remains bounded if and only

p11 > p21 + 1. However, in this case diffusion plays no role. A natural question arises: are
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Non-simultaneous blow-up for non-flat solutions of a parabolic system was first
sidered in [2], where the authors study (1)–(2) in the casem = n = 1. The necessar
(under some restrictions on the initial data) and sufficient condition for the existen
non-simultaneous blow-up is againp11 > p21 + 1. Hence flat solutions are a good gui
to determine the non-simultaneous blow-up range in the case of linear diffusion.

Our first result says that flat solutions still give the range for non-simultaneous blo
when the blow-up component,u, is in the porous medium case.

Theorem 1. Let m � 1. If u blows up whilev remains bounded, thenp11 > p21 + 1.
Conversely, ifp11 > p21 + 1, then there exist initial data(u0, v0) such thatu blows up
while v remains bounded.

Sincep21 � 0, in order to have non-simultaneous blow-up we need in particular
p11 > 1. Thusu can blow up by itself, without the help ofv. Conditionp11 > p21+ 1 says
thatp21 (which measures the influence ofu in the equation forv) is small compared with
p11 (which measures the capacity ofu to blow up by itself); hence, whenu blows up, it
does not necessarily carryv along with it.

The surprising fact and the main novelty of this paper is that when the coefficie
non-linear diffusion of the blow-up component is less than one, 0< m < 1, the result for
flat solutions is not a good guide any more, since diffusion plays a major role.

Theorem 2. Let 0 < m < 1. If u blows up whilev remains bounded, thenp11 >

max{1,p21 + (m + 1)/2}.

We are not able to prove the converse in full generality, but we show a partial resu
illustrates the general case.

Theorem 3. Let 0 < m < 1. If p11 > max{1,p21 + (m + 1)/2} and p12 = 0, then there
exist initial data(u0, v0) such thatu blows up whilev remains bounded.

Hence, for 0< m < 1 there is non-simultaneous blow-up for a range of parameter
which this phenomenon is not possible in the case of flat solutions. We believe th
result remains true without the extra hypothesisp12 = 0, but the proof of this fact seem
delicate, see Section 3.

Organization of the paper. The key to obtain the conditions for non-simultaneous bl
up is a detailed knowledge of the blow-up behaviour ofu whenv is a bounded function
This is done in Section 2, where in addition we find the blow-up set ofu. We postpone the
proof of the main results to Section 3. In Appendix A we prove that our results are
for the same system of equations, but now defined in a bounded interval with zero
the boundaries.

Throughout the paperR+ = (0,∞), andC andc denote positive constants that m

change from one line to another, or even in the same line.
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2. Non-simultaneous blow-up behaviour

Our purpose in this section is to establish the blow-up behaviour ofu when blow-up is
non-simultaneous. To this aim we considerv as a frozen coefficient. Since we are deal
with symmetric solutions, we regardu as a blow-up solution to{

ut = (um)xx + up11h, (x, t) ∈ R+ × (0, T ),

ux(0, t) = 0, t ∈ (0, T ),

u(x,0) = u0(x), x ∈ R+,

(4)

with ux � 0, ut � 0. The functionh = h(x, t) � c > 0 is bounded, continuous and satisfi
hx � 0, ht � 0. The behaviour of solutions to problem (4) has been widely studied w
h = 1, see [1]. In the general case, sinceh is bounded both from above and from below,
expectu to behave in a similar way. Therefore, we introduce the following numbers:

α = 1

p11 − 1
, β = p11 − m

2(p11 − 1)
,

which are determined from the self-similar structure of the problem withh = 1. In this
special case there is a self-similar solution whenα > 0 that takes the form

U(x, t) = (T − t)−αF
(
x(T − t)−β

)
, (5)

and satisfies

U(x, t) � Cx−α/β, (x, t) ∈ R+ × (0, T ), (6)

see [1]. Observe that in the blow-up range for (4) (p11 > 1), we haveα > 0.
In the next two lemmas we show that, even whenh �= 1, the blow-up rate is self-simila

Lemma 4. Let p11 > 1 andu a solution of (4). Then there exists a constantC > 0 such
that

u(0, t) � C(T − t)−α. (7)

Proof. Let us defineM(t) = ‖u(·, t)‖∞ = u(0, t). Following ideas from [4], we set

φM(y, s) = 1

M(t)
u(ay, bs + t), y � 0, −t/b � s � 0,

wherea = M(m−p11)/2, b = M1−p11. Sinceu blows up,M ↗ ∞ as t ↗ T . On the other
hand, sincep11 > 1, b ↘ 0.

We claim that there exists a positive constantC such that for everyM large enough

(φM)s(0,0) � C > 0. (8)

The blow-up rate follows from this inequality. Indeed, writing it in terms ofM , we get
M−p11M ′ � C, which, after integration fromt to T yields (7).

The proof of (8) relies strongly on{φM} being a family of uniformly bounded solution
of ( )
(φM)s = φm
M yy

+ φ
p11
M hM, (9)
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wherehM(y, s) = h(ay, bs + t). The uniform bound, 0� φM � 1, is a consequence o
ut � 0. Uniformly bounded solutions of (9) turn out to be equicontinuous in compact
sets of their common domain, cf. [5]. Observe that for anyS < 0, the domain contain
the compact set[0,L] × [−S,0] if M is large enough. Therefore, given{φMj

}, there is
a continuous functionΦ and a subsequence, which we denote again by{φMj

}, such that
φMj

→ Φ asMj → ∞, uniformly on[0,L] × [−S,0]. Moreover,Φ(0,0) = 1. Therefore,
there exists a neighbourhood of(0,0), U , such thatΦ > 1/2 in U . Since we have uni
form convergence in̄U (we can assume that̄U is compact), forj large enough we hav
that 1/4 � φMj

� 1 in Ū . Thus, the functionsφMj
are solutions of uniformly paraboli

equations inŪ . Since they are uniformly bounded, we get using well-known Scha
estimates [6],

‖φMj
‖C2+α,1+α/2 � C in Ū . (10)

Now we proceed arguing by contradiction. Assume that there exists a sequence{φMj
}

such that(φMj
)s(0,0) → 0. Estimates (10) imply thatΦs = (Φm)yy + KΦp11, with

K = limt↗T hM(y, s) andΦs(0,0) = 0. But, sinceΦs � 0 and(Φs)y(0,0) = 0, we have,
by Hopf’s lemma,Φs ≡ 0, so thatΦ does not depend ons. We get thatΦ is a nonnega
tive solution of(Φm)yy + KΦp11 = 0 with Φy � 0 andΦ(0) = 1. HenceΦ is concave.
Moreover, sinceK > 0, there must be at least a point whereΦ is strictly concave; other
wiseΦp11 ≡ 0, which is impossible. This implies thatΦ has to cross they-axis, which is
a contradiction. �
Lemma 5. Let p11 > 1 andu a solution of (4). Then there exist constantsC,c > 0 such
that

u(x, t) � C(T − t)−α if x � c(T − t)β . (11)

Proof. Sinceu is a subsolution ofut = (um)xx +Cup11, by comparison with a flat solutio
of this latter problem with the same blow-up time, we have that

u(0, t) > C(T − t)−α.

Otherwise,u would be below the flat solution at a certain time, which would imply t
both solutions would have different blow-up times, a contradiction.

To extend this estimate to sets of the formx � c(T − t)β , we observe thatu is a super-
solution of{

ut = (um)xx, (x, t) ∈ R+ × (0, T ),

u(0, t) = C(T − t)−α, t ∈ (0, T ),

u(x,0) = u0(x), x ∈ R+.

(12)

Problem (12) has a self-similar solution,U , with finite blow-up timeT , that takes the
form (5) (see [7] form = 1, [8,9] for m > 1 and [10] for 0< m < 1). We introduce the
rescaled functioñu(x, t) = AU(Bx, t). If A = Bγ , with γ = 2/(1 − m), thenũ satisfies
the following problem: ũt = (ũm)xx, (x, t) ∈ R+ × (0, T ),

ũ(0, t) = AU(0, t) = AC(T − t)−α, t ∈ (0, T ),

ũ(x,0) = AU(Bx,0), x ∈ R+.
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ChoosingA small enough, by comparison,ũ(x, t) � u(x, t). Thus,

u(x, t) � A(T − t)−αF
(
A1/γ x(T − t)−β

)
� CA(T − t)−α

for x � ξ0A
−1/γ (T − t)β , whereC = minξ∈[0,ξ0] F(ξ). If we takeξ0 small,C > 0. �

Lemmas 4 and 5 and the existence of self-similar solutions are the results neede
proofs of our non-simultaneous theorems. For the sake of completeness, we carry
study of the blow-up behaviour ofu by describing its spatial structure near the origin cl
to the blow-up time. As a byproduct, we obtain the blow-up set.

Let us define

φ(x) =




x, x ∈ (
0, 1

3

)
,

−3x2 + 3x − 1
3, x ∈ (1

3, 2
3

)
,

1− x, x ∈ (2
3,1

)
.

For ε > 0 we setφε(x) = εφ(ε2x).

Lemma 6. Letp11 > 1 andu be a solution to(4) with ux < 0. If p11 > m, then there exist
a constantC > 0 such that

u(x, t) �
(

C

x∫
0

φε(s) ds

)−1/(m(γ−1))

(13)

for 1< γ < (p11 − (1− m))/m and(x, t) ∈ [0,1/ε2] × [0, T ).

Proof. We follow ideas from [11,12]. The functionw = um verifies

g′(w)wt = wxx + wp11/mh, g(w) = w1/m.

We introduce

J (x, t) = wx(x, t) + φε(x)wγ (x, t),

and claim thatJ � 0 in [0,1/ε2] × [0, T ). Assume it is true, then

x∫
0

ws

wγ
ds � −

x∫
0

φε(s) ds,

which implies that

1

1− γ
w(x, t)1−γ � −

x∫
0

φε(s) ds,

from where we get (13) ifγ > 1.
We are therefore confronted with the proof of the claim. Using thatwx = J − φεw

γ ,

we compute
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g′Jt − Jxx +
(

1− m

m

)
wx

w
Jx

= bJ − φ′′
ε wγ + wp11/mhx + p11 − 1− mγ + m

m
wp11/m+γ−1hφε

+ 2mγ + m − 1

m
w2γ−1φεφ

′
ε − γ

mγ − 1

m
w3γ−2φ3

ε ,

whereb is a bounded function for 0< x < 1/ε2 and 0< t < T . Therefore

g′Jt − Jxx +
(

1− m

m

)
wx

w
Jx − bJ � 0

if

φ′′
ε wγ − hxw

p11/m

φε

+ p11 − 1− mγ + m

m
wp11/m+γ−1h

− 2mγ + m − 1

m
w2γ−1φ′

ε + γ
mγ − 1

m
w3γ−2φ2

ε � 0.

Hence, sincehx � 0 andmγ < p11 − (1− m), we need(
p11 − mγ − 1+ m

m

)
wp11/mh �

(
2mγ + m − 1

m

)
ε3φ′(ε2x

) − ε4φ′′(ε2x)w

φ(ε2x)
,

(14)

which is true ifε is small enough.
On the other hand, sincewx(0, t) = 0 andwx(x,0) < 0, we have

J (0, t) = 0, J
(
1/ε2, t

)
� 0 and J (x,0) < 0,

and the claim follows from the maximum principle.�
Corollary 7. Let p11 > 1 andu be a solution to(4), with ux < 0. If p11 > m, then there
exists a constantC > 0, depending only onε, p11 andm, such that

u(x, t) � Cx−2/m(γ−1) for (x, t) ∈ [
0,1/

(
3ε2)] × [0, T ). (15)

Remark 8. When 0< m < 1 we haveγ < (p11− (1−m))/m < p11/m. Hence we are no
able to obtain the self-similar decay (6) for solutions of (4). As we will see, this force
to assumep12 = 0 in Theorem 3.

Remark 9. If m � 1 we havep11 � p11 − (1 − m). Hence, we can takeγ = p11/m and
get

u(x, t) � Cx−α/β for (x, t) ∈ [
0,1/

(
3ε2)] × [0, T ).

Next lemma determines the blow-up set ofu, B(u), whenv is bounded; i.e., when blow
up is non-simultaneous. As expected, the sign ofβ, which depends on the relation betwe

p11 andm, determines the blow-up set, even whenh(x, t) �= 1.
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Lemma 10. Letu be a solution of(4). The blow-up set ofu is given by

B(u) =
{ {0}, β > 0,

[0,L], β = 0,

R̄+, β < 0.

Remark 11. Our proof does not exclude the possibility of havingL = ∞.

Proof. If β > 0, the blow-up set follows directly from estimate (15).
If β � 0, we regardu as a supersolution of{

ut = (um)xx, (x, t) ∈ R+ × (0, T ),

u(0, t) = C(T − t)−α, t ∈ (0, T ),

u(x,0) = u0(x), x ∈ R+.

If ũ is a solution to this problem,B(ũ) ⊆ B(u). It is known (see [13,14]) thatB(ũ) = R̄+
if β < 0 andB(ũ) = [0, L̃] if β = 0, and the result follows. �

3. Proofs of the main results

We now have the tools to prove the main theorems of the paper.

Proof of Theorem 1. If v is bounded, the functionu is a subsolution of

ut = (
um

)
xx

+ Cup11 (16)

that has finite time blow-up. Solutions of (16) are global in time ifp11 � 1. To see this
we can compare with a flat solution of (16) with initial datau(x,0) = ‖u0‖L∞ . Hence we
must havep11 > 1.

Next we prove thatp11 > p21 + 1. If we plug the blow-up rate (11) into the equati
for v, we have

vt �
(
vn

)
xx

+ vp22
C

(T − t)
p21

p11−1

χ{x�c(T −t)β }.

Setw = vn, which is bounded, strictly positive and verifieswt � 0 andwx � 0. We get,

cwt � 1

n
w(1−n)/nwt � wxx + wp22/n C

(T − t)
p21

p11−1

χ{x�c(T −t)β }.

The constant that appears in front of the time derivative does not play any fundam
role. Hence we drop it in the sequel.

Now consider the following problem, whose solution is beloww: zt = zxx + C(T − t)
− p21

p11−1 χ{x�c(T −t)β }, (x, t) ∈ R+ × (0, T ),

zx(0, t) = 0, t ∈ (0, T ), (17)

z(x,0) = z0(x) = w0(x), x ∈ R+,
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with zx � 0 andzt � 0. We use the representation formula for solutions of the heat equ
to compute the solution of (17), cf. [15]. LetΓ be the fundamental solution of the he
equation, namely

Γ (x, t) = 1

(4πt)1/2
exp

(
−x2

4t

)
.

We get

z(0, t) =
∫

R+

Γ (y, t)z0(y) dy

+
t∫

0

∫
R+

Γ (y, t − τ)
C

(T − τ)
p21

p11−1

χ{y�c(T −τ)β } dy dτ

�
t∫

0

∫
R+

Γ (y, t − τ)
C

(T − τ)
p21

p11−1

χ{y�c(T −τ)β } dy dτ. (18)

If we do the change of variables

y = s
√

t − τ , dy = √
t − τ ds, (19)

the last integral in (18) can be bounded from below, using thatβ � 1/2, by

t∫
0

C

(T − τ)
p21

p11−1

c(T −τ)β−1/2∫
0

e−s2/4 ds dτ �
t∫

0

C

(T − τ)
p21

p11−1

dτ.

If p11 � p21 + 1, the last integral diverges ast ↗ T . Hence,z blows up and so doesv,
a contradiction.

The proof of the converse follows directly by considering flat solutions.�
Proof of Theorem 2. We follow the same technique as in the proof of Theorem 1
particular, conditionp11 > 1 holds.

To prove that 2p11 > 2p21 + m + 1, considerz a solution of (17). We obtain

z(0, t) �
t∫

0

∫
R+

C

(T − τ)
p21

p11−1

e−s2/4χ{s�(T −τ)β/(t−τ)1/2} ds dτ

�
t∫

0

C

(T − τ)
p21

p11−1

c(T −τ)β−1/2∫
0

e−s2/4 ds dτ �
t∫

0

C

(T − τ)
p21

p11−1−β+ 1
2

dτ.

If p21/(p11−1) � β+1/2, the last integral diverges ast ↗ T . This leads to a contradictio
with the fact thatv is bounded. �

To prove Theorem 3 we cannot follow the ideas of the proof of Theorem 1 anym

Indeed, if we want to construct non-simultaneous blow-up solutions outside the range
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the
p11 > p21 + 1, we have to look among non-flat ones. It is at this point where we
to imposep12 = 0. Under this condition we may use a self-similar solutionU of (4) with
h = 1 as theu component. The spatial shape ofU plays a fundamental role. The ma
difficulty in order to remove the restrictionp12 = 0 is to prove that solutions of (4) wit
h �= 1 have an approximately self-similar spatial shape.

Apart from the self-similar behaviour ofU , we want to use the representation form
to handle thev component. Hence we prove first an auxiliary result that establishe
non-simultaneous blow-up condition when one of the components has linear diffusio
the other one is self-similar.

Let (U, z) be a solution of{
Ut = (Um)xx + Up11,

zt = zxx + zp22/nUp21,
(x, t) ∈ R+ × (0, T ), (20)

with {
Ux = 0,

zx = 0,
t ∈ (0, T ), (21)

and decreasing initial data{
U(x,0) = U0(x),

z(x,0) = z0(x),
x ∈ R+, (22)

such thatU is self-similar andzt � 0. The assumption on the initial data excludes
possibility of having flat solutions. We will also assumez0 � δ > 0.

Lemma 12. Let 0 < m < 1. If p11 > max{1,p21 + (m + 1)/2}, there exist initial data
(U0, z0) such thatU blows up whilez remains bounded.

Proof. SinceU verifies (5) and (6), we have

U(x, t) �
{

C(T − t)−α if x � c(T − t)β,

Cx−α/β if x � c(T − t)β .

Observe that in the range of parameters involved, the exponents verifyα,β > 0.
If p22 > n, we fix z0 such that‖z0‖∞ < 1/4. We claim thatz(x, t) � z(0, t) � 1 for all

0 � t < T . Assume not and lett0 < T be the first time such thatz(0, t0) = 1. Using the
representation formula, we get

z(0, t) =
∫

R+

Γ (y, t)z0(y) dy +
t∫

0

∫
R+

Γ (y, t − τ)zp22/n(y, τ )Up21(y, τ ) dy dτ

� z0(0) + zp22/n(0, t)

t∫
0

∫
R+

Γ (y, t − τ)
C

(T − τ)
p21

p11−1

χ{y�c(T −τ)β } dy dτ

+ zp22/n(0, t)

t∫ ∫
Γ (y, t − τ)Cy

− 2p21
p11−m χ{y�c(T −τ)β } dy dτ
0 R+
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ase

that

t

de that
= z0(0) + zp22/n(0, t)I1(t) + zp22/n(0, t)I2(t).

If we do the change of variables given by (19), we obtain

I1(t) �
t∫

0

C

c(T − τ)
p21

p11−1

(T −τ)β/(t−τ)1/2∫
0

e−s2/4 ds dτ �
t∫

0

C

(t − τ)
p21

p11−1−β+ 1
2

dτ

and

I2(t) � C

t∫
0

(T − τ)
− p21

p11−m

∞∫
c(T −τ)β/(t−τ)1/2

e−s2/4s
− 2p21

p11−m ds dτ

�
t∫

0

C(T − τ)
− p21

p11−m dτ.

Sincem < 1, we haveβ > 1/2. This and the condition 2p21 < 2p11 − m − 1 imply thatI1
andI2 are uniformly bounded in[0, t0]. Moreover, they can be made as small as we ple
by takingT small enough. Thus, if we chooseU0 large such that the blow-up timeT of
U(x, t) = (T − t)−αF (x(T − t)−β) is small,

z(0, t) � z0(0) + 1

2
zp22/n(0, t). (23)

Sincez(0, t) � 1 for 0� t � t0, z(0, t)p22/n � z(0, t) and hence

z(0, t0) � z0(0) + 1

2
zp22/n(0, t0) � z0(0) + 1

2
z(0, t0).

We conclude thatz(0, t0) � 1/2, a contradiction.
If p22 � n, we takez0 such that 1� ‖z0‖∞ � 2. Hencez(0, t) � 1 for all t . Let t0 < T

be the first time such thatz(0, t0) = 6. If such a time does not exist, thenz is bounded for
all 0 � t < T , and the result follows. Arguing as in the previous case, we conclude
z(0, t) verifies (23) for 0� t � t0 andz(0, t)p22/n � z(0, t). But this means that

3= 1

2
z(0, t0) � z0(0) � 2,

a contradiction. �
Proof of Theorem 3. Lemma 12 guarantees that we can takeU0, z0 such that thez com-
ponent of the solution to (20)–(22) is bounded. Hencev̄ = z1/n is bounded. Moreover, i
verifies


nv̄n−1vt = (v̄n)xx + v̄p22Up21, (x, t) ∈ R+ × (0, T ),

v̄x(0, t) = 0, t ∈ (0, T ),

v̄(x,0) = z
1/n

0 (x), x ∈ R+.

Thus,v̄ is a bounded supersolution ofcvt = (vn)xx + vp22Up21. The constant in front ofvt

can be dropped with a change of variables. By a comparison argument, we conclu

any solutionv of (1) with initial data small is bounded.�



C. Brändle et al. / J. Math. Anal. Appl. 308 (2005) 92–104 103

evious

m-

main

l
e
sible,

nded

eo-
n for

on-

-
f

Appendix A. The Neumann problem

We study blow-up solutions of the same parabolic system considered in the pr
sections, but now in a bounded interval,{

ut = (um)xx + up11vp12,

vt = (vn)xx + up21vp22,
(x, t) ∈ (−L,L) × (0, T ), (A.1)

with Neumann boundary conditions{
(um)x(−L, t) = (um)x(L, t) = 0,

(vn)x(−L, t) = (vn)x(L, t) = 0,
t ∈ (0, T ), (A.2)

and initial data{
u(x,0) = u0(x),

v(x,0) = v0(x),
x ∈ (−L,L). (A.3)

As before, we will assume thatu0 andv0 are strictly positive, continuous, bounded, sy
metric and non-increasing forx ∈ R+.

Theorem A. Theorems1–3hold true for(A.1)–(A.3).

First of all, let us briefly describe how to adapt the tools used in the proofs of the
theorems when we deal with problem (A.1)–(A.3).

The proof of Lemma 4 still holds ifβ � 0. However, ifβ < 0, the spatial interva
of definition of φM , [0,L/a], contracts to zero ast ↗ T . To avoid this contraction, w
perform an even periodic extension to the positive real line. This extension is pos
since(um)x(0, t) = (um)x(L, t) = 0. In this situation we apply Lemma 4 of Section 2.

Concerning Lemma 5, the result holds true if we redefine problem (12) to the bou
interval[0,L] by adding the boundary condition,(um)x(L, t) = 0. SinceUx � 0, the self-
similar solution of (12) inR+ is a subsolution of the problem restricted to the interval.

Proof of Theorem A. The proof follows the same ideas as the proofs of Th
rems 1–3. Nevertheless, there is a slight difference when obtaining the conditio
non-simultaneous blow-upp11 > p21 + 1 (respectively 2p11 > 2p21 + m + 1). Indeed,
mimicking the previous proofs, we consider the following boundary value problem:


zt = zxx + C(T − t)

−p21
p11−1 χ{x�c(T −t)β }, (x, t) ∈ (0,L) × (0, T ),

zx(0, t) = zx(L, t) = 0, t ∈ (0, T ),

z(x,0) = z0(x) = vn
0(x), x ∈ (0,L).

(A.4)

We extendz0 to the positive real line by defining a continuous, positive and n
increasing function̂z0, verifying ẑ0(x) = z0(x) in [0,L]. If z is the solution of (A.4) with
initial dataz0 and ẑ the solution extended toR+ with initial data ẑ0, a comparison argu
ment in [0,L] × [0, T ) yields z(x, t) � ẑ(x, t). The functionẑ fulfills the hypotheses o

problem (17). �



104 C. Brändle et al. / J. Math. Anal. Appl. 308 (2005) 92–104

olic
ussian

hys. 52

stem,

dary

Univ.

996.
Math.

Anal.

ath.

ith a

Univ.

05.
for a

with
References

[1] A.A. Samarskii, V.A. Galaktionov, S.P. Kurdyumov, A.P. Mikhailov, Blow-up in Quasilinear Parab
Equations, de Gruyter Exp. Math., vol. 19, de Gruyter, Berlin, 1995, translated from the 1987 R
original by Michael Grinfeld and revised by the authors.

[2] F. Quirós, J.D. Rossi, Non-simultaneous blow-up in a semilinear parabolic system, Z. Angew. Math. P
(2001) 342–346.

[3] P. Souplet, S. Tayachi, Optimal condition for non-simultaneous blow-up in a reaction–diffusion sy
J. Math. Soc. Japan 56 (2004) 571–584.

[4] B. Hu, H.M. Yin, The profile near blowup time for solution of the heat equation with a non-linear boun
condition, Trans. Amer. Math. Soc. 346 (1994) 117–135.

[5] E. DiBenedetto, Continuity of weak solutions to a general porous medium equation, Indiana
Math. J. 32 (1983) 83–118.

[6] G.M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, River Edge, NJ, 1
[7] M. Fila, P. Quittner, The blow-up rate for the heat equation with a non-linear boundary condition,

Methods Appl. Sci. 14 (1991) 197–205.
[8] B.H. Gilding, L.A. Peletier, On a class of similarity solutions of the porous media equation, J. Math.

Appl. 55 (1976) 351–364.
[9] B.H. Gilding, L.A. Peletier, On a class of similarity solutions of the porous media equation. II, J. M

Anal. Appl. 57 (1977) 522–538.
[10] R. Ferreira, A. de Pablo, F. Quirós, J.D. Rossi, The blow-up profile for a fast diffusion equation w

non-linear boundary condition, Rocky Mountain J. Math. 33 (2003) 123–146.
[11] A. Friedman, B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana

Math. J. 34 (1985) 425–447.
[12] J. Filo, Diffusivity versus absorption through the boundary, J. Differential Equations 99 (1992) 281–3
[13] C. Cortázar, M. Elgueta, Localization and boundedness of the solutions of the Neumann problem

filtration equation, Nonlinear Anal. 13 (1989) 33–41.
[14] B.H. Gilding, M.A. Herrero, Localization and blow-up of thermal waves in non-linear heat conduction

peaking, Math. Ann. 282 (1988) 223–242.

[15] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice Hall, Englewood Cliffs, NJ, 1964.


