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Abstract

We study the h-stability for linear dynamic equations on time scales and their perturbations by using the
Bihari type inequality on time scales and the unified time scale quadratic Lyapunov functions.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The theory of dynamic equations on time scales (aka measure chains) was introduced by
Hilger [10] with the motivation of providing a unified approach to continuous and discrete analy-
sis. The generalized derivative or Hilger derivative f �(t) of a function f : T → R, where T is a
so-called “time scale” (an arbitrary closed nonempty subset of R) becomes the usual derivative
when T = R, that is f �(t) = f ′(t). On the other hand, if T = Z, then f �(t) reduces to the usual
forward difference, that is f �(t) = �f (t). This theory not only brought unification but also a
wide generalization of the notions of time used in dynamic equations leading to new applica-
tions. Also, this theory allows one to get some insight into and better understanding of the subtle
differences between discrete and continuous systems [2,3].
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This paper examines the h-stability for linear dynamic equations on time scales and their
perturbations. The notion of h-stability was introduced by Pinto [13,14] with the intention of
obtaining results about stability for a weakly stable system (at least, weaker than those given
exponential stability and uniform Lipschitz stability) under some perturbations. In the study of
stability properties of differential and difference systems, the notion of h-stability is very useful
because, when we study the asymptotic stability, it is not easy to work with nonexponential types
of stability. For the detailed results about h-stability for differential and difference systems, we
refer to the papers [4–6] and [11–15].

Now, we mention without proof several foundational definitions and results from the calculus
on time scales in an excellent introductory text by Bohner and Peterson [3].

Definition 1.1. A time scale T is a nonempty closed subset of R.
We assume throughout that T has the topology that is inherited from the standard topology

on R.

It is also assumed throughout that in T the interval [a, b] means the set {t ∈ T: a � t � b} for
the points a < b in T. Since a time scale may or may not be connected, we need the following
concept of jump operators.

Definition 1.2. The mappings σ,ρ : T → T defined by

σ(t) = inf{s ∈ T: s > t} and ρ(t) = sup{s ∈ T: s < t}
are called the jump operators.

The jump operators σ and ρ allow the classification of points in T in the following way:

Definition 1.3. A nonmaximal element t ∈ T is said to be right-dense if σ(t) = t , right-scattered
if σ(t) > t , left-dense if ρ(t) = t , left-scattered if ρ(t) < t .

In the case T = R, we have σ(t) = t , and if T = hZ, h > 0, then σ(t) = t + h.

Definition 1.4. The mapping μ : T → R+ defined by μ(t) = σ(t) − t is called the graininess
function.

If T = R, then μ(t) = 0, and when T = Z, we have μ(t) = 1.

Definition 1.5. Let f : T → R
n. f is called differentiable at t ∈ T

κ , with (delta) derivative
f �(t) ∈ R

n if given ε > 0 there exists a neighborhood U of t such that, for all s ∈ U ,∣∣f σ (t) − f (s) − f �(t)
[
σ(t) − s

]∣∣ � ε
∣∣σ(t) − s

∣∣,
where f σ = f ◦ σ .

If T = R, then

f �(t) = df (t)

dt
,

and if T = Z, then

f �(t) = f (t + 1) − f (t).
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Some basic properties of delta derivatives are the following [3].

Theorem 1.6. Assume that f : T → R
n and let t ∈ T

κ .

(i) If f is differentiable at t , then f is continuous at t .
(ii) If f is continuous at t and t is right-scattered, then f is differentiable at t with

f �(t) = f σ (t) − f (t)

σ (t) − t
.

(iii) If f is differentiable at t and t is right-dense, then

f �(t) = lim
t→s

f (t) − f (s)

t − s
.

(iv) If f is differentiable at t , then

f σ (t) = f (t) + μ(t)f �(t).

Definition 1.7. The function f : T → R
n is said to be rd-continuous (denoted by f ∈ Crd(T,R

n))

if, at all t ∈ T,

(i) f is continuous at every right-dense point t ∈ T,
(ii) lims→t− f (s) exists and is finite at every left-dense point t ∈ T.

Definition 1.8. Let f ∈ Crd(T,R
n). Then g : T → R

n is called the antiderivative of f on T if it
is differentiable on T and satisfies g�(t) = f (t) for t ∈ T. In this case, we define

t∫
a

f (s)�s = g(t) − g(a), t ∈ T.

Theorem 1.9. Let f : R → R be continuously differentiable and suppose that g : T → R is delta
differentiable. Then f ◦ g : T → R is delta differentiable and the formula

(f ◦ g)�(t) = g�(t)

1∫
0

f ′(g(t) + δμ(t)g�(t)
)
dδ

holds.

2. Main results

Consider the dynamic system

x� = f (t, x), x(t0) = x0, (2.1)

where f : T × R
n → R

n and let f satisfies the following conditions:

(i) f is rd-continuous with respect to the first argument in T.
(ii) f is locally Lipschitzian with respect to the second argument in R

n.
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(iii) f is regressive (denoted by f ∈R(T×R
n,R

n)), i.e., the function id+μ(t)f (t, ·) : Rn → R
n

is invertible.

Then the initial value problem (2.1) with x(t0) = x0 ∈ R
n admits exactly one solution, denoted

by x(t, t0, x0).
When f (t, x) = A(t)x, A is an n × n matrix-valued function on T, (2.1) becomes the linear

homogeneous dynamic system

x� = A(t)x, (2.2)

where the norm of A is defined to be

|A| = max
|x|�1

|Ax|.

Definition 2.1. Let t0 ∈ T and assume that A ∈ R(T×R
n,R

n) is an n×n matrix-valued function.
The unique matrix-valued solution of the initial value problem

Y� = A(t)Y, Y (t0) = I (the identity matrix), (2.3)

is called the transition matrix and it is denoted by ΦA(t, t0).

In this paper, we denote the solution of (2.3) as ΦA(t, t0) when A(t) is time varying and
denote the solution eA(t, t0) = ΦA(t, t0) (the matrix exponential as in [2]) only when A(t) = A

is a constant matrix. Thus, when T = R,

eA(t, t0) = eA(t−t0),

while if T = Z and I + A is invertible, then

eA(t, t0) = (I + A)(t−t0).

Pinto [13] introduced the notion of h-stability which is an extension of the notions of expo-
nential stability and uniform stability.

Definition 2.2. System (2.1) is called an h-system if there exist a positive function h : T → R,
a constant c � 1 and δ > 0 such that∣∣x(t, t0, x0)

∣∣ � c|x0|h(t)h(t0)
−1, t � t0,

if |x0| < δ (here h(t)−1 = 1/h(t)). If h is bounded, then (2.1) is said to be h-stable.

For the various definitions of stability, we refer to [7] and we obtain the following possible
implications for system (2.1) among the various types of stability:

h-stability ⇒ uniform exponential stability

⇒ uniform Lipschitz stability

⇒ uniform stability

as in [4]. The above implications can be proved by the following characterization due to Pinto
[14, Lemma 1] in the case T = R, in terms of the transition matrix for system (2.2).
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Lemma 2.3. The time varying linear dynamic system (2.2) is an h-system if and only if there
exist a positive function h defined on T and a constant c � 1 such that∣∣ΦA(t, t0)

∣∣ � ch(t)h(t0)
−1

for all t � t0 with t, t0 ∈ T.

Proof. Suppose that (2.2) is an h-system. We note that for a linear system we have

x(t, t0, x0) = ΦA(t, t0)x0, x0 ∈ R
n,

for t � t0. Then we have∣∣ΦA(t, t0)
∣∣ = max

|u|�1

∣∣ΦA(t, t0)u
∣∣ = max

|u|�1

∣∣x(t, t0, u)
∣∣ � ch(t)h(t0)

−1, t � t0.

Thus we obtain∣∣ΦA(t, t0)
∣∣ � ch(t)h(t0)

−1

for all t � t0 with t, t0 ∈ T.
Conversely, we have∣∣x(t, t0, x0)

∣∣ = ∣∣ΦA(t, t0)x0
∣∣ �

∣∣ΦA(t, t0)
∣∣|x0| � c|x0|h(t)h(t0)

−1, t � t0.

Hence (2.2) is an h-system. �
It is widely known that the stability characteristics of a nonautonomous linear system of differ-

ential or difference equations can be characterized completely by a corresponding autonomous
linear system by a Lyapunov transformation. DaCunha in [8] gave a definition of a Lyapunov
transformation as follows.

Definition 2.4. A Lyapunov transformation is an invertible matrix L(t) ∈ C1
rd(T,R

n×n) with the
property that, for some positive η,ρ ∈ R,∣∣L(t)

∣∣ � ρ and detL(t) � η (2.4)

for all t ∈ T.

Note that an equivalent condition to (2.4) is that there exists ρ > 0 such that∣∣L(t)
∣∣ � ρ and

∣∣L−1(t)
∣∣ � ρ (2.5)

for all t ∈ T [8].
Suppose that L(t) ∈ C1

rd(T,R
n×n), i.e., L(t) is rd-continuous and its delta derivative exists,

and L(t) is invertible for all t ∈ T. We consider the dynamic system

Z�(t) = G(t)Z(t), Z(τ) = I, (2.6)

where

G(t) = Lσ−1
(t)A(t)L(t) − Lσ−1

(t)L�(t). (2.7)

Then the transition matrix for systems (2.6) is given by

ΦG(t, τ ) = L−1(t)ΦA(t, τ )L(τ) (2.8)

for all t, τ ∈ T [8, Theorem 3.8].
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Lemma 2.5. For systems (2.2) and (2.6), A(t) is regressive if and only if G(t) is also regressive.

Proof. We see that A(t) and G(t) are regressive for each right-dense point t ∈ T
κ .

Let t ∈ T
κ be any right-scattered point. Then we have

I + μ(t)G(t) = I + μ(t)
[
Lσ−1

(t)A(t)L(t) − Lσ−1
(t)L�(t)

]
= L−1(σ(t)

)[
I + μ(t)A(t)

]
L(t)

from the identity

Aσ (t) = A(t) + μ(t)A�(t) (2.9)

for any differentiable matrix-valued function A(t) on T [2]. �
Now, system (2.2) with A ∈ R(T,R

n×n) can be transformed into the system

z�(t) = G(t)z(t), z(t0) = z0 (2.10)

via the Lyapunov transformation z(t) = L−1(t)x(t). Then the notion of h-stability for (2.2) is
preserved by the Lyapunov transformation:

Theorem 2.6. System (2.2) is h-stable if and only if (2.10) is also h-stable.

Proof. Suppose that (2.2) is h-stable. Then, in view of Lemma 2.3, there exists a constant c > 0
and a positive bounded function h defined on T such that∣∣ΦA(t, t0)

∣∣ � ch(t)h(t0)
−1, t � t0 ∈ T,

where ΦA(t, t0) is the transition matrix of (2.2). By using Lemma 2.3 and (2.5), we have∣∣ΦG(t, t0)
∣∣ = ∣∣L−1(t)ΦA(t, t0)L(t0)

∣∣ �
∣∣L−1(t)

∣∣∣∣ΦA(t, t0)
∣∣∣∣L(t0)

∣∣ � cρ2h(t)h(t0)
−1

= dh(t)h(t0)
−1, t � t0 ∈ T,

where d = cρ2 and ΦG(t) is the transition matrix of (2.10). Hence (2.10) is h-stable.
The converse holds similarly. �
We consider the perturbed system

z�(t) = [
G(t) + F(t)

]
z(t), z(t0) = z0, (2.11)

where G,F ∈R(T,R
n×n) and G(t) satisfies (2.7).

DaCunha [7, Theorem 5.1] obtained the result about the uniform stability for the perturbed
system (2.11) under the condition

∞∫
t0

∣∣F(s)
∣∣�s � β (2.12)

for some β � 0. With a slight modification of (2.12), we have the following.
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Theorem 2.7. Suppose that (2.2) is h-stable. Then (2.11) is h-stable if there exists β � 0 such
that for all t0 ∈ T,

∞∫
t0

h(s)

h(σ (s))

∣∣F(s)
∣∣�s � β.

Proof. Suppose (2.2) is h-stable. Then it follows from Theorem 2.6 that (2.10) is h-stable, i.e.,
there exist a constant c > 0 and a positive bounded function h defined on T such that∣∣ΦG(t, t0)x0

∣∣ � ch(t)h(t0)
−1

for all t � t0 ∈ T. For any t0 and z(t0) = z0, by the variation of constants formula in [2], the
solution z(t) of (2.11) satisfies

z(t) = ΦG(t, t0)z0 +
t∫

t0

ΦG

(
t, σ (s)

)
F(s)z(s)�s, (2.13)

where ΦG(t, t0) is the transition matrix for the system (2.10).
By taking the norms of both sides of (2.13), we have

∣∣z(t)∣∣ � ch(t)h(t0)
−1|z0| + c

t∫
t0

h(t)h
(
σ(s)

)−1∣∣F(s)
∣∣∣∣z(s)∣∣�s, t � t0.

By dividing by h(t) on both sides,

|z(t)|
h(t)

� c
|z0|
h(t0)

+ c

t∫
t0

h(s)

h(σ (s))

∣∣F(s)
∣∣ |z(s)|

h(s)
�s, t � t0.

In view of the Gronwall’s inequality on time scale in [2], we obtain

|z(t)|
h(t)

� c
|z0|
h(t0)

e
c

h(s)
h(σ (s))

|F(s)|(t, t0)

= c
|z0|
h(t0)

exp

( t∫
t0

ξμ(t)

(
c

h(s)

h(σ (s))

∣∣F(s)
∣∣)�s

)

=
⎧⎨
⎩

c
|z0|
h(t0)

exp
( ∫ t

t0

1
μ(s)

Log
(
1 + μ(s)c

h(s)
h(σ (s))

|F(s)|)�s
)

if μ 	= 0,

c
|z0|
h(t0)

exp
( ∫ t

t0
c

h(s)
h(σ (s))

|F(s)|ds
)

if μ = 0

� c
|z0|
h(t0)

exp

( t∫
t0

c
h(s)

h(σ (s))

∣∣F(s)
∣∣�s

)

� c
|z0|
h(t0)

ecβ,

where the cylinder transformation ξμ(z) is given by



714 S.K. Choi et al. / J. Math. Anal. Appl. 324 (2006) 707–720
ξμ(z) =
{ 1

z
Log(1 + μz) if μ 	= 0 (for z 	= − 1

μ
),

z if μ = 0.

Thus ∣∣z(t)∣∣ � d|z0|h(t)h(t0)
−1, t � t0,

where d = cecβ . Hence (2.11) is h-stable. �
Corollary 2.8. Suppose that (2.2) is h-stable with bounded function h(t)

h(σ (t))
on T. Then (2.11) is

h-stable if there exists a constant β � 0 such that for all t0 ∈ T,

∞∫
t0

∣∣F(s)
∣∣�s � β.

Note that if T = R, then (2.11) is h-stable if there exists a constant β � 0 such that for all
t0 ∈ R,

∞∫
t0

∣∣F(s)
∣∣ds � β.

If T = Z, then (2.11) is h-stable if there exists a constant β � 0 such that for all t0 ∈ Z,

∞∑
s=t0

h(s)

h(s + 1)

∣∣F(s)
∣∣ � β.

Now, we consider the nonlinear perturbed dynamic system

z�(t) = A(t)z(t) + g
(
t, z(t)

)
, (2.14)

where g ∈ Crd(T×R
n,R

n) and g(t,0) = 0. We investigate the h-stability for (2.14) by using the
concept of class Ĥ in [9] and the Bihari type inequality in [1, Theorem 5.8].

Definition 2.9. A function w : R+ → R
+ belongs to the class Ĥ if

(H1) w(u) is nondecreasing and continuous for u � 0 and positive for u > 0,
(H2) there exists a continuous function φ on R

+ with w(αu) � φ(α)w(u) for α > 0, u � 0,
(H3) limu→0+ w(u)

u
exists.

Theorem 2.10. Suppose that (2.2) is h-stable and∣∣g(t, x)
∣∣ � F(t)w

(|x|), t � t0,

where F is positive and rd-continuous, and w ∈ Ĥ with corresponding multiplier function φ. Let
r be the solution of

r�(t) = cλ(t)w
(
r(t)

)
, r(t0) = c

and assume that there is a bijective function W satisfying (W ◦ r)� = cλ with
∫ ∞
t0

λ(s)�s < ∞
for all t0 ∈ T. Then (2.14) is h-stable.
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Proof. For any t0 and z0 = z(t0), the solution z(t) of (2.14) with the initial value z(t0) = z0 is
given by

z(t) = ΦA(t, t0)z0 +
t∫

t0

ΦA

(
t, σ (s)

)
g
(
s, z(s)

)
�s, (2.15)

where ΦA(t, t0) is the transition matrix for (2.2).
Since (2.2) is h-stable, there exists a positive function h defined on T such that∣∣ΦA(t, t0)

∣∣ � ch(t)h(t0)
−1

for all t � t0 ∈ T.
By taking the norms of both sides, we obtain

∣∣z(t)∣∣ �
∣∣Φ(t, t0)

∣∣|z0| +
t∫

t0

∣∣ΦA

(
t, σ (s)

)∣∣∣∣g(
s, z(s)

)∣∣�s

� ch(t)h(t0)
−1|z0| +

t∫
t0

ch(t)h
(
σ(s)

)−1∣∣g(
s, z(s)

)∣∣�s

� ch(t)h(t0)
−1|z0| +

t∫
t0

ch(t)h
(
σ(s)

)−1
F(s)w

(|z(s)|)�s.

Dividing by h(t)h(t0)
−1|z0| (z0 	= 0) on both sides, we have

|z(t)|h(t0)

h(t)|z0| � c + c

t∫
t0

h(t0)F (s)

h(σ (s))|z0|w
( |z0|h(s)

h(t0)
· h(t0)|z(s)|

h(s)|z0|
)

�s.

Letting u(t) = |z(t)|h(t0)
h(t)|z0| , we rewrite

∣∣u(t)
∣∣ � c + c

t∫
t0

h(t0)F (s)

h(σ (s))|z0|w
( |z0|h(s)

h(t0)
· u(s)

)
�s

� c + c

t∫
t0

h(t0)F (s)

h(σ (s))|z0|φ
( |z0|h(s)

h(t0)

)
w

(
u(s)

)
�s.

Letting λ(s) = h(t0)F (s)
h(σ (s))|z0|φ(

|z0|h(s)
h(t0)

), we have

u(t) � c + c

t∫
t0

λ(s)w
(
u(s)

)
�s for all t ∈ T.

By the Bihari’s inequality in [1], we obtain
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u(t) � W−1

[
W(c) + c

t∫
t0

λ(s)�s

]
� W−1

[
W(c) + c

∞∫
t0

λ(s)�s

]
,

for all t ∈ T.
Thus we have∣∣z(t)∣∣ � d|z0|h(t)h(t0)

−1,

where d = W−1[W(c) + c
∫ ∞
t0

λ(s)�s]. This implies that (2.14) is h-stable. �
Thus we obtain the following corollaries.

Corollary 2.11. Suppose that (2.2) is h-stable and∣∣g(t, x)
∣∣ �

∣∣F(t)
∣∣w(|x|), t � t0 ∈ T = R,

where w ∈ Ĥ with corresponding multiplier function φ and

λ(t) = h(t0)|F(t)|
h(t)|z0| φ

( |z0|h(t)

h(t0)

)
,

d = W−1

[
W(c) + c

∞∫
t0

λ(s) ds

]
.

Then (2.14) is h-stable.

Corollary 2.12. Suppose that (2.2) is h-stable and∣∣g(t, x)
∣∣ �

∣∣F(t)
∣∣w(|x|), t � t0 ∈ T = Z,

where w ∈ Ĥ with corresponding multiplier function φ and

λ(t) = h(t0)|F(t)|
h(t + 1)|z0|φ

( |z0|h(t)

h(t0)

)
,

d = W−1

[
W(c) + c

∞∑
s=t0

λ(s)

]
.

Then (2.14) is h-stable.

Finally, we study the h-stability for the linear dynamic system (2.2) by means of the quadratic
Lyapunov functions on time scales.

DaCunha in [7] introduced a unified time scale quadratic Lyapunov function as follows:

Definition 2.13. Let Q(t) be a symmetric matrix such that Q(t) ∈ C1
rd(T,R

n×n). A unified time
scale quadratic Lyapunov function is given by

xT (t)Q(t)x(t), t � t0, (2.16)

with the delta derivative
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[
xT (t)Q(t)x(t)

]� = xT (t)
[
AT (t)Q(t)

+ (
I + μ(t)AT (t)

)(
Q�(t) + Q(t)A(t) + μ(t)Q�(t)A(t)

)]
x(t)

= xT (t)
[
AT (t)Q(t) + Q(t)A(t) + μ(t)AT (t)Q(t)A(t)

+ (
I + μ(t)AT (t)

)
Q�(t)

(
I + μ(t)A(t)

)]
x(t).

The matrix dynamic equation obtained by differentiating (2.16) with respect to t is given by

AT (t)Q(t) + Q(t)A(t) + μ(t)AT (t)Q(t)A(t) + (
I + μ(t)AT (t)

)
Q�(t)

(
I + μ(t)A(t)

)
= −M, M = MT .

Lemma 2.14. Suppose that g : T → R is positive delta differentiable and g�(t)
g(t)

is regressive. Then
lng(t) is delta differentiable and the formula

(
lng(t)

)� = ξμ(t)

(
g�(t)

g(t)

)
holds, where

ξμ(t)(z) =
{ 1

μ(t)
ln(1 + μ(t)z) if μ(t) 	= 0,

z if μ(t) = 0.

Thus we have
t∫

t0

ξμ(s)

(
g�(s)

g(s)

)
�s = ln

(
g(t)

g(t0)

)

when g� ∈ Crd(T,R).

Proof. Letting f (x) = lnx, we have f ′(x) = 1
x

. Hence we obtain by the chain rule on time
scale T,

(
lng(t)

)� =
( 1∫

0

f ′(g(t) + δμ(t)g�(t)
)
dδ

)
g�(t)

=
1∫

0

1

g(t) + δμ(t)g�(t)
dδg�(t)

=
⎧⎨
⎩

1
μ(t)

ln(g(t) + δμ(t)g�(t))|δ=1
δ=0 if μ(t) 	= 0,

g�(t)
g(t)

if μ(t) = 0

=
⎧⎨
⎩

1
μ(t)

ln(1 + μ(t)
g�(t)
g(t)

) if μ(t) 	= 0,

g�(t)
g(t)

if μ(t) = 0

= ξμ(t)

(
g�(t)

g(t)

)
.

This proof is complete. �
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Note that if T = R, then we have

(
lng(t)

)� = (
lng(t)

)′ = g′(t)
g(t)

, t ∈ R,

and if T = Z, then we have

(
lng(t)

)� = �
(
lng(t)

) = ln

(
1 + �g(t)

g(t)

)
= ln

(
g(t + 1)

g(t)

)
, t ∈ Z.

Lemma 2.15. If the delta differentiable function h : T → R is positive, then h�(t)
h(t)

is positively
regressive, and ep(t, t0) satisfies

ep(t, t0) = h(t)

h(t0)
,

where p(t) = h�(t)
h(t)

.

Proof. In view of Lemma 2.14 we obtain

1 + μ(t)
h�(t)

h(t)
= 1 + h(σ (t)) − h(t)

h(t)
= h(σ (t))

h(t)
> 0, t ∈ T. �

DaCunha’s result [7, Theorem 3.2] can be extended as the following theorem by using
Lemma 2.15.

Theorem 2.16. Suppose that there exist a symmetric matrix Q(t) ∈ C1
rd(T,R

n×n) and a positive
bounded differentiable function h defined on T satisfying the following properties for all t ∈ T:

(i) ηI � Q(t) � ρI ,

(ii)
[
AT (t)Q(t) + (

I + μ(t)AT (t)
)(

Q�(t) + Q(t)A(t) + μ(t)Q�(t)A(t)
)]

� c
h�(t)

h(t)
I,

where η and ρ are positive constants, and

c =
{

η, if h�(t) � 0,

ρ, if h�(t) < 0.

Then system (2.2) is h-stable.

Proof. Let x(t) = x(t, t0, x0) be any solution of (2.2). We see that for all t � t0,

[
xT (t)Q(t)x(t)

]� � c
h�(t)

h(t)

∣∣x(t)
∣∣2

�

⎧⎨
⎩

c
η

h�(t)
h(t)

xT (t)Q(t)x(t), if h�(t) � 0,

c
ρ

h�(t)
h(t)

xT (t)Q(t)x(t), if h�(t) < 0

� h�(t)
xT (t)Q(t)x(t).
h(t)
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By using the time scale version of Gronwall’s inequality in [1], we obtain

xT (t)Q(t)x(t) � xT (t0)Q(t0)x(t0)e h�(t)
h(t)

(t, t0), t � t0.

By (i) and Lemma 2.15, we obtain

∣∣x(t)
∣∣2 � 1

η
xT (t)Q(t)x(t) � 1

η
xT (t0)Q(t0)x(t0)e h�(t)

h(t)

(t, t0)

� ρ

η

∣∣x(t0)
∣∣2

e h�(t)
h(t)

(t, t0) � ρ

η

∣∣x(t0)
∣∣2

h(t)h(t0)
−1, t � t0.

Hence we have∣∣x(t)
∣∣ � d

∣∣x(t0)
∣∣H(t)H(t0)

−1, t � t0,

where d =
√

ρ
η

and H(t) = √
h(t). �

Corollary 2.17. Assume the hypotheses of Theorem 2.16, then the following holds:

(i) If h(t) = c, for some constant c then system (2.2) is uniformly stable.
(ii) If h(t) = eλ(t,0), then system (2.2) is uniformly exponentially stable, that is, |ΦA(t, t0)| �

γ e−λ(t, t0) for some positive constants λ and γ with −λ ∈ R+ and all t � t0 [7, Theo-
rem 2.2].

Corollary 2.18. If T = R, then we have∣∣x(t)
∣∣2 � ρ

η

∣∣x(t0)
∣∣2

e h′(t)
h(t)

(t, t0) � ρ

η

∣∣x(t0)
∣∣2

h(t)h(t0)
−1.

Hence we have∣∣x(t)
∣∣ � d

∣∣x(t0)
∣∣H(t)H(t0)

−1, t � t0,

where d =
√

ρ
η

and H(t) = √
h(t).

Corollary 2.19. If T = Z and c = 1, then we have∣∣x(t)
∣∣2 � ρ

η

∣∣x(t0)
∣∣2

e�h(t)
h(t)

(t, t0) � ρ

η

∣∣x(t0)
∣∣2

h(t)h(t0)
−1.

Hence we have∣∣x(t)
∣∣ � d

∣∣x(t0)
∣∣H(t)H(t0)

−1, t � t0,

where d =
√

ρ
η

and H(t) = √
h(t).

Example 2.20. To illustrate Theorem 2.16, we consider the linear dynamic system on time
scale T,

x�(t) =
[−2 1

−1 −a(t)

]
x(t), (2.17)

where a(t) = sin t + 2. If μ(t) � 1 for all t ∈ T, then system (2.17) is h-stable.
2
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Proof. Let x(t) = x(t, t0, x0) be any solution of (2.17). If we choose Q(t) = I and η = ρ = 1,
then we have∣∣x(t)

∣∣ �
∣∣x(t0)

∣∣√e− 1
2
(t, t0) = c

∣∣x(t0)
∣∣h(t)h(t0)

−1, t � t0,

where h(t) =
√

e− 1
2
(t,0). Therefore system (2.17) is h-stable. �

Acknowledgment

The authors are thankful to the referee for the valuable comments and corrections to improve this paper.

References

[1] R.P. Agarwal, M. Bohner, A. Peterson, Inequalities on time scales: A survey, Math. Inequal. Appl. 4 (2001) 535–
557.

[2] R.P. Agarwal, M. Bohner, D. O’Regan, A. Peterson, Dynamic equations on time scales: A survey, J. Comput. Appl.
Math. 141 (2002) 1–26.

[3] M. Bohner, A. Peterson, Dynamic Equations on Time Scales, An Introduction with Applications, Birkhäuser,
Boston, 2001.

[4] S.K. Choi, N.J. Koo, H.S. Ryu, h-Stability of differential systems via t∞-similarity, Bull. Korean Math. Soc. 34
(1997) 371–383.

[5] S.K. Choi, N.J. Koo, Variationally stable difference systems by n∞-similarity, J. Math. Anal. Appl. 249 (2000)
553–568.

[6] S.K. Choi, N.J. Koo, Y.H. Goo, Variationally stable difference systems, J. Math. Anal. Appl. 256 (2001) 587–605.
[7] J.J. DaCunha, Stability for time varying linear dynamic systems on time scales, J. Comput. Appl. Math. 176 (2005)

381–410.
[8] J.J. DaCunha, J.M. Davis, Periodic linear systems: Lyapunov transformations and a unified Floque theory for time

scales, preprint, 2005.
[9] F. Dannan, Integral inequalities of Gronwall–Bellman–Bihari type and asymptotic behavior of certain second order

differential equations, J. Math. Anal. Appl. 108 (1985) 151–164.
[10] S. Hilger, Analysis on measure chains – A unified approach to continuous and discrete calculus, Results Math. 18

(1990) 18–56.
[11] R. Medina, Perturbations of nonlinear systems of difference equations, J. Math. Anal. Appl. 204 (1996) 545–553.
[12] R. Medina, M. Pinto, Stability of nonlinear difference equations, Proc. Dynam. Systems Appl. 2 (1996) 397–404.
[13] M. Pinto, Perturbations of asymptotically stable differential systems, Analysis 4 (1984) 161–175.
[14] M. Pinto, Integral inequalities of Bihari-type and applications, Funkcial. Ekvac. 33 (1990) 387–403.
[15] M. Pinto, Stability of nonlinear differential systems, Appl. Anal. 43 (1992) 1–20.


