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Abstract

In this paper we consider the multiplicity of positive solutions for the one-dimensional p-Laplacian
differential equation (¢, ")) + q (1) f(t,u,u’) =0, t € (0, 1), subject to some boundary conditions. By
means of a fixed point theorem due to Avery and Peterson, we provide sufficient conditions for the existence
of multiple positive solutions to some multipoint boundary value problems.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we study the existence of multiple positive solutions to the boundary value prob-
lem (BVP) for the one-dimensional p-Laplacian

($p)) +q@) f(t,u,u’y=0, 1€(0,1), (1.1)
n—2 n—2
wO) =Y auE), W)=Y pu'E, (1.2)

i=1 i=1
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n—2 n—2
W)=Y o),  ul)=Y_ PuE), (13)

i=1 i=1

where ¢, (s) = Is|P~2s, p> 1,6 € (0, 1) withO <& <& < --- <&_» < land oy, Bi, f satisfy

(H1) a;, Bi €10, 00) satisfy 0 < "2y < 1and Y7=2 i < 1;

(H2) f € C([0, 1] x [0, 00) x (=00, +00), [0, 00));

(H3) ¢(z) is a nonnegative continuous function defined in (0, 1), ¢ (¢) is not identically zero on
any subinterval of (0, 1).

The study of multipoint boundary value problems for linear second-order ordinary differential
equations was initiated by II’in and Moiseev [1,2]. Since then there has been much current at-
tention focused on the study of nonlinear multipoint boundary value problems, see, for example,
[3-6].

Equations of the above form occur in the study of the n-dimensional p-Laplace equation,
non-Newtonian fluid theory and the turbulent flow of a gas in a porous medium [7]. When the
nonlinear term f does not depend on the first-order derivative, Eq. (1.1) together with some
multipoint boundary conditions has been studied by several researchers, for example, see [§—10].

Recently, D. Ma, Z. Du and W. Ge [8] have obtained the existence of monotone positive
solutions for the following BVP:

($p ) +q@) f(t,u)=0, 1€(0,1), (1.4)
n—2 n—2
WO =) ad &),  ul)=)_ Bu). (1.5)

i=1 i=1
The main tool is the monotone iterative technique.
The authors in [9,10] considered the multipoint BVP for one-dimensional p-Laplacian

(¢>p(u’))’+f(r u)=0, te,1), (1.6)
n—2
(') Za,cﬁp (W@E).  uy=) pu), (17)
i=1
and BVP (1.4), ( 1.5). Usmg a fixed point theorem in a cone, we provide sufficient conditions for
the existence of multiple positive solutions to the above BVPs.

However, multiplicity is not available for the case when the nonlinear term is involved in first-
order derivative explicitly. This paper will fill this gap in the literature. The purpose of this paper
is to improve and generalize the results in the above mentioned references. We shall prove that
(1.1), (1.2) and (1.1), (1.3) possess at least three positive solutions.

Our main results will depend on an application of a fixed point theorem due to Avery and
Peterson which deals with fixed points of a cone-preserving operator defined on an ordered Ba-
nach space. The emphasis here is that the nonlinear term is involved explicitly with the first-order
derivative.

2. Background material and definitions

For the convenience of the reader, we present here the necessary definitions from the theory
of cones in Banach spaces. We also state in this section the Avery—Peterson fixed point theorem.
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Definition 2.1. Let E be a real Banach space. A nonempty convex closed set P C E is said to be
a cone provided that

(i) au € P forallu € P and all @ > 0 and
(i) u, —u € P implies u = 0.

Note that every cone P C X induces an ordering in E givenby x < yif y —x € P.

Definition 2.2. The map « is said to be a nonnegative continuous concave functional on a cone
P of areal Banach space E provided that o : P — [0, 00) is continuous and

a(tx + (1= 1)y) > te@) + (1 - Da(y)
forallx,ye Pand 0 <t < 1.

Similarly, we say the map § is a nonnegative continuous convex functional on a cone P of a
real Banach space E provided that 8: P — [0, oo) is continuous and

Btx+ (1 —1)y) <tBx)+ 1 —DBK)
forallx,ye Pand 0 <t < 1.

Definition 2.3. An operator is called completely continuous if it is continuous and maps bounded
sets into pre-compact sets.

Let y and 6 be nonnegative continuous convex functionals on P, o be a nonnegative contin-
uous concave functional on P, and i be a nonnegative continuous functional on P. Then for
positive real numbers a, b, ¢, and d, we define the following convex sets

P(y,d)={xeP|yx) <d},
P(y,a.b,d)={xeP|b<aw), y(x) <d},
P(y,0,a,b,c,d)={x € P|b<ax),0(x) <c, y(x) <d},

and a closed set

R(y,¥,a,d)={x e Pla<yx), y(x) <d}.

The following fixed point theorem due to Avery and Peterson is fundamental in the proofs of
our main results.

Theorem 2.1. [11] Let P be a cone in a real Banach space E. Let y and 6 be nonnegative
continuous convex functionals on P, o be a nonnegative continuous concave functional on P,
and ¥ be a nonnegative continuous functional on P satisfying ¥ (Ax) < A (x) for 0 < A < 1,
such that for some positive numbers M and d,

a(x) SY(x) and x| < My (x), 2.1)

for all x € P(y,d). Suppose T : P(y,d) — P(y,d) is completely continuous and there exist
positive numbers a, b, and ¢ with a < b such that

S {xe P(y,0,a,b,c,d) | a(x) > b} #Dand a(Tx) > b forx € P(y,0,a,b,c,d);



1384 Y. Wang, W. Ge /J. Math. Anal. Appl. 327 (2007) 1381-1395

(82) a(Tx)>bforxe P(y,a,b,d) with0(Tx) > c;
(S3) 0¢ R(y,¥,a,d) and ¥ (Tx) <a forx € R(y,¥,a,d) with Y (x) =a.

Then T has at least three fixed points x1, x2, x3 € P(y, d) such that

y(x;))<d fori=1,2,3,
b <a(xy),
a<y(x) witha(xp) <b,

Y(x3) <a.
3. Existence of triple positive solutions to (1.1), (1.2)

We consider the Banach space E = (C'[0, 1], || - ||) with the maximum norm

llx]I =max{ max , max |x’(t)|}.
0<r<1 0<r<1

Denote C17[0, 1] ={we Cl0,11: w@®) =0, t €]0, 1]}. Define the cone P; C E by

n—2 n—2
P = {x €E: x(20, x(0) =) aix(&), X' () =) pix' &),

i=1 i=1
x is concave on [0, 1] }

Let the nonnegative continuous concave functional ¢, the nonnegative continuous convex
functionals 61, y;, and the nonnegative continuous functional | be defined on the cone P; by

= ma
y1(x) (max

\\

Y1 (x) =01 (x) = max |x(1)], a1 (x)= min
0<r<1 5<r<1-8

where § € (0, 1/2).

Lemma 3.1. If x € Py, then

max |x(1)| < (1 + M) max |x'(1)|.

0<r<1 P 12 0<r<1
Proof. Since x(t) = x(0) + fot x'(s)ds, so we have

max |x(t)| |x(0)| + max |x()|.
0<1< 0<i<1

On the other hand,
n—2 n—2
(1 — Zai>x(0) =x(0)— > a;x(0)
i=1 i=l1
n—2 n—2
=Y aix&) — Y aix(0)
i=1 i=1
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n—2

=Y ai[x(&) —x(0)]

i=1
n—2

=Y ai&x' (),
i=1

where n; € (0, &), so

Zl 1 alél-x (i)
1=

Therefore, the result holds. O

n—2 "2 0k
XSkl Yilek x [ @)

x(0) <
o= S RIS W L

Lemma 3.2. [12] If x € Py, then x(t) > t(1 —t) maxog, <1 |x(1)].

Lemma 3.3. Let (H))—(H3) hold. Then for x € C'*[0, 1], the problem

(6p @) +q@O f(t,x(1),x' (1)) =0, 1€(0,1), (3.1)
n—2 n—2
w©) =Y auE), W)=Y pu'E, (3.2)

i=1 i=1

has a unique solution

t 1
u(t) = By +/¢;1 (AX +fq(r)f(t,x(r),x/(t)) dt) ds, (3.3)
0 s
where Ay, By satisfy
n—2 1
6, (A=Y Big" (Ax + / q(5)f (5. x(5), %' (s)) ds>, (3.4)
i=1 &

1

Bx Zal/d);l(Ax +/Q(T)f(T’x(r)7x/(T))df) ds.
1=>" ]ali . J
n—=2 p.
Denote k = M:ﬂl_fl)
1=¢p(2izy B

satisfying (3.4).

, then there exists a unique Ay € [0, kfol q(s) f(s,x(s), x'(s))ds]

Proof. The proof is similar to [8, Lemma 2.2], so we omit the details. O

Lemma 3.4. Let (H)—(H3) hold. If x € C'*[0, 1], then the unique solution of problem (3.1)—
(3.2) satisfies u(t) 20, t € [0, 1].

Proof. It is easy to check. O
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By Lemmas 3.1, 3.2 and the concavity of x, the functionals defined above satisfy
8(1 =48)01(x) < a1(x) <O1(x) =1 (x),

_ YUl ki
Ix [l =max{6) (x), i)} < [ 1+ ===— |nx), (3.5)
1- Zi=1 o

for all x € P1(y1,d) C Pi. Therefore, condition (2.1) is satisfied.
For any x € P1, define the operator

n—2 & 1
1
M0 = - D e /¢;1<Ax +/q(r)f(f,x(r),x’(r)) dr) ds
- Zi:l % i 0 s
' 1
+/¢;1<Ax+/Q(T)f(t,x(t),x’(r))dr> ds. (3.6)
0 K

By Lemma 3.3, we know T x is well defined. Furthermore, we have the following result.
Lemma 3.5. 71 : Py — P is completely continuous.

Proof. It is easy to check that 71 P; C P;. By similar arguments in [13,14], T} : Py — P; is
completely continuous. O

We are now ready to apply the Avery—Peterson fixed point theorem to the operator 77 to give
sufficient conditions for the existence of at least three positive solutions to problem (1.1), (1.2).
Let

1

M, =f¢1(t)dt,
0
1-6 1
c1=/¢,,‘(/q<r>dr>ds,
k) K

by = 1- Z?;z Bi
82(1 — &2 — YIE pig) — 81— Y12 Bl
L-yile—g) o (=Y AE (= Y e = &)
=Y P A=Y 2a)(1— Y22 8)
Theorem 3.1. Assume (H{)—(H3) hold. Let
U= 920 = TP pi) 01 - TP AL
N 21— Y127 Biki) ’

and suppose that f satisfies the following conditions:

Ny =—-b;

O<a<b
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1
(A1)  f(t,u,v) < m‘ﬁp(d),
Z, 1% 1%-1
_Zl lal

for (t,u,v) €[§,1 —68] x [b, N1b] x [—d, d],

for (t,u,v) €[0, 1] x |:O,d+ :| x [—d, d],

b
(A2) f@t,u,v)=> ¢p<m>,

-2
1
(A3) f(t,u,v) m (( ) )

for (t,u,v) €[0,1] x [0, a] x [—d,d].

' M

Then the boundary value problem (1.1), (1.2) has at least three positive solutions x1, x2, and x3
satisfying

max |x/(1)| <d, fori=1,2,3,
0<r<l1

b < min
s<t<l—

<<l

a < max with  min |x2(t)| <b,
0<r<1 §<r<1-8

max |x3(1)| <a. (3.7)
0<r<1

Proof. Problem (1.1), (1.2) has a solution x = x(¢) if and only if x solves the operator equation
x = Tyx. Thus we set out to verify that the operator 77 satisfies the Avery—Peterson fixed point
theorem which will prove the existence of three fixed points of 7.

If x € Pi(y,d), then y;(x) = maxog, <1 |x'(f)| < d. With Lemma 3.1 we have

max |x(t)| <d+ Md,
0<r<1 — Z

then assumption (A1) implies f(z, x(¢), x'(¢)) < msz (d). On the other hand, for x € Py,
there is Tjx € Py, then Tyx is concave on [0, 1], and max;efo,17 [(T1x)'(¢)| = max{|(T1x)'(0)],
|(T1x)' (D]}, so

y(Tix) = max |(Tix)' (1)]
t€(0,1]

= max {
t€(0,1]

J

=¢;1<Ax + / q(r)f(r,x(r>,x’(r>)dr)

0

1
< (]5;1 ((k +1) / qr) f(r, x(r), x'(r)) dr)
0
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<¢p1<(k+1>M (k+1)¢>p(d)/q(r)dr)

=d.

Hence, Ty : Pi(y,d) — Pi(y,d).
To check condition (S1) of Theorem 2.1, we choose
—ZZ’ L Big, Y k]
Zn 12.81 1- Z:‘l:lzai
( _Z ﬂtfz)(z 1011 i)

xo(t) = —b't> +2b'

+ 20
A=Y a1 =Y 6
where
y_ b(1 =377 i)
82(1 = §)[2(1 — Y127 Big) —8(1 = Y12 Bl
Obviously,

n—2 n—2
x00)=Y aixo&).  xp()=>_ Bixy(&),
i=1

i=1

xo(¢) = 0 and is concave on [0, 1], so xg € P;. Again,

b
>
5<r<l— 8(1=96)

01(xo) = [max |x0(t)| = xo(1) = N1b > x0(8) >

ai(xp) = min \xo(t)| =x0(8) >

)

>
§(1 —9)
2b(1 = I27 Bi) oy
82(1—8)[2(1 — Y17 pig) —6(1 — Y127 Bl

So xg € P1(y1,61,a1,b, N1b,d) and {x € P1(y1,01,a1,b, N1b,d) | @1(x) > b} # (. Hence,

if x € Pi(y1,61,a1,b, N1b,d), then b < x(t) < N1b, |x'(1)| <d for § <t <1—36.As (T1x) is
nonnegative on [0, 1], from assumption (A2) and Lemma 3.2, we have

x0) = max |x,()| = x,(0) =
y1(x0) 0<t<1| o] = x((0)

a(Tix) = 8<Itn<irll78’(TIX)(t)|
>38(1—8) max |(Tix)()|
0<r<1

=8(1 —8)(Tyx)(1)

1
s(1—8
_1_( ) Za,/qsp ( . /(r)f(f x(r)x(r))dr)

—’il

1
+4(1 —8)/¢;1<Ax +/q(r)f(t,x(t),x/(r))dt) ds
0 s
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1 1

>5(1 —a)/qs;‘ (/q(t)f(t,x(t),x’(t))dt) ds
0 s
1-§ 1

>8(1—6) / ¢;1(/q(r)f(r,x(r),x’(r))df) ds

8

>56(1— S)C /¢ (/q(r)dr)ds

=b.

This shows that condition (S1) of Theorem 2.1 is satisfied.
Secondly, with (3.6), we have

a(T1x) = 8(1 — 8)0(T1x) > 8(1 — 8)Nib > 8(1 — 8)

’

>
5(1—19)

for all x € P1(y1, a1, b, d) with 8(T1x) > N1b. Thus, condition (S2) of Theorem 2.1 is satisfied.

We finally show that (S3) of Theorem 2.1 also holds. Clearly, as ¥;(0) = 0 < a, there holds
that 0 ¢ R(y1, ¥1,a,d). Suppose that x € R(y1, ¥1, a, d) with 1 (x) = a. Then, by the assump-
tion (A3), we have

Y1 (T1x) = max [(T1x)(1)]
0<r<1

= (Tix)(1)
1

Ti-y Z“’/ * 1(“*/ q<f>f(f7X<f>7x’<r>)d’> “

tlalil S

1 1
+/¢;1<Ax+/Q(T)f(T,X(T),x/(r))dr> ds
0 s

1

1
ST 32, Z%f% (A +/q<r>f(r x(v), x(r))df>
- Zt 1% =g g
1 1
+/¢pl<Ax+/61(T)f(f,x(t),x/(r))dt> ds
0 K
1 1
:@!4’;1(&+[q(r)f(t,x(r),x’(r))dr) ds
: 1
< T(b_l((k—f-1)/q(r)f(t,x(r),x/(t))dt)
1_21 1 0
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1

1 —1 1
Ty <(k+1)m (( Z%) )!q(r)dr)

1-— o; la=a.
l_Zzla’< Z )

So, condition (S3) of Theorem 2.1 is satisfied. Therefore, an application of Theorem 2.1 im-
plies the boundary value problem (1.1), (1.2) has at least three positive solutions xp, x2, and x3
satisfying (3.7). The proof is complete. O

Example 3.1. Consider the differential equation
(1'1u') + f(t,u,u’y =0, 1€ (0, 1), (3.8)

with boundary condition

o L (Y (YL L (3
0= 3u(5)+3(3) + 5(3)

3.9
/(1) 1 , 1 +1 , 1 +1 , 3 (3.9)
u =—u'l — —u'l = —u'( =),
4 4 3 2 3 4
where
i 20 = 3 6419
Pl = 2x 107 sint +5184u~" 4+ 2 x 10 (m) ’ forugﬁ,
- 2% 103 sint + 5184 (42)% +2 x 107 S(W)S, for u > 942,
Choose a =1, b=1,8 =1, d =181 x 119!, we note that M; = 1, C; = 331 p; = %,

k= 12231, N = 6419 . Consequently, f (¢, u, v) satisfies

I 23
S <4 n® (( Z“)) 82044

for (t,u,v) € [0, 1] x |:0, %i| x [—d, d],

f(tuv)>¢>< b )—( 144 )2
TP sa-ea) T \svao )

for (t,u,v) € |:£11 ;1i| x [1, Ni] x [—d, d],

(t,u, v) : (d)= Sty
S < e n ™" 1

Then all conditions of Theorem 3.1 hold. Thus, with Theorem 3.1, problem (3.8), (3.9) has at
least three positive solutions.

11
2 for (t,u,v) €[0,1] x [o, Ed} x [—d, d].

Remark 3.1. We can also consider the following BVP similarly:
(6p ")) +q@) f(t,u,u’)y=0, 1e(,1), (3.10)

n—2

u(0) =0, W) =" Bl ). (3.11)

i=1
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4. Existence of triple positive solutions to (1.1), (1.3)

Now we deal with problem (1.1), (1.3). The method is just similar to what we have done in
Section 3, so we omit the proof of the main result of this section.
Define the cone P, C E by

n—2 n—2

Py={x€E: x() 20, X'(0) =) ax'&), x() =) fix (&),

i=1 i=1
x is concave on [0, 1]

Let the nonnegative continuous concave functional o, the nonnegative continuous convex
functionals 65, y», and the nonnegative continuous functional i, be defined on the cone P, by

Y2(x) =62(x) = max
0<i<1

y(x) = max ar(x)=_min |x(1)|.
0<r<1 5<r<1-8

Lemma 4.1. If x € P, then

n—=2 p
max |x(t)| ~ i ﬂlél max |x (t)\

0<r<1 ]__E: ﬁ 0<r<1

Proof. Since x(t) =x(1) — ftl x'(s)ds, so we have

max |x()| < |x(1)|+ max |x'(0)].
0<r<1 0<r<1

On the other hand,

n—2 n—2
(1 - Z&)x(l) =x(1)— Y pix()

i=1 i=1

n—2 n—2

= BixE) =Y pix(1)
i=1 i=1
n—2

=Y Bi[xE) —x(1)]
i=1
n—2

=—> Bl —&)x'(m),

i=1
where 7; € (1, &), so
‘Z:’ L Bi(1—&)x (1)
Yt
n—2
4 (1 — &
—Z’Zl Ail 5 5i) max ’x’(t)}.
1— Zl',':—l Bi 0<i<l
Therefore, the result holds. O

)y fﬁl(l ENIX ()]
Yy

|x(D)] =

<
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Lemma 4.2. [8] Let (H{)—(H3) hold. Then for x € co, 1, the problem

($p)) +q) f(1,x0),x' 1)) =0, 1€(0,1), .1
u'(0) = Saiu/(&), u(l) = rfﬁiu(&'), (4.2)
has a unique slozl;tion -
u(t) = F, —j¢;l(Ex —jq(r)f(t,x(t),x'(r))dr) ds, (4.3)
t 0

where E, F, satisfy

n—2 &
¢, (Ex) =Zai¢;1<Ex —/q(s)f(s,x(s),x/(s))ds>,
i=1

0
l S
Fom—— Zﬁ, f ¢, (E - f g0 f (1. x(0).x (r))dr) 4.4)
1_21 1 Pi =1 ) 0
D (i) . . 1 /
enote | = T, 2 )’ then there exists a unique E, € [—I fo q(s) f(s,x(s),x'(s))ds, 0]
satisfying (4.4). re

Lemma 4.3. Let (H{)—(H3) hold. If x € C1[0, 1], then the unique solution of problem (4.1)—
(4.2) satisfies u(t) 20, t € [0, 1].

By Lemmas 3.1, 3.2 and the concavity of x, the functionals defined above satisfy

8(1 =8)62(x) < a2(x) < Oa(x) = Y1 (x),
1= Y722 Biki
1- 27;12 Bi
for all x € P>(y2,d) C P. Therefore, condition (2.1) is satisfied.

For any x € P,, define the operator

x|l = max{62(x), y2(x)} < ya(x), (4.5)

s

(T20) (1) = ~—— Z@/qﬁ (E - [awr(x, x(r))dr) 5

1 s
_/¢;1<Ex —/Q(T)f(t,x(r),x’(t))dr> ds. (4.6)
‘ 0

By Lemma 4.2, we know T>x is well defined.

Lemma 4.4. 75 : P, — P» is completely continuous.
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1393
Let
1-§ K
Cr = / ¢pl(/q(r)dr> ds
) 0
_ 1= Bi
5(1 =81 — Y122 fig2 — (1 -8)2(1 = Y122 Bl

_\y 24, 2 1_1—2 E(1 {1—2 &
Ny :bzil lel_flgl + 2by Zl:l (:l_il(l Zl:lnéfl) .

1=2>00 B (=27 a (=300 Bi)

Theorem 4.1. Assume (H;)—(H3) hold. Let

. 5(1—8)(1 = Y2 a1 — Y022 gig? — (1= 8)2(1 = Y122 B
<a<bs n—2 n—2 d,
201 - Y122 (1= Yo (1— &)

and suppose that f satisfies the following conditions:

1
B f(r,u,v) < M (l+1)¢p(d)

_yn-2g.¢
for (t,u,v) €0, 1] x |:07 1214;125151
1-— Zi:l .

m) Jor (t.u,v) € [8.1= 8] x [b. Nab] x [~d. d.

1
(B3) ftu.v) < gy @ (( Z@))

for (t,u,v) €10, 1] x [0,a] x [—d, d].

Then the boundary value problem (1.1), (1.3) has at least three positive solutions x1, x2, and x3
satisfying

d] x [—d,d],
(Bz) f(tsuvv)>¢p<

max |xlf(t)| <d, fori=1,23,

b < min
s<t<l—

a < max with  min |x2(t)| <b,
0<r<1 s<I<1-8

max |x3(t)| <a.
0<r<l

Example 4.1. Consider the differential equation

(l'1') + f @ u,u) =0, 1€(0,1),
with boundary condition

o S (Y L (MY (3
o= (5) 3 (3) rer (3)
(4.8)
AR SRR
u=zul7)+343)34\3)

4.7)
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where
) 2 x 1077 sinz + 5184 +2 x 107 (5g72m)° foru < 197,
u,v)=
u, 1037 1037
2% 1073 sin + 5184 - (15120 +2 x 107 (grm)?,  foru > 1537

Choosea=1,b=1,5=1d=181x441, wenote that M; =1, Cy = 3¥3=1 p, =2 1= 21
Ny = 1037 Consequently, f(t,u,v) satisfies
1 3
L)< ———as[ (1= Bi)a)=—r,
Flu,v) < oy 3 ;’3’ @] = 32944

for (t,u,v) €[0, 1] x |:0, %i| X [—d, d]

Ftuw) ¢( b ) ( 144 )2
LU, V) > = ,
\s1=98)C, 33— 1
for (t,u,v) € [% %i| x [1, N2] x [—d, d],

1 23 5 25
f(t,u,v) < Mkt 1)<b3( )= md for (t,u,v) € [0, 1] x |:O, Zdi| x [—d, d].

Then all conditions of Theorem 4.1 hold. Thus, with Theorem 4.1, problem (4.7), (4.8) has at
least three positive solutions.

Remark 4.1. We can also consider the following BVP similarly:

($p)) +q@) f(t,u,u)=0, 1e(0,1), 4.9)
n—2

W)=Y '),  u(l)=0. (4.10)
i=1
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