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We consider a 1-dimensional reaction–diffusion equation with nonlinear boundary con-
ditions of logistic type with delay. We deal with non-negative solutions and analyze the
stability behavior of its unique positive equilibrium solution, which is given by the constant
function u ≡ 1. We show that if the delay is small, this equilibrium solution is asymptoti-
cally stable, similar as in the case without delay. We also show that, as the delay goes to
infinity, this equilibrium becomes unstable and undergoes a cascade of Hopf bifurcations.
The structure of this cascade will depend on the parameters appearing in the equation. This
equation shows some dynamical behavior that differs from the case where the nonlinearity
with delay is in the interior of the domain.
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1. Introduction

We consider the following 1-dimensional reaction–diffusion equation with nonlinear boundary conditions of logistic type
with delay⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂u

∂t
(t, ξ) = uξξ (t, ξ), (t, ξ) ∈ R

+ × (0,1),

∂u

∂n
(t, ξ) = αu(t, ξ)

(
1 − u(t − r, ξ)

)
, ξ = 0,1, t ∈ R

+,

u(t, ξ) = ϕ(t, ξ) � 0, (t, ξ) ∈ [−r,0] × [0,1],

(1.1)

where α > 0 and r � 0. We consider non-negative initial conditions and study the asymptotic behavior of the solutions
depending on the two parameters α and r.

In recent years there has been a lot of work dealing with reaction–diffusion equations with delays, see for instance
[22,13] and references therein. Particularly, the logistic reaction term f (u, v) = αu(1 − v) has been used in many applied
models, first in ordinary differential equations of the type ẋ = f (x, x) (the so-called logistic equation) and its extension to
retarded differential equations ẋ = f (x(t), x(t − r)), called Hutchinson’s equation. Recently, the retarded partial differential
equation u̇ = �u + f (u(t), u(t − r)) has been extensively studied and a nice survey can be found in [22]. A common
feature to these equations is the appearance of oscillations, a fact which is very important in the model problems coming
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from biology, chemical processes and others. The appearance of these oscillations has been studied by many authors like
[7,18,16,8,11,9], where finally it was shown the existence of a cascade of Hopf bifurcations and, moreover, that the principal
bifurcation is always of dimension two.

In this work we analyze Eq. (1.1), which has a nonlinear logistic term with delay on the boundary. Reaction–diffusion
equations with nonlinear boundary conditions with delays have been used to describe phenomena related to collision-
dominated plasma (see [21]).

When there is no delay present in the equation, that is r = 0, this equation generates a well-defined nonlinear semigroup
in X = {u ∈ H1(0,1); u � 0}. For this case the system has only two equilibrium solutions u ≡ 0 and u ≡ 1, the first is
unstable and the second one is always asymptotically stable. The system is dissipative and gradient and the dynamics is
well understood. For any initial condition ϕ � 0, ϕ �= 0, its solution converges in H1(0,1) and even in stronger norms to the
equilibrium solution u ≡ 1, see [3] for general results on parabolic equations with nonlinear boundary conditions.

When r > 0 the equation generates also a well-defined nonlinear semigroup in Y = C([−r,0], X), where X is defined
above. Again, it has only two equilibrium solutions u ≡ 0 and u ≡ 1. The trivial equilibrium solution is always unstable but
the stability of u ≡ 1 is not determined a priori. We will see that for r small, this equilibrium is asymptotically stable but as
r increases it will loose its stability and it will undergo a sequence of Hopf bifurcations as the parameter r increases from 0
to ∞. The structure of this cascade of Hopf bifurcations will depend on the parameter α.

Observe that the existence of cascades of Hopf bifurcations for these delay problems is in some sense expected. Note
that if for fixed α > 0, ψ(t, ξ) is a periodic orbit of period T0 of (1.1) for the value of the delay r = r0 > 0, then ψ is also
a periodic orbit for (1.1) for the sequence of delays r0 + kT0 for all k ∈ Z such that r0 + kT0 > 0. This result is obtained
just by noting that if ψ(t, ξ) satisfies the first two equations of (1.1) for the delay r0 then ψ(t, ξ) also satisfies the same
equations for the delay r0 + kT0. This follows just by noting that ψ(t − (r0 + kT0), ξ) = ψ(t − kT0 − r0, ξ) = ψ(t − r0, ξ). In
particular, if for r = r0, the equilibrium u ≡ 1 undergoes a Hopf bifurcation of periodic orbits, that is, we have continuous
curves of delays r(μ) and periodic orbits ψμ(t, ξ) of period T (μ), μ ∈ (−ε, ε) for some ε > 0 small such that r(0) = r0 and
T (0) = T0, then the points rk = r0 + kT0, k ∈ Z such that rk > 0 are also points where a Hopf bifurcation occurs, with delay
curves rk(μ) = r(μ) + kT (μ) and periodic orbits ψμ(t, ξ) of period T (μ).

We summarize the results of this paper in the two following results.

Theorem 1.1 (Case 0 < α � 2). For fixed α ∈ (0,2] there exists a delay r0 > 0, such that the equilibrium solution u ≡ 1 is asymp-
totically stable for 0 < r < r0 and unstable for r0 < r. Moreover, there exists a T0 > r0 , such that the equilibrium u ≡ 1, undergoes a
Hopf bifurcation at the points rk = r0 + kT0 for k = 0,1,2, . . . and these are the only values of r for which there is a bifurcation of the
equilibrium solution u ≡ 1.

Moreover, if for r = r0 , the bifurcation curves are given by the continuous functions r0(μ), with r(0) = r0 , with periodic orbits ψμ

of period T (μ) for μ ∈ (−ε, ε) for some ε > 0, then these functions are all analytic, T (0) = T0 and the bifurcation curves at r = rk
are given by the functions rk(μ) = r0(μ) + kT (μ) with periodic orbits ψμ of period T (μ).

The periodic orbits bifurcating at r = rk for k � 1 are all unstable.

Theorem 1.2 (Case α > 2). For any fixed α > 2 there exist 0 < r0 < T0 and 0 < r̃0 < T̃0 with the property that either r0 �= r̃0 or
T0 �= T̃0 , such that the equilibrium solution u ≡ 1 is asymptotically stable for 0 < r < min{r0, r̃0} and unstable for min{r0, r̃0} < r.
Moreover, there exists a discrete set I ⊂ (2,∞) which is either a finite set or a sequence = {α j}∞j=1 with α j → 2, such that for all

α ∈ (2,∞) \ I , the equilibrium u ≡ 1 undergoes a double cascade of Hopf bifurcations, at the points rk = r0 + kT0 and r̃k = r̃0 + kT̃0 ,
k = 0,1, . . . and these are the only values of r for which there is a bifurcation of the equilibrium solution u ≡ 1.

Moreover, as in Theorem 1.1, if for r = r0, r̃0 , the bifurcation curves are given by the continuous functions r0(μ), r̃0(μ), with
r(0) = r0 , r̃(0) = r̃0 , with periodic orbits ψμ, ψ̃μ of period T (μ), T̃ (μ) for μ ∈ (−ε, ε) for some ε > 0, then all these functions are
analytic, T (0) = T0 , T̃ (0) = T̃0 and the bifurcation curves at r = rk, r̃k are given by the functions rk(μ) = r0(μ) + kT (μ), r̃k(μ) =
r̃0(μ) + kT̃ (μ) with periodic orbits ψμ , ψ̃μ of period T (μ), T̃ (μ). The periodic orbits bifurcating from u ≡ 1 at r = rk, r̃k for k � 1
are all unstable.

Remark 1.3. The set I in Theorem 1.2 consists of the cases where either {rk}∞k=0 ⊂ {r̃k}∞k=0 or {r̃k}∞k=0 ⊂ {rk}∞k=0. In particular
we are not excluding the case where r0 = r̃0 but {rk}∞k=0 �⊂ {r̃k}∞k=0 or {r̃k}∞k=0 �⊂ {rk}∞k=0. In this case we have two curves of
periodic solutions bifurcating from the equilibrium solution u ≡ 1. The minimal periods of these two periodic solutions are
different, and for values of the parameter r near r0 = r̃0 the two periodic solutions live in a 4-dimensional center stable
manifold. Nevertheless the dynamics of these two periodic orbits is not clear.

This case is new and it does not occur when the nonlinearity with the delay is set in the interior of the domain (see [11]).

Remark 1.4. In terms of the first Hopf bifurcation (r = r0) we conjecture that it is supercritical and the periodic orbit is
globally stable, see [5] for some numerical evidence in this respect. This issue will be addressed in a future work.

As we mentioned above, when there is no delay present, the dynamics generated by Eq. (1.1) is a simple one, that is,
it is a gradient system with just two equilibria and the evolution of any non-negative and nontrivial initial condition will
approach the constant equilibria u ≡ 1. Also, in terms of the linearization around an equilibrium u = u0, we see that the
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linearized operator is a nice self-adjoint operator (the laplacian with some Robin boundary conditions) and the spectrum
consists of a sequence of simple real eigenvalues converging to −∞ and the associated sequence of eigenfunctions form
a nice sequence of orthonormal eigenfunctions which form a base in L2(0,1) for instance. We refer to [4] for a general
reference for the dynamics of reaction–diffusion equations in several spaces dimensions with nonlinear boundary conditions.

On the other hand, notice that by turning on the delay in Eq. (1.1), Theorems 1.1 and 1.2 tell us that, even in a 1-dimen-
sional problem like (1.1), we are producing some dynamic behavior which is more complex than its counterpart equation
without delay. As a matter of fact, these theorems account for a cascade of Hopf bifurcations as the delay increases to
infinity and this type of bifurcation is never present in a gradient system. Also, as it is stated in Theorem 1.2, for some
values of the parameters of the equation, it is possible by increasing the delay to destabilize the constant equilibrium
solution u ≡ 1 and make that 4-complex eigenvalues of the form ±iw1, ±iw2, cross the imaginary axis from the stable part
to the unstable part of the complex plane. This is saying that at this value of the delay, we have a 4-dimensional center
manifold around the equilibria u ≡ 1 and the dynamics in this center manifold is by no means a trivial one.

This phenomena is related to other results from the literature. As a matter of fact in [10] the authors compare the
dynamics of a scalar 1-d reaction–diffusion equation of the type ut = uxx + f (x, u) in (0,1) with either Dirichlet or Neumann
boundary conditions with the dynamics of the same equation where a linear term of the form c(x)

∫ 1
0 ν(x)u(x)dx is added

to the equation. They show that by choosing appropriately the functions f , c and ν , the dynamics of this new nonlocal
equation is much more complex than the original one. Actually, they are able to show that for appropriate f , c and ν the
linearized equation around u = 0 has 2m-complex eigenvalues of the form ±iw1, . . . ,±iwm where the numbers w1, . . . , wm

and m are chosen a priori. Moreover the rest of the eigenvalues live in the stable part of the complex plane. If this is the
case, a center manifold theorem can be applied which gives us the existence of an exponentially attracting center manifold.
Observe also that if we choose w1, . . . , wm rationally independent we have that the linearized equation reduced to the
linear 2m-dimensional space is formed by quasiperiodic orbits. Moreover, they are able to show, that the function f can
be chosen in such a way that the reduced vector field to the center manifold can have a prescribed Taylor expansion
of an order as large as we want. In this way it is possible to see how very complicated dynamics may be generated by
the addition of linear nonlocal term as described above. Several other generalizations of this ideas, applied to equations
with non-x-dependent nonlinearities, are also obtained in [17]. Moreover, other complicated dynamics is also address in
[6] where a combination of Center Manifold techniques and KAM theory is applied to show the persistence of complicated
dynamics, persistence in the sense that is stable under high order term perturbations.

With respect to delays, we would like to mention also the work [11] where the author analyzes the bifurcations occurring
in a reaction–diffusion equation when the delay acts in the interior of the domain (not on the boundary). He analyzed in
detail the eigenvalue of the linearized problem and showed that it is possible to choose appropriate nonlinearities such
that for some value of the delay we have again 2m purely imaginary eigenvalues of the form ±iw1, . . . ,±iwm where
w1, . . . , wm and m can be chosen a priori. This is another indication of the possibility of obtaining complex dynamics by
introducing a delay in a reaction–diffusion equation. One important remark should be made. In the case where m � 2,
the possible complex dynamics obtained in [11] is necessarily unstable because in this case there is always some positive
eigenvalues that makes the center manifold unstable and therefore the dynamics is not stable, see Theorems 3.2 and 3.3
of [11]. In this respect, our setting contemplates the possibility of having 4-complex eigenvalues crossing the imaginary axis
(see Remark 1.3) and therefore, we may have some complex dynamics while the rest of the eigenvalues have negative real
parts (they are stable) and therefore this complex dynamics maybe stable. In the present paper we do not deal with this
case but it will be addressed in a future work. It maybe possible that the methods and techniques from [10,17,6,11] may
give some light for this case.

We describe now the contents of the paper.
In Section 2 we reformulate problem (1.1) as an evolutionary problem in the space C([−r,0], H1(0,1)). We indicate its

main properties and obtain the linearized equation around the equilibrium u ≡ 1. We also introduce some notation that will
be used hereafter.

In Section 3 we study the linearized problem around the equilibrium solution u ≡ 1. We will determine the behavior of
the eigenvalues as functions of the parameters α and the delay, r. Here we will see that as the delay goes to infinity, we
will have pairs of eigenvalues crossing transversally the imaginary axis and this produce Hopf bifurcations.

In Section 4 we study the stability of the equilibrium point u ≡ 1, obtain the cascades of Hopf bifurcations and provide
a proof of the main results.

In Appendix A we provide a proof of the Hopf bifurcation theorem for the case we are studying. For this we follow the
work of [7] and [18]. This theorem is used in Section 4.

2. Abstract setting and linearization

In this section we rewrite Eq. (1.1) as an abstract evolutionary equation in appropriate functional spaces. We start out by
setting some notation that will be used through out the rest of the paper.

Let A : D(A) ⊂ L2(0,1) → L2(0,1) be the unbounded linear operator, Aϕ = −ϕxx , with domain D(A) = {ϕ ∈ H2(0,1):
ϕx(0) = ϕx(1) = 0}. Following [1,2], we know that this operator has an associated scale of Hilbert spaces Xβ , β ∈ R, which
are obtained through interpolation–extrapolation procedures and that, since we are working in a Hilbert setting, they co-
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incide, for β ∈ [0,1], with the scale of fractional power spaces, that is, Xβ = D(Aβ), and for β ∈ [−1,0], X−β are the dual
spaces of Xβ .

Moreover, the operator A, or more properly speaking, the realization of the operator A in Xβ , is an unbounded operator
in Xβ with domain X1+β . The operator A generates an analytic semigroup in Xβ for all β ∈ R and the following regularizing
estimate holds∥∥e At u

∥∥
Xγ � Mtβ−γ ‖u‖Xβ , γ � β.

Moreover, the constant M can be chosen uniform for all −1 � γ � β � 1.
In particular, we are interested in the operator A−1/2 : D(A−1/2) ⊂ H−1(0,1) → H−1(0,1), where D(A−1/2) = H1(0,1).

Given r > 0 and β ∈ R, we define Cβ = C([−r,0], Xβ), the Banach space of all continuous functions from [−r,0] to Xβ with
sup-norm, and similarly Cβ = C([0, r], Xβ).

We will denote by H−1(0,1) the dual space of H1(0,1) (notice that this notation is usually reserved for the dual
of H1

0) and we consider the duality product 〈·,·〉, between H1(0,1) and H−1(0,1) which is obtained as the extension
of the standard L2-product. That is, if ψ ∈ H1(0,1) and f ∈ L2(0,1) ⊂ H−1(0,1) then

〈ψ, f 〉 =
1∫

0

ψ(x) f (x)dx.

Let us consider, for α ∈ R, the linear operator L : H1(0,1) → H−1(0,1), given by L(ψ)(φ) = −α(ψ(0)φ(0) + ψ(1)φ(1)),
for all φ ∈ H1(0,1). Now we define some operators related with our Eq. (1.1). Moreover, given a > 0, we define the linear op-
erator La : C([−a,0], H1(0,1)) → H−1(0,1), by La(φ) = L(φ(−a)), for all φ ∈ C([−a,0], H1(0,1)). We will also consider L−a .

Let AU : C−1/2 → C−1/2 be the linear operator with domain

D(AU ) = {ϕ ∈ C1/2, such that, ϕ̇ ∈ C1/2, ϕ(0) ∈ H1(0,1), ϕ̇−(0) = −A−1/2ϕ(0) + Lr(ϕ)
}
,

and defined (AU ϕ)(θ) = ϕ̇(θ), for all ϕ ∈ D(AU ) and θ ∈ [−r,0].
Consider now, for a given α > 0, the nonlinearity g : H1(0,1) × H1(0,1) → H−1(0,1), defined by g(φ,Ψ ) =

−L(φ(1 − Ψ )), for all φ,Ψ ∈ H1(0,1). And, finally, given α, r > 0, we define G : C1/2 → H−1(0,1), as G(φ) =
g(φ(0),φ(−r)) − Lr(φ).

With this definition, Eq. (1.1) can be written as{
u̇(t) + AU u(t) = G(ut), t > 0,

u(t) = ϕ(t), t ∈ [−r,0], (2.1)

where ut(s) = u(t + s) for s ∈ [−r,0]. Following [14,15,19,20,22], we get that the solutions are in C([−r,0], H1(0,1)) and, if
the initial condition is positive, their are positive for all times.

We will need to analyze the stability properties of the equilibrium solution u ≡ 1 of Eq. (1.1) for α > 0 and r > 0. This
stability properties are given by the stability properties of the zero solution of the linearization around u ≡ 1. This linearized
equation is given by⎧⎪⎨

⎪⎩
dv

dt
= vξξ in (0,1) × R

+,

∂v

∂n
= −αv(t − r) in

{{0} ∪ {1}}× R
+.

(2.2)

And, finally, using the definition of the operator L we can rewrite (2.2) in the abstract form{
v̇(t) + AU v(t) = Lvt, t > 0,

v(t) = ϕ(t), t ∈ [−r,0]. (2.3)

3. Eigenvalue behavior

The analysis of the stability properties of the equilibrium solution u ≡ 1 and of its possible bifurcations is based on the
study of the numbers λ ∈ C for which there exists a nontrivial solution of the problem⎧⎨

⎩
ϕξξ = λϕ in (0,1),

∂ϕ

∂n
= −αe−λrϕ in {0} ∪ {1}. (3.1)

Although properly speaking problem (3.1) is not an eigenvalue problem, we will call the numbers λ, eigenvalues and
their corresponding solutions of (3.1) the eigenfunctions ϕ .

This section is devoted to the study of problem (3.1) and to the analysis of the dependence of the eigenvalues on the
parameters α > 0 and r � 0.
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Notice first that λ = 0 is not an eigenvalue for any α > 0, r � 0. This is due to the fact that the unique solution of the
problem⎧⎨

⎩
ϕξξ = 0 in (0,1),

∂ϕ

∂n
= −αϕ in {0} ∪ {1} (3.2)

is ϕ = 0.
Notice also that λ is an eigenvalue of (3.1) with eigenfunction ϕ if and only if λ is also an eigenvalue with eigen-

function ϕ . To see this we just take complex conjugates in (3.1). In particular we just need to study the eigenvalues with
non-negative imaginary part. From now on in this section we will consider only the case of λ ∈ C with Im(λ) � 0.

Moreover, if we take r = 0 the eigenvalues of (3.1) are well determined. They all are negative real numbers, they can be
explicitly calculated and they are all simple eigenvalues. We will denote them by 0 > λ1 > λ2 > · · · .

Let us set λ = ω2. Obviously, under this transformation the set {λ ∈ C, Im(λ) � 0} is mapped one to one to the first
quadrant of the complex plane {w ∈ C, Re(w) � 0, Im(w) � 0}. Let us look for solutions ϕ of (3.1) of the form ϕ(ξ) =
c1 exp(−ωξ) + c2 exp(ωξ), for c1 and c2 not both being zero. After some simple calculations we obtain that w must satisfy
that the following system of linear equations in (c1, c2) must have nontrivial solutions:(

e−w(αe−w2r − w) ew(αe−w2r + w)

αe−w2r + w αe−w2r − w

)(
c1
c2

)
=
(

0
0

)
. (3.3)

The fact that the rank of the matrix of the system above is never zero, for any α > 0, r ∈ R and w ∈ C tells us that all
eigenvalues of (3.1) are geometrically simple, that is they have only one independent eigenfunction.

If we denote by F (w, r) the determinant of the matrix of the system (3.3), the solutions of the equation F (w, r) = 0
gives us the values of w so that λ = w2 is an eigenvalue of (3.1). The function F is given by

F (w, r) = e−ω
(
αe−ω2r − ω

)2 − eω
(
αe−ω2r + ω

)2
.

For fixed r ∈ R the function F (·, r) : C → C is a holomorphic function, which obviously is not identically zero. Therefore
the roots of F (·, r) form a discrete set in the complex plane with no accumulation point. Moreover, since the function
F is continuous in both w and r we will have that if (wk, rk) are roots of F and (wk, rk) → (w∞, r∞) ∈ C × R then
(w∞, r∞) is also a root of F . We also know that if F (w0, r0) = 0 for some (w0, r0) ∈ C × R and F ′(w0, r0) �= 0, where ′
stands for d/dw , then by the implicit function theorem, there exists a neighborhood B(w0, δ) × (r0 − ε, r0 + ε) such that
for all r ∈ (r0 − ε, r0 + ε) there exists a unique w(r) ∈ B(w0, δ) such that F (w(r), r) = 0. Moreover since the function
(w, r) → F (w, r) is analytic then the function r → w(r) is real analytic. We also have that, if for fixed r0, the complex
number w0 is a root of multiplicity k of F (·, r0), that is F (w, r0) = (w − w0)

kG(w, r0) for some analytic function G(·, r0)

with G(w0, r0) �= 0, then in a neighborhood of r0 we have exactly k continuous branches of roots w1(r), w2(r), . . . , wk(r),
maybe coinciding some of them.

Notice that F can be decomposed as F (w, r) = e−w F (w, r) · F̃ (w, r) where

F (w, r) = ω
(
eω − 1

)+ αe−ω2r(eω + 1
)
,

F̃ (w, r) = ω
(
eω + 1

)+ αe−ω2r(eω − 1
)
.

The following result states that F and F̃ cannot have common roots.

Lemma 3.1. A pair (w, r), cannot be a simultaneous root of both F and F̃ .

Proof. If F (w, r) = F (w, r) = 0 then ew �= 1, since if ew = 1 from the first equation we obtain F (w, r) = 2αe−w2r �= 0. With
a similar argument we can also prove that ew �= −1.

Obtaining the value of αe−w2r from the first equation and plugging it into the second equation we obtain

4wew

ew + 1
= 0

which is impossible since ew �= 1 and therefore w �= 0. �
Lemma 3.2. If w ∈ C

+ \ {0} is a root of F (·, r) (resp. F̃ (·, r)) for some r ∈ R and w /∈ (1 + i)R then there is not other s ∈ R, s �= r such
that w is a root of F (·, s) (resp. F̃ (·, s)).

Proof. If F (w, r) = F (w, s) = 0 then we have that α(e−w2r − e−w2s)(ew + 1) = 0. As we did in the previous lemma, ew +
1 �= 0 which implies that e−w2r = e−w2s . But this is only possible if there exists a k ∈ N such that w2r = w2s + 2kπ i, or
equivalently r = s + 2kπ i/w2. But if w /∈ (1 + i)R then w2 /∈ R. This means that either r or s are not real numbers. �
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As an immediate consequence of this lemma, we have:

Corollary 3.3. If w ∈ C
+ with w /∈ (1 + i)R is a root of F (·, r) for some r ∈ R then there exists at most another s ∈ R, s �= r so that

w is a root of F (·, s).

In the following lemma, we will show that if λ = w2, with w = x + iy ∈ C
+ is an eigenvalue of (3.1) for some r > 0 then

we have several restrictions on the places where w can lie. In fact, we can divide the complex plane in regions where the
eigenvalues can lie and these regions will give us an insight on the dependence of the eigenvalues on r.

Lemma 3.4. Let λ = ω2 , w = x + iy ∈ C
+ \ {0} be an eigenvalue of (3.1), associated to the eigenfunction ϕ . Then the following hold:

(i) If Im(λ) �= 0, then there exists k ∈ Z, k � 0, such that

2xyr ∈ (2kπ, (2k + 1)π
)
.

(ii) If, moreover, Re(λ) � 0 then

2xyr ∈
[

(4k + 1)π

2
, (2k + 1)π

)
.

Proof. Multiplying Eq. (3.1) by the conjugate of ϕ , integrating by parts and getting real and imaginary parts, we get that
the following system must be satisfied⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−
1∫

0

∇ϕ∇ϕ dξ − α exp
(−(x2 − y2)r) cos(2xyr)

(
ϕ(0)ϕ(0) + ϕ(1)ϕ(1)

)= (x2 − y2) 1∫
0

ϕϕ dξ,

α exp
(−(x2 − y2)r) sin(2xyr)

(
ϕ(0)ϕ(0) + ϕ(1)ϕ(1)

)= 2xy

1∫
0

ϕϕ dx.

From this, and keeping in mind that x, y � 0, (i) and (ii) follow immediately from the restrictions imposed to the sign of
sin(2xyr) and cos(2xyr). �

We also have the following important result.

Lemma 3.5. For any R > 0 and for any a > 0 there exists b > 0 such that there are no eigenvalues λ of (3.1), for any 0 � r � R, in the
region {λ ∈ C, Re(λ) > −a, |Im(λ)| > b}.

Proof. As usual it is enough to prove that there are no eigenvalues in the region {λ ∈ C, Re(λ) > −a, Im(λ) > b}. This
region is transformed by the map λ = w2 into the region {w = x + iy ∈ C, x, y � 0, x2 − y2 > −a, 2xy > b}. This region is
delimited by the intersection of the two hyperbolas x2 − y2 = −a and 2xy = b in the first quadrant and it can be easily seen

that x2 + y2 � b for any w = x + iy in the region. In particular we have that 2x2 � b − a or equivalently x � ((b − a)/2)
1
2 .

If λ = w2 with w = x + iy is an eigenvalue of (3.1) then w satisfies F (w, r) = 0 or F̃ (w, r) = 0.
Consider first that F (w, r) = 0. Then ω(eω − 1) + αe−ω2r(eω + 1) which implies that αe−ω2r = −ω (eω−1)

(eω+1)
and taking

modulus, we obtain

αe−(x2−y2)r = (x2 + y2) 1
2
|ex+iy − 1|
|ex+iy + 1| �

(
x2 + y2) 1

2
|ex − 1|
|ex + 1|

which implies that

b
1
2 � eaR |1 + e−((b−a)/2)

1
2 |

|1 − e−((b−a)/2)
1
2 |

.

But this last inequality cannot be satisfied for large b since the right-hand side is uniformly bounded as b → ∞ and the
left-hand side goes to infinity.

With a similar argument for F̃ we prove the result. �
Lemma 3.6. For any R > 0 there exists a > 0 such that there are no eigenvalues λ of (3.1), for any 0 � r � R, in the region {λ ∈ C,

Re(λ) � a}.
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Proof. As before we need to consider only the case Im(λ) > 0. The region {λ ∈ C, Re(λ) > a, Im(λ) > 0} is transformed by
the map λ = w2 into the region of the first quadrant given by {w = x + iy: x, y � 0, x2 − y2 � a} and in this region we

have (x2 + y2)
1
2 � x �

√
a.

If λ = w2 with w = x + iy is an eigenvalue of (3.1) then w satisfies F (w, r) = 0 or F̃ (w, r) = 0.
Consider first that F (w, r) = 0. Then, as we did in the previous lemma αe−ω2r = −ω (eω−1)

(eω+1)
and taking modulus, we

obtain

α � αe−(x2−y2)r = (x2 + y2) 1
2
|ex+iy − 1|
|ex+iy + 1| � x

|ex − 1|
|ex + 1| .

Again, this inequality does not have any solution for large x since the right-hand side goes to infinity and the left-hand
side is bounded.

With a similar argument for F̃ we prove the result. �
Let us use this bounds to try to say something more about the eigenvalues.

Lemma 3.7. There exist r∗ > 0 and a∗ > 0 such that for any r with 0 � r < r∗ all eigenvalues λ of (3.1) satisfy Re(λ) � −a∗ .

Proof. Consider a value a∗ > 0 such that for r = 0 there are no eigenvalues in the region {λ; Re(λ) � −a∗}. This is always
possible since for r = 0 all eigenvalues are real negative and uniformly bounded away from zero.

Applying the previous lemma to R = 1 and a∗ we obtain that there are positive numbers a,b > 0 such that for any 0 �
r � 1 if there is an eigenvalue with Re(λ) � −a∗ then it must lie in the compact region {λ; −a∗ � Re(λ) � a, |Im(λ)| � b}.

If the statement of the lemma would not be true, there would exist a sequence rk with rk
k→∞−→ 0+ and corresponding

eigenvalues λk lying in the region above. By compactness there would exist a subsequence of λk converging to λ∞ and
by the continuity of the branches of eigenvalues we would have that λ∞ is an eigenvalue for (3.1) for r = 0. But this is
impossible since Re(λ∞) � −a∗ . �

From Lemmas 3.6 and 3.7 we easily see that if for some r > 0 there is an eigenvalue of (3.1) with positive real part,
then this eigenvalue has crossed the imaginary axis at some point. Hence, we look now for eigenvalues λ that cross the
imaginary axis, or equivalently for branches w(r), roots of F , that cross the line (1 + i)R+ , which is the diagonal of the first
quadrant. Therefore we will look first for roots of F of the type w = x + ix.

We start with the following technical lemma that will be used in several points below.

Lemma 3.8. For any w = x + ix with x > 0 we have

Re

(
1 ± 2w

ew − e−w

)
> 0 (3.4)

or equivalently if we define η(x) = e2x + e−2x − 2 cos(2x) and γ (x) = 2x((ex − e−x) cos(x) + (ex + e−x) sin(x)) then

η(x) ± γ (x) > 0. (3.5)

Proof. Notice that

Re

(
2w

ew − e−w

)
= 1

|ew − e−w |2Re
(
2w
(
ew − e−w)),

but |ew − e−w |2 = e2x + e−2x − 2 cos(2x), and

Re
(
2w
(
ew − e−w))= 2x

((
ex − e−x) cos(x) + (ex + e−x) sin(x)

)
which shows the equivalence between both statements (3.4) and (3.5). We show this last inequality.

Using the expression cos(x) = (eix + e−ix)/2 and sin(x) = (eix − e−ix)/2i we obtain that

γ (x) = 2x
[(

ex − e−x) cos(x) + (ex + e−x) sin(x)
]

= x
(
ex+ix(1 − i) + e−x+ix(−1 − i) + ex−ix(1 + i) + e−x−ix(−1 + i)

)
and by a power series expansion we obtain

γ (x) =
∞∑ x4k+2

(4k + 1)!22k+3(−1)k.
k=0
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Similarly,

η(x) = e2x + e−2x − 2 cos(2x) =
∞∑

k=0

x4k+2

(4k + 2)!24k+4.

Therefore,

η(x) ± γ (x) =
∞∑

k=0

x4k+2

(4k + 2)!24k+4 ±
∞∑

k=0

x4k+2

(4k + 1)!22k+3(−1)k

=
∞∑

k=0

x4k+2

(4k + 2)!22k+3(22k+1 ± (4k + 2)(−1)k).
But the real numbers ak± = 22k+1 ± (4k + 2)(−1)k are all positive except for a0− = 0. This shows that η(x) ± γ (x) > 0 for

any x > 0. �
We have decomposed F as F (w, r) = e−w F̃ (w, r)F (w, r) where

F (ω, r) = ω
(
eω − 1

)+ αe−ω2r(eω + 1
)
,

F̃ (ω, r) = ω
(
eω + 1

)+ αe−ω2r(eω − 1
)
. (3.6)

Lemma 3.9.

(i) For any α > 0 fixed, the value w = x + ix, x > 0, is a root of F (·, r) (resp. F̃ (·, r)) for some r > 0 if and only if h(x) = 0 (resp.
h̃(x) = 0) is satisfied, where

h(x) = (2x2 − α2)(ex + e−x)− 2 cos(x)
(
2x2 + α2),

h̃(x) = (2x2 − α2)(ex + e−x)+ 2 cos(x)
(
2x2 + α2).

(ii) If x > 0 is a root of h and if we define Θ = 5π
4 + arctg(

2 sin(x)
ex−e−x ) ∈ (π,3π/2), r0 = 2π−Θ

2x2 > 0 and T0 = π
x2 then we have

0 < r0 < T0 and (x + ix, rk) are roots of F for all rk = r0 + kT0 for all k = 0,1,2, . . . . Moreover, these are the only values of r for
which w = x + ix is a root of F .

(iii) If x̃ > 0 is a root of h̃ and if we define Θ̃ = 5π
4 − arctg(

2 sin(x̃)
ex̃−e−x̃ ) ∈ (π,3π/2), r̃0 = 2π−Θ̃

2x̃2 > 0, and T̃0 = π
x̃2 then we have

0 < r̃0 < T̃0 and (x̃ + ix̃, r̃k) are roots of F̃ for all r̃k = r̃0 + kT̃0 for all k = 0,1,2, . . . . Moreover, these are the only values of r for
which w̃ = x̃ + ix̃ is a root of F̃ .

Proof. (i) If the value w = x + ix, x > 0, is a root of F or F̃ , then∣∣w(ew ∓ 1
)∣∣2 = ∣∣αe−w2r(ew ± 1

)∣∣2 = α2
∣∣(ew ± 1

)∣∣2.
Evaluating this expression in w = x + ix we obtain the equations h∓(x) = 0.

(ii) If x > 0 is a root of h and we denote by w = x + ix, then we have∣∣w(ew − 1
)∣∣= α

∣∣ew + 1
∣∣.

Hence, if we denote by Θ = Arg( w(ew −1)
−α(ew +1)

) ∈ [0,2π) we have that w(ew − 1) = −e(Θ+2kπ)iα(ew + 1), k ∈ Z . In particular,

since w2 = 2x2i, we have that for all values r = −Θ+2kπ
2x2 we obtain

w
(
ew − 1

)= −e−w2rα
(
ew + 1

)
which is equivalent to F (w, r) = 0. A simple computation shows now that Θ = 5π

4 + arctg(
2 sin(x)
ex−e−x ) ∈ (π,3π/2) and that if

r0 = 2π−Θ

2x2 then all the values r > 0 can be rewritten as rk = r0 + kT0 with T0 = π
x2 . �

We also have the following

Lemma 3.10.

(i) For any α > 0 the equation h(x) = 0 has only one positive root x = x(α). Moreover x(α) is an increasing function of α.
(ii) For any α ∈ (0,2] the equation h̃(x) = 0 has no positive roots. Moreover for any α > 2 the equation h̃(x) = 0 has only one positive

root x̃ = x̃(α). Moreover x̃(α) is an increasing function of α.
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Proof. The equations h(x) = 0, h̃(x) = 0 can be written as g(x) = α2/2, g̃(x) = α2/2, respectively, where

g(x) = x2 ex + e−x − 2 cos(x)

ex + e−x + 2 cos(x)
, (3.7)

g̃(x) = x2 ex + e−x + 2 cos(x)

ex + e−x − 2 cos(x)
. (3.8)

But the derivatives of g , g̃ satisfy

g′(x) = 2x
(
η(x) − γ (x)

)
/
(
ex + e−x + 2 cos(x)

)2
> 0,

g̃′(x) = 2x
(
η(x) + γ (x)

)
/
(
ex + e−x − 2 cos(x)

)2
> 0,

for any x > 0 by (3.5).
With this result, by the fact that g(x), g̃(x) → +∞ as x → +∞, and the fact that g(0) = 0 and g̃(0) = 2 we conclude the

proof of the lemma. �
Lemma 3.11. If w = x + ix with x > 0 is a root of F (·, r) (resp. F̃ (·, r)) for some positive r then it is a simple root of F (·, r) (resp.
F̃ (·, r)).

Proof. Assume w = x + ix is a root of F (·, r) such that F ′(w, r) = 0. After some simple calculations we show that w must
satisfy the equation

2w

ew − e−w
= −1 − 2w2r.

But if w = x + ix then −1 − 2w2r = −1 − 2x2ri and taking real parts above, we obtain

Re

(
1 + 2w

ew − e−w

)
= 0

which is impossible by Lemma 3.8. With a similar argument we prove it for F̃ . �
Lemma 3.12.

(i) For any α > 0, if w∗ = x∗ + ix∗ , with x∗ > 0, is a root of F (·, r∗) then there exist ε∗ > 0 and an analytic function w : (r∗ − ε∗,
r∗ + ε∗) → C with w(r∗) = w∗ such that F (w(r), r) = 0 and these are the unique roots of F in a neighborhood of (w∗, r∗).

(ii) The branch w(r) satisfies w ′(r∗) = a + bi with a > b, that is, the branch crosses transversally the diagonal {z = x + ix; x > 0}
and always in the same direction, from {z = x + iy; x < y} towards {z = x + iy; x > y}. Moreover, w(·) is defined for all r � r∗ ,
w(r) ∈ {z = x + iy; x > y > 0} for all r > r∗ and w(r) → 0 as r → +∞.

(iii) If w1(·) and w2(·) are two branches passing by w∗ for r∗
1 and r∗

2 respectively with r∗
1 �= r∗

2 , then both branches are different in the
sense that w1(r) �= w2(s) for any r �= r∗

1 and s �= r∗
2 .

(iv) Similar statements are obtained for F̃ .

Proof. (i) The existence of the branch and its analyticity follows from the simplicity of the roots given by the lemma above.
(ii) In order to study the crossing with the diagonal, let us compute w ′(r∗). By implicit differentiation and using that w∗

is a root of F (·, r∗) we have that

w ′(r∗)= (w∗)3

−1 − 2(w∗)2r∗ + 2w∗
e−w∗−ew∗

.

If we denote by

A =
√

2
2

x3

|−1 − 2(w∗)2r∗ + 2w∗
e−w∗−ew∗ |2 > 0,

then we can write

w ′(r) = A

(
−2x2r(1 + i) + (1 − i)

(
1 + 2w∗

ew∗ − e−w∗

))
.

If we express 1 + 2w∗
ew∗−e−w∗ = a + bi then w ′(r) = A(−2x2r(1 + i) + (1 − i)(a + bi)) = A(−2x2r(1 + i) + (a + b) + i(b − a))

and w(r) will cross transversally in the direction stated if and only if a + b > b − a or equivalently if and only if a > 0. But
a = Re(1 + 2w∗

w∗ −w∗ ) = Re(1 + 2w∗
w∗ −w∗ ) > 0 by Lemma 3.8.
e −e e −e
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Assume that the branch w(·) is defined in [r∗, r∞). Since the crossings with the diagonal are only in one direction then
w(r) /∈ {z = x + iy; x = y > 0} for any r ∈ (r∗, r∞). If there exists r0 ∈ (r∗, r∞) with w(r0) ∈ [0,∞) ⊂ R and we assume this
is the first r0 > r∗ with this property, it would mean that by continuity of the eigenvalues λ(r0) = w(r0)

2 ∈ [0,∞) is an
eigenvalue of (3.1). But this is impossible. Therefore w(r) ∈ {z = x + iy; x > y > 0} for all r ∈ (r∗, r∞).

Since F (w, r) = 0 can be written as αe−ω2r = −ω (eω−1)
(eω+1)

and taking modulus, we obtain for w(r) = x + iy,

αe−(x2−y2)r = (x2 + y2) 1
2
|ex+iy − 1|
|ex+iy + 1| �

(
x2 + y2) 1

2
|ex − 1|
|ex + 1| . (3.9)

Since x > y the left-hand side is bounded by α for all r > r∗ . This implies that |w(r)|2 = x2 + y2 is uniformly bounded for
all r ∈ (r∗, r∞). This implies that r∞ = +∞. By the bounds from Lemma 3.4 we have that there exists a constant C such that
2xyr � C and therefore any accumulation point of w(r) as r → ∞ must lie in the set {x + iy; y = 0, x � 0}. But passing to
the limit as r → ∞ in (3.9) we obtain that necessarily w(r) → 0 as r → ∞.

(iii) That the two branches are different follows from Lemma 3.10. �
Remark 3.13. Notice that not only the two branches are different but we can show that they cross the diagonal with
different inclination. For this we will show that w ′

1(r
∗
1)/w ′

2(r
∗
2) /∈ R. But,

w ′
1(r

∗
1)

w ′
2(r

∗
2)

= 1 − 2(w∗)2(r∗
1 − r∗

2)

−1 − 2(w∗)2r∗
2 + 2w∗

e−w∗−ew∗
= 1 + 2x2i(r∗

1 − r∗
2)

1 + 2x2r∗
2 i + 2w∗

ew∗−e−w∗
.

This implies that w ′
1(r

∗
1)/w ′

2(r
∗
2) ∈ R if and only if

Re

(
1 + 2w∗

ew∗ − e−w∗

)
= 0

which is impossible by Lemma 3.8.

Summarizing the results of this section and rephrasing them for the original eigenvalue problem (3.1) we obtain:

Proposition 3.14. We have the following results:

(i) If 0 < α � 2 there exists only one value λ0 = bi, with b > 0, such that λ0 is an eigenvalue of (3.1) for some r > 0. Moreover,
b = 2x(α)2 , where x(α) is the unique root of h(x), where h is given by Lemma 3.9.

(i1) If we consider r0 defined by Lemma 3.9 and T0 = 2π
b = π

x(α)2 then 0 < r0 < T0 and all the values of r for which λ0 is an eigenvalue

of (3.1) are given by rk = r0 + kT0 , k = 0,1, . . . . Moreover, for all these values rk, k = 0,1, . . . , the corresponding eigenfunction
is always the same, which is given by the unique nonzero solution, ϕ0 (up to a multiplicative constant) of the problem (3.1) with
r = r0 and λ = λ0 .

(i2) For any 0 < r < r0 there exists a(r) > 0 such that all eigenvalues of (3.1) satisfy Re(λ) � −a(r).
(i3) For any k = 0,1, . . . , there exist εk > 0 and an analytic function λk : (rk −εk,∞) → C such that λk(r) and its complex conjugate

λk(r) are eigenvalues for (3.1) for the value of the delay r. Moreover, Re(λk(r)) < 0 for r < rk, λk(rk) = bi, Re(λk(r)) > 0 for
r > rk and Re(λ′(rk)) > 0. We also have λk(r) → 0 as r → ∞. In particular, for r ∈ (rk−1, rk) we have exactly 2k eigenvalues of
(3.1) with positive real part.

(i4) Associated to the branches of eigenvalues λk(r) we have the branches of eigenfunctions, which are given by analytic functions
χk : (rk − εk,∞) → H1(0,1) where χk(rk) = ϕ0 .

(ii) If α > 2 there exist only two values λ0 = bi, λ̃0 = b̃i with b, b̃ > 0, such that λ0 , λ̃0 are eigenvalues of (3.1) for some r > 0.
Moreover, b = 2x(α)2 , b̃ = 2x̃(α)2 where x(α) and x̃(α) are the unique roots of h(x) and h̃(x) respectively, where h and h̃ are
given by Lemma 3.9.

(ii1) If we consider r0 , r̃0 defined by Lemma 3.9 and T0 = 2π
b = π

x(α)2 , T̃0 = 2π

b̃
= π

x̃(α)2 then 0 < r0 < T0 , 0 < r̃0 < T̃0 and either

r0 �= r̃0 or T0 �= T̃0 . Moreover, all the values of r for which λ0 is an eigenvalue of (3.1) are given by rk = r0 + kT0 , k = 0,1, . . .

and all the values of r for which λ̃0 is an eigenvalue of (3.1) are given by r̃k = r̃0 + kT̃0 , k = 0,1, . . . .
(ii2) For any 0 < r < min{r0, r̃0} there exists a(r) > 0 such that all eigenvalues of (3.1) satisfy Re(λ) � −a(r).
(ii3) For any k = 0,1, . . . , there exist εk > 0 and an analytic functions λk : (rk − εk,∞) → C, λ̃k : (r̃k − εk,∞) → C such that

Re(λk(r)) < 0 for r < rk, Re(λ̃k(r)) < 0 for r < r̃k , λk(rk) = bi, λ̃k(r̃k) = b̃i, Re(λk(r)) > 0 for r > rk, Re(λ̃k(r)) > 0 for r > r̃k ,
Re(λ′(rk)) > 0 and Re(λ̃′(r̃k)) > 0. Moreover λk(r), λ̃k(r) → 0 as r → ∞.

4. Cascades of Hopf bifurcations. Proofs of the main results

In this section we analyze the stability properties of the equilibrium solution u ≡ 1 and show the existence of cascades
of Hopf bifurcations.
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We keep the notation from previous sections, in particular the meaning of λ0, λ̃0, r0, r̃0, T0, T̃0, from Proposition 3.14.
We will show now several results that will conclude with a proof of the main results.

Proposition 4.1.

(i) If for 0 < α � 2 we have 0 < r < r0 or for α > 2 we have 0 < r < min{r0, r̃0} then the equilibrium point u ≡ 1 is asymptotically
stable.

(ii) If for 0 < α � 2 we have r > r0 or for α > 2 we have r > min{r0, r̃0} then the equilibrium point u ≡ 1 is unstable.

Proof. (i) We just need to realize that, in both cases, from Proposition 3.14(i2) and (ii2), we have that there exists a function
a(r) > 0 such that all the eigenvalues λ of (3.1) have Re(λ) < −a(r).

(ii) In both cases, there is at least one eigenvalue of (3.1) with positive real part by Proposition 3.14(i3) and (ii3). �
Our basic result on Hopf bifurcations is the following

Proposition 4.2. Assume α > 0 and let r = ρ > 0 be a value of the delay for which problem (3.1) has an eigenvalue λ = βi, β > 0,
with eigenfunction ϕ (and obviously it also has the eigenvalue −βi with eigenfunction ϕ). Assume also that none of the values nβi,
n = 2,3, . . . is an eigenvalue of (3.1) with r = ρ . Then, there exist ε > 0 and three analytic functions r : (−ε, ε) → R, T : (−ε, ε) → R

and Ψ : (−ε, ε) → C1
2π (R, H1(0,1)) such that r(0) = ρ , T (0) = 2π

b , Ψ (0) = 1 and for all μ ∈ (−ε, ε) the function

χμ(t, ξ) = Ψ (μ)

(
t

2π

T (μ)
, ξ

)
is a T (μ)-periodic solution of problem (1.1) for the value of the delay r = r(μ) and χμ �≡ 1. Moreover these are the only periodic
solutions near the equilibrium u ≡ 1 of period near 2π

b for r near ρ .

The proof of the proposition follows the lines of the Hopf bifurcation theorem given in [7] and [18], uses the results
in Proposition 3.14 and the fact that Re(λ′(0)) > 0. The proof is long, very technical and needs some extra notation and
lemmas, so we will give it in Appendix A.

We can provide now a proof of the main results.

Proof of Theorem 1.1. Observe that from Proposition 3.14, if 0 < α � 2, we have that for all values of the delay r0 + kT0,
k = 0,1, . . . , we can apply Proposition 4.2 and obtain the existence of a Hopf bifurcation at these points. Notice that for
any of these values r0 + kT0, the linearization around u ≡ 1 has only two eigenvalues, ±bi, b > 0, in the imaginary axis.
Moreover, these are the only values of the delay for which there exists a bifurcation, since by Proposition 3.14, these are the
unique values for which the eigenvalues of the linearization around the equilibrium point u ≡ 1, cross the imaginary axis.
Moreover, if the bifurcating curves from r0 are given by r0(μ) with r0(0) = r0 and the periodic orbits are ψμ with period
T (μ) with T (0) = T0, then the bifurcating curves for r0 +kT0 have to be rk(μ) = r0(μ)+kT (μ) with periodic orbits ψμ and
period T (μ). This is obtained just by noting that, as it was pointed out in the introduction, if ψμ is a periodic orbit with
period T (μ) the value of the delay r0(μ), then ψμ is also a periodic orbit for the value of the delay r0(μ) + kT (μ) for all
k = 0,1, . . . . Moreover, from the uniqueness of the curves of the Hopf bifurcation we obtain that the branches bifurcating
from r0 + kT0 are necessarily given by r0(μ) + kT (μ). The fact that the periodic orbits obtained from the Hopf bifurcation
for k � 1 are all unstable are due to the fact that for k � 1, the linearization of the equilibrium point has at least two
eigenvalues with positive real part. �
Proof of Theorem 1.2. For the case α > 2 we have to set of values of the delays which are candidates for Hopf bifurcating
points, rk = r0 + kT0, r̃k = r̃0 + kT̃0. It is clear that if for some k0 = 0,1, . . . , we have that rk0 /∈ {r̃ j}∞j=0, then at r = rk0 there
will be only two eigenvalues ±bi crossing the imaginary axis and, therefore, for this value of the delay we will be able to
apply Proposition 4.2 and will obtain a Hopf bifurcation. If we denote by rk0(μ), ψμ , T (μ) the curves of delays, periodic
orbits and periods, respectively, bifurcating from rk0 , then for any other rk , k = 0,1, . . . , we will have that the curves
rk(μ) = rk0 + (k − k0)T (μ), ψμ , T (μ) are curves of delays, periodic orbits and periods, respectively, bifurcating from rk .
Moreover, from the uniqueness obtained in the Hopf bifurcation theorem, we deduce that these are the unique curves
bifurcating from rk . In a similar way we can argue if there exists r̃k0 /∈ {rk}∞k=0. For this case, we will obtain bifurcation
curves emanating from r̃k for all k = 0,1, . . . .

Hence we will have a double cascades of Hopf bifurcations if we can show that {rk}∞k=0 \ {r̃k}∞k=0 �= ∅ and {r̃k}∞k=0 \
{rk}∞k=0 �= ∅. We will be able to show this relation for all values of α > 2 except for a sequence of α j → 2. In order to prove
this, we proceed as follows.

Notice first that if we have {rk}∞k=0 ⊂ {r̃k}∞k=0 then r0 = r̃0 +k0 T̃0 and r0 +T0 = r̃0 +k0 T̃0 +nT̃0 for some k0 ∈ N∪{0}, n ∈ N.

From here we obtain that necessarily T0 = nT̃0 for some j ∈ N. Similarly, if {r̃k}∞k=0 ⊂ {rk}∞k=0 we will obtain that T̃0 = mT0

for some m ∈ N. But we know that T0 = π
2 , T̃0 = π

2 , where x(α), x̃(α) are the unique roots of g and g̃ defined in (3.7),

x(α) x̃(α)
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(3.8), respectively. Hence, we are looking for values of α > 2 for which either x̃(α) = √
nx(α) or x(α) = √

mx̃(α) for some
n,m ∈ N.

Let us analyze first the case n = m = 1, that is, the case x(α) = x̃(α). From the expression of the functions g and g̃ ,
we have that x(α) = x̃(α) if and only if cos(x(α)) = 0, which implies x(α) = π

2 + kπ , k = 0,1, . . . and α = √
2( π

2 + kπ),

k = 0,1, . . . . But, from Lemma 3.9, we have that r0 = 2π−Θ

2x2 with Θ = 5π
4 + arctg(

2 sin(x)
ex−e−x ) and r̃0 = 2π−Θ̃

2x2 with Θ̃ = 5π
4 −

arctg(
2 sin(x)
ex−e−x ). Since sin(x) = ±1, we get that r0 �= r̃0 and also |r0 − r̃0| = 1

2x2 |Θ − Θ̃| = 1
2x2 2arctg( 2

ex−e−x ) < π
x2 = T0 = T̃0.

From here we easily get not only that r0 �= r̃0 but that {rk}∩ {r̃k} = ∅. This implies that for this case we have always a double
cascade of Hopf bifurcations.

We look now to the case where n or m � 2. Observe that, as it was proved in Lemma 3.10, the functions g and g̃
are strictly increasing. Moreover, it is obvious to see that g( π

2 + kπ) = g̃( π
2 + kπ) for all k = 0,1, . . . . This implies that

necessarily, for any α > 2, if x(α) ∈ [π
2 +kπ, π

2 + (k + 1)π ] then x̃(α) ∈ [π
2 +kπ, π

2 + (k + 1)π ] also. Hence, we always have
that for any α > 2, |x(α) − x̃(α)| � π . Define now, for β > 2, the set

Dβ = {α � β: there exists n ∈ N, n � 2 with x(α) = √
nx̃(α), or x̃(α) = √

nx(α)
}
.

Let us prove the following two statements:

(i) Dβ ⊂ Dγ if β < γ and there exists a β0 > 2 such that Dβ0 = ∅.
(ii) For any β > 2, Dβ is always a finite set.

That Dβ ⊂ Dγ if β < γ , is a direct consequence of the definition of Dβ . Moreover, since x(α), x̃(α) → ∞ as α → ∞,
we can choose β0 such that for any α � β0 we have (

√
2 − 1)min{x(α), x̃(α)} > π . This implies that |√nx(α) − x̃(α)| �

(
√

n − 1)min{x(α), x̃(α)} − π > 0, for any n � 2, which proves (i).
In order to prove (ii), notice that, since for α � β > 2, we have x(α), x̃(α) � d ≡ min{x(β), x̃(β)} > 0, then, if

√
n0 > 1+ π

d
we have |√n0x(α) − x̃(α)| � (

√
n0 − 1)|x(α)| − |x(α) − x̃(α)| � (

√
n0 − 1)d − π > 0. This means that

Dβ = {α ∈ [β,β0]: there exists n = 2, . . . ,n0 with x(α) = √
nx̃(α), or x̃(α) = √

nx(α)
}
.

But then

Dβ =
n0⋃

n=1

{
α ∈ [β,β0]: x(α) = √

nx̃(α), or x̃(α) = √
nx(α)

}
.

But, g and g̃ are real analytic functions, strictly increasing for x > 0. Hence, g−1, g̃−1 : [β,β0] → R are real analytic. In
particular, for each n, the number of roots of the equation g−1 − √

ng̃−1 and g̃−1 − √
ng−1 in [β,β0] is finite for all n. This

proves (ii).
If we consider now a decreasing sequence of βm → 2, then, since Dβm ⊂ Dβn for m � n and each of them is finite, if we

define

D =
∞⋃

m=1

Dβm

then D is either a finite set or a sequence converging to 2. Moreover, for all values of α > 2 with α /∈ I , we have that
{rk}∞k=1 \ {r̃k}∞k=1 �= ∅ and {r̃k}∞k=1 \ {rk}∞k=1 �= ∅ and a double cascade of Hopf bifurcations will occur. This concludes the proof
of the theorem. �
Appendix A. Hopf bifurcation

In this section we prove the existence of the Hopf bifurcation, where we adapt the results from [7,12,18] to our situation.
This adaptation is not straightforward since a careful study of the functional setting and the inequalities involved in the
proof must be done with care.

We show the Hopf bifurcation as a perturbation result, as was introduced by [12]. In order to do this, it is convenient
to consider our equation and the corresponding eigenvalue problem from a different point of view. This new point of view
will express the perturbation more clearly.

First of all, given r,α > 0, we define the pairing (·,·) : C1/2 × C1/2 → R, by

(ψ,ϕ) = 〈ψ(0),ϕ(0)
〉+

0∫
−r

L
(
ψ(s + r)

)
ϕ(s)ds,

for all ψ ∈ C1/2 and ϕ ∈ C1/2.
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This pairing will induce the transpose equation of the linear equation, that is the solutions of⎧⎪⎨
⎪⎩

dv

dt
= vξξ in (0,1) × R

−,

∂v

∂n
= −αv(t + r) in

{{0} ∪ {1}}× R
−.

(A.10)

In the same way as in Section 2 we can define it in an abstract form. This is done by defining the transpose, AT
U : C−1/2 →

C−1/2, to be the linear operator with domain

D
(

AT
U

)= {Ψ ∈ C1/2, such that, Ψ̇ ∈ C1/2, Ψ (0) ∈ H1(0,1), −Ψ̇ +(0) = −A−1/2Ψ (0) + L−r(Ψ )
}
,

and define (AT
U Ψ )(θ) = −Ψ̇ (θ), for all Ψ ∈ D(AT

U ) and θ ∈ [0, r]. And, in the same way, the solution exists, is positive (for
positive initial data) and belongs to C([0, r], H1(0,1)) for all time.

Remark A.1. For all ϕ ∈ D(AU ) and Ψ ∈ D(AT
U ), we have (Ψ, AU ϕ) = (AT

U Ψ,ϕ).

Proof. Let be ϕ ∈ D(AU ) and Ψ ∈ D(AT
U ), then we have

(Ψ, AU ϕ) = 〈Ψ (0), AU ϕ(0)
〉+

0∫
−r

L
(
Ψ (s + r)

)
AU ϕ(s)ds

= 〈Ψ (0), ϕ̇(0)
〉+

0∫
−r

L
(
Ψ (s + r)

)
ϕ̇(s)ds

= 〈Ψ (0),−A−1/2ϕ(0)
〉+ 〈Ψ (0), Lr(ϕ)

〉+ L
(
Ψ (s + r)

)
ϕ(s)

∣∣0−r −
0∫

−r

L
(
Ψ̇ (s + r)

)
ϕ(s)ds

= 〈−AT−1/2Ψ (0),ϕ(0)
〉+ L

(
Ψ (r)

)
ϕ(0) +

0∫
−r

L
(

AT
U Ψ (s + r)

)
ϕ(s)ds

= (AT
U Ψ,ϕ

)
. �

Let us start by rewriting the eigenvalue problem to get the bifurcation equation. For each λ ∈ C and r > 0, define the
linear operator �(λ, r) : H−1(0,1) → H−1(0,1), by

�(λ, r)u = −A−1/2u + e−λr Lru − λu,

for all 0 � u ∈ H1(0,1).

Remark A.2. We can now look the eigenvalues and eigenfunctions in a different perspective, compared to the previous
section, that is, the operator AU has an eigenvalue λ = ω2 = ib = 2ix2, x,b �= 0, for some r > 0, if and only if,

−A−1/2ϕ + e−λθ Lrϕ − ibϕ = 0

is solvable for some b > 0 and θ = (2π − Θ) ∈ [0,2π ], where Θ was defined in Lemma 3.9. If this is the case, for a pair
(b, θ) and ϕ , then for all n = 0,1,2, . . . , we have

�(ib, rn)ϕ = 0,

where rn = θ+2nπ
b . We have shown in this article the existence of such sequence. So we are going to fix through out this

section b, λ, θ , rn and ϕ as above. In order to get the notation more simple, we will still denote the linear operators as AU

and AT
U despite its dependence on rn .

Consider

Φ̃(s) = [ϕeibs ϕe−ibs ] ,
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for all −rn � s � 0 and

Ψ̃ (s) =
[

Bnϕe−ibs

Bnϕeibs

]
,

for all 0 � s � rn , where Bn ∈ C is such that Bn[∫ 1
0 ϕ2(x)dx + rn L(ϕ2)e−ibrn ] = 1. And, consider also the real basis related to

Φ̃ and Ψ̃ ,

Φ(s) = [Φ1(s) Φ2(s) ] = [Re(ϕeibs) Im(ϕeibs) ]

= [ ϕeibs+ϕe−ibs

2
−iϕeibs+iϕe−ibs

2

]
,

for all −rn � s � 0 and

Ψ (s) =
[

Ψ1(s)
Ψ2(s)

]
=
[

2Re(Bnϕe−ibs)

−2Im(Bnϕe−ibs)

]
=
[

Bnϕe−ibs + Bnϕeibs

iBnϕe−ibs + −iBnϕeibs

]
,

for all 0 � s � rn .
We will denote, for a given rn , by Λ the eigenfunction space of AU corresponding to the eigenvalues λ = ±ib, it is easy

to see that Φ is a real basis for Λ and Ψ is a real basis of the eigenfunction space of AT
U of AU corresponding to λ = ±ib.

One can also check that

(Ψ̃ , Φ̃) =
(

(Ψ̃1, Φ̃1) (Ψ̃1, Φ̃2)

(Ψ̃2, Φ̃1) (Ψ̃2, Φ̃2)

)
=
(

1 0
0 1

)
.

This follows from the definition of Bn and from the following equality: ib(ϕe−ib,ϕe−ib) = (A∗
U ϕe−ib,ϕe−ib) = (ϕe−ib,

AU ϕe−ib) = −ib(ϕe−ib,ϕe−ib) = 0.
Define now the projection πΛ : C1/2 → Λ by πΛ(ϑ) = Φ(Ψ,ϑ), for all ϑ ∈ C1/2, and, given T0 > 0, let PT0 = {g ∈

C(R, H−1(0,1)): g(t + T0) = g(t), t ∈ R}, with the norm ‖ · ‖PT0
defined by ‖g‖PT0

= supt∈[0,T0] ‖g(t)‖L2(0,1) . With this,

for each rn and T0 > 0, consider the linear operator I : PT0 → R
2 defined, for any g ∈ PT0 by

I g =
T0∫

0

〈
g(t),Ψ (t)

〉
dt

�=
[∫ T0

0 〈g(t),Ψ1(t)〉dt∫ T0
0 〈g(t),Ψ2(t)〉dt

]
.

Now, summarizing the results in [22,19,20,15,14] we get that:

Facts A.3.

1. The linear equation (2.2) can be written in abstract form as

u̇(t) = −A−1/2u(t) + Lr(ut), t � 0, (A.11)

which has an analytic semigroup U (t) whose infinitesimal generator is AU .
2. The nonlinear equation (1.1) can be written in abstract form as

u̇(t) = −A−1/2u(t) + Lr(ut) + G(ut), t � 0. (A.12)

From now on n and α will be fixed. Following the usual techniques to study Hopf bifurcation, one should introduce a
change of variables in order to have a perturbation of the origin. To do this, first, we introduce v and ρ such that u = v + 1
and ρ = r − rn , and substituting this in (A.12) we get

v̇(t) = −A−1/2 v(t) + L(ρ+rn)(vt) + f
(

v(t) + 1, v(t − ρ − rn) + 1
)− L(ρ+rn)(vt), t � 0. (A.13)

The next step is to fix also the period, therefore let T0 = 2π
b and w(t) = v(t(1 + β)). With this, v is a T0(1 + β)-periodic

solution of (A.13) if and only if w is a T0-periodic solution of

ẇ(t) = −A−1/2 w(t) + Lrn (wt)

+
{
−β A−1/2 w(t) − Lrn (wt) + (1 + β) f

(
w(t) + 1, w

(
t − ρ + rn

1 + β

)
+ 1

)}
, t � 0. (A.14)

Thus, we will define

G̃(ρ,β, wt) =
{
−β A−1/2 w(t) − Lrn (wt) + (1 + β) f

(
w(t) + 1, w

(
t − ρ + rn

1 + β

)
+ 1

)}
. (A.15)
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Remark A.4. In fact, one should look for this equation, for each t , in the unknown ut(·) ∈ C1/2 and, respectively, vt(·) and
wt(·).

Following [12] and [22], we get that, for all g ∈ PT0 , the equation

dw

dt
= AU w + g (A.16)

has a T0-periodic solution if and only if g ∈ N (I).
With this, one can define the linear operator K : N (I) → PT0 such that K(g) is the T0-periodic solution of (A.16)

satisfying πΛ(K(g)) = 0 or (Ψ (·), (K(g))0(·)) = 0. If we apply this to our case, we get that (A.14) has a T0-periodic solution
w(t) if and only if there is a constant c such that

I G̃(ρ,β, wt) = 0, and (A.17)

w(t) = cΦ1(t) + [KG̃(ρ,β, wt)
]
(t), (A.18)

for all t ∈ R.

Remark A.5. By applying the implicit function theorem for c,ρ and β sufficiently small, we can solve (A.18). Let w(t) =
w(c,ρ,β)(t) be this solution, then w(c,0,0)−cΦ1 = o(|c|), as |c| → 0. Moreover, since w(c,ρ,β) satisfies (A.18) and (A.16),
it is continuously differentiable in c,ρ,β and t .

The strategy is to expand all in terms of c. To do this, let ρ = cμ, β = cδ and w(c, cμ, cδ)(t) = cΦ1(t) + c2W (t), noting
that, from the remark above, W ∈ PT0 and cW is O (|c|), as |c| → 0. Thus we can rewrite (A.15) as

G̃(cμ, cδ, wt) = c2
{
−δA−1/2Φ1(t) − δc A−1/2W (t) − 1

c
Lrn

(
(Φ1)t

)− Lrn (Wt)

+ 1 + cδ

c2
f

(
1 + cΦ1(t) + c2W (t),1 + cΦ1

(
t −
(

cμ + rn

1 + cδ

))
+ c2W

(
t −
(

cμ + rn

1 + cδ

)))}

= c2
{
−δA−1/2Φ1(t) − δc A−1/2W (t) − 1

c

(
Lrn

(
(Φ1)t

)− L
(

cμ+rn
1+cδ )

(
(Φ1)t

))
− (Lrn (Wt) − L

(
cμ+rn
1+cδ )

(Wt)
)+ δL

(
cμ+rn
1+cδ )

(
(Φ1)t

)+ cδL
(

cμ+rn
1+cδ )

(Wt)

+ (1 + cδ)L
((

Φ1(t) + cW (t)
)(

Φ1

(
t −
(

cμ + rn

1 + cδ

))
+ cW

(
t −
(

cμ + rn

1 + cδ

))))}

= c2N(c,μ, δ, Wt). (A.19)

So, Eqs. (A.17), (A.18) become equivalent to

I N(c,μ, δ, Wt) = 0, and (A.20)

W (t) = [KN(c,μ, δ, Wt)
]
(t), (A.21)

for all t ∈ R, which is the bifurcation equation that we have to solve to observe the oscillatory behavior of Eq. (1.1) near the
positive constant equilibrium.

Lemma A.6.

lim
c→0

N(c,μ, δ, Wt) = −δA−1/2Φ1(t) + (δrn − μ)Lrn

(
(Φ̇1)t

)+ δLrn

(
(Φ1)t

)+ L
(
Φ1(t)Φ1(t − rn)

)
.

Proof. The proof follows easily if we take the limit as c goes to zero in (A.19), taking into account Remark A.5. �
Lemma A.7. I N(0,0,0, Wt) = 0.

Proof. Observe that

I N(0,0,0, Wt) =
(

1 1
i −i

)(∫ T0
0 〈Bnϕe−ibt, N(0,0,0, Wt)〉dt∫ T0 −ibt

)
.

0 〈Bnϕe , N(0,0,0, Wt)〉dt



34 J.M. Arrieta et al. / J. Math. Anal. Appl. 361 (2010) 19–37
Thus it is sufficient to show that
∫ T0

0 〈ϕe−ibt, N(0,0,0, Wt)〉dt = 0. In fact,

T0∫
0

〈
ϕe−ibt, N(0,0,0, Wt)

〉
dt = L

(
ϕ

{ T0∫
0

e−ibtΦ1(t)Φ1(t − rn)dt

})

and the result follows easily if one observes that

e−ibsΦ1(s)Φ1(s − rn) = 1

4

(
ϕ2eib(s−rn) + ϕϕe−ib(s−rn) + ϕϕe−ib(s+rn) + ϕ2e−ib(3s−rn)

)
, (A.22)

using that Φ1(s) = (1/2)(ϕeibs + ϕe−ibs). Finally, noting that T0 = 2π
b , we have the result. �

Following [18], since a periodic solution of (A.14) is a C1 function, one can restrict its attention in (A.20), (A.21) to
W ∈ P 1

T0
= {g ∈ PT0 , such that ġ ∈ PT0 }, with ‖g‖P 1

T0
= ‖g‖PT0

+ ‖ġ‖PT0
. Thus it is not difficult to see that I N : Ic × R ×

Ic × P 1
T0

→ R is a continuously differentiable function. From Lemma A.7, we have that N(0,0,0, Wt) ∈ N (I). We have that,

if we denote by W � = K[N(0,0,0, Wt)], using the decomposition (A.22) it is easy to see that

W �(t) = Y e2ibt + Y e−2ibt + Z + Φ(t)o (A.23)

where Y = − 1
4 e−iθ (−A−1/2 + Le−2iθ − 2ib)−1 L(ϕ2), Z = − 1

2 cos(θ)(−A−1/2 + L)−1 L(ϕϕ), and o = −(Ψ (·), Y e2ib· +
Y e−2ib· + Z).

On the other hand, as shown before, there exists a continuous branch of eigenvalues λ(r), such that Re(λ̇(rn)) > 0. But
we can say a little more now, observing that

�(λ, r)ϕ = [−A−1/2 + e−λr L − λI
]
ϕ = 0, (A.24)

we can differentiate with respect to r, and applying 〈ϕ, ·〉, we get that

0 =
〈
ϕ,

d

dr

(
�(λ, r)ϕ

)〉=
〈
ϕ,�

dϕ

dr

〉
−
〈
ϕ,

dλ

dr

(
re−λr L + I

)
ϕ

〉
− 〈ϕ,λe−λr Lϕ

〉
=
〈(−A−1/2 + e−λr L − λI

)
ϕ,

dϕ

dr

〉
−
〈
ϕ,

dλ

dr

(
re−λr L + I

)
ϕ

〉
− 〈ϕ,λe−λr Lϕ

〉
. (A.25)

Therefore, using the definition of Bn , we get

λ̇ = −Bnλe−λr L
(
ϕ2). (A.26)

Lemma A.8.

∂I N

(∂μ,∂δ)
(0,0,0, Wt) = T0

(
Re(λ̇) 0

−Im(λ̇) −Im(λ)

)
.

Proof. First of all, we have that ∂N
∂μ (0,0,0, Wt) = −Lrn ((Φ̇1)t) and ∂N

∂δ
(0,0,0, Wt) = −A−1/2Φ1(t)+Lrn ((Φ1)t)+rn Lrn ((Φ̇1)t).

Moreover we can write Φ = Φ̃H and Ψ = H−1Ψ̃ , where H = 1
2

( 1 −i
1 i

)
.

Thus, in order to evaluate ∂I N
∂μ (0,0,0, Wt) we will start with

−
T0∫

0

〈
Ψ (t), Lrn

(
(Φ̇1)t

)〉
dt = −H−1

T0∫
0

〈
Ψ̃ (t), Lrn

(
(
˙̃
Φ)t
)〉

dt H

(
1

0

)

= −H−1

T0∫
0

( 〈Bnϕe−λt, L(λϕeλ(t−rn))〉 〈Bnϕe−λt, L(−λϕe−λ(t−rn))〉
〈Bnϕeλt, L(λϕeλ(t−rn))〉 〈Bnϕeλt, L(−λϕe−λ(t−rn))〉

)
dt H

(
1

0

)
.

(A.27)

First of all, using the definition of distributional derivatives to commute derivatives and traces (recall that ϕ is as smooth
as one wishes), following the same argument as to show that (Ψ̃ , Φ̃) = I , we have that the matrix inside the integral is
diagonal, thus, having in mind (A.26), one has only to evaluate

T0∫ 〈
Bnϕe−λ(t), L

(
λϕeλ(t−rn)

)〉
dt =

T0∫
Bnλe−λrn L

(
ϕ2)dt = T0 Bnλe−λrn L

(
ϕ2)= −T0λ̇.
0 0
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In order to evaluate ∂I N
∂δ

(0,0,0, Wt), we proceed as above and we have

T0∫
0

〈
Ψ (t),−A−1/2Φ1(t) + Lrn

(
(Φ1)t

)+ rn Lrn

(
(Φ̇1)t

)〉
dt = T0

(
0

−Im(λ)

)
. �

Lemma A.9.

∂I N

∂c

(
0,0,0, W �

t

)= T0

(
G1
G2

)
,

where G1 = T0Re(L(Bnϕ
2 Z(1 + e−λrn ) + BnϕϕY (eλrn + e2λrn ))).

Proof. First of all, we have that

∂N

∂c

(
0,0,0, W �

t

)= L
(
Φ1(t)W �(t − rn) + Φ1(t − rn)W �(t)

)
.

Since we have W �(t) = Y e2λt + Y e−2λt + Z + Φ(t)b = W̃ (t) + Φ(t)o, we have that

∂I N

∂c

(
0,0,0, W �

t

)=
T0∫

0

〈
Ψ,

∂N

∂c

(
0,0,0, W �

t

)〉
dt

=
T0∫

0

〈
Ψ, L

(
Φ1(t)W̃ (t − rn) + Φ1(t − rn)W̃ (t)

)〉
dt, (A.28)

where we have used
∫ T0

0 〈Ψ, L(Φ1(t)Φ(t − rn)o + Φ1(t − rn)Φ(t)o)〉dt = 0. Finally we finish the proof using the definition of

Ψ , W̃ and T0. �
Lemma A.10. G1 �= 0.

Proof. One can note that ϕ, Y and Z are symmetric around x = 1
2 , and we can choose ϕ in such a way that ϕ(0) = ϕ(1) = 1.

Let us remind that λ = ib, θ is such that the bifurcation points are rn = θ+2nπ
b , T0 = 2π

b , ϕ satisfies ϕ′′(x) = λϕ(x), for

x ∈ (0,1), −ϕ′(0) = −αe−λr and ϕ′(1) = −αe−λr , Y satisfies Y ′′(x) = 2λY (x), for x ∈ (0,1), −Y ′(0) = −α(e−2iθ Y (0)+ 1
4 e−iθ )

and Y ′(1) = −α(e−2iθ Y (1) + 1
4 e−iθ ) and, finally Z(x) ≡ − 1

2 cos(θ). With this, we must show that

Re

(
Bn

(
Y (0)

(
eλrn + e−2λrn

)− 1

2
cos(θ)

(
1 + e−λrn

))) �= 0.

Let be (Y (0)(eλrn + e−2λrn ) − 1
2 cos(θ)(1 + e−λrn )). We have that Re(Bn)

Im(Bn)
does not depend on n, and using the definition of

Bn we get

Re(Bn)

Im(Bn)
= −Re(

∫ 1
0 ϕ2(x)dx − 2αrnϕ

2(0)e−λrn )

Im(
∫ 1

0 ϕ2(x)dx − 2αrnϕ2(0)e−λrn )

n→∞−→ cos(θ)

sin(θ)
.

Therefore, if Re(Bnζ ) = 0, for all n and ζ �= 0, then

Re(
∫ 1

0 ϕ2(x)dx)

Im(
∫ 1

0 ϕ2(x)dx)
= −cos(θ)

sin(θ)
,

thus, Im(eiθ
∫ 1

0 ϕ2(x)dx) = 0. Using that ϕ is an eigenfunction, we get that

0 = Im

(
eiθ

1∫
0

ϕ2(x)dx

)
= α

(
− 1

λ
+ 2e

√
λ

√
λ(1 − e2

√
λ)

)
.

Therefore, λ must satisfy Im( 2√
λ(e−√

λ−e
√

λ)
) = − 1

b , or Re( 2
√

λ

e−√
λ−e

√
λ
) = −1, which contradicts (3.4) in Lemma 3.8.

It is left to prove that ζ �= 0. Once again, we suppose that ζ = 0, that is Y (0) = 1 cos(θ) 1+e−iθ

iθ −2iθ = cos(θ)
> 0.
2 e +e 2(2 cos(θ)−1)
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From the eigenvalue equation and the equation for Y , we have that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2λ

1 − e
√

2λ

1 + e
√

2λ
Y (0) = α

(
e−2iθ Y (0) + e−iθ

4

)
,

√
λ

1 − e
√

λ

1 + e
√

λ
= αe−iθ .

Since αe−iθ �= 0, we can divide the two equations and get

√
2

1 + e
√

λ − e
√

2λ − e
√

λ+√
2λ

1 − e
√

λ+√
2λ − e

√
λ + e

√
2λ

= e−iθ + 1

4Y (0)
= 2(cos(θ))2 + 2 cos(θ) − 1

2 cos(θ)
− i sin(θ).

Expanding the left-hand side and collecting real and imaginary parts, one gets Rb+i Ib
Db

, where

Db = 1 − 2e
√

b/2+√
b cos(

√
b/2 + √

b) − 2e
√

b/2 cos(
√

b/2) + 2e
√

b cos(
√

b) + e2(
√

b/2+√
b)

+ 2e2
√

b/2+√
b cos(

√
b) − 2e

√
b/2+2

√
b cos(

√
b/2) + e2

√
b/2 − 2e

√
b/2+√

b cos(
√

b/2 − √
b) + e2

√
b,

Rb = √
2
(
1 − 2e

√
b/2+√

b cos(
√

b/2 + √
b) − e2

√
b/2 + 2e

√
b/2+√

b cos(
√

b/2 − √
b) − e2

√
b + e2(

√
b/2+√

b)
)
, and

Ib = √
2
(
2e

√
b/2 sin(

√
b/2) − 2e

√
b sin(

√
b) + 2e2

√
b/2+√

b sin(
√

b) − 2e
√

b/2+2
√

b sin
√

b/2
)
.

Therefore, we must have⎧⎪⎪⎨
⎪⎪⎩

Ib

Db
= − sin(θ),

Rb

Db
= 2(cos(θ))2 + 2 cos(θ) − 1

2 cos(θ)
,

and from the second equation, since cos(θ) < 0, we must have

cos(θ) =
(2 Rb

Db
− 2) −

√
(2 Rb

Db
− 2)2 + 8

4
,

and since sin2 θ + cos2 θ = 1, we get

1

D2
b

(
I2
b + (Rb − Db)

2

2
−

(Rb − Db)

√
4(Rb − Db)

2 + 8D2
b

4

)
= 1

2
.

However, one can check that the left-hand side is always negative, which is a contradiction. �
Proof of Proposition 4.2. We know that dλ

dr (rn) > 0, n = 0,1,2, . . . and from Lemma A.7, I N (0,0,0, Wt) ≡ 0. It follows from
Lemma A.8 that we can take c0, a neighborhood B ⊆ R of the origin, a neighborhood V 0 ⊆ P 1

T0
of W � and continuously

differentiable functions μ,δ : [−c0, c0] × V 0 → B , so that μ(0, W �) = 0 = δ(0, W �), and for each (c, W ) ∈ [−c0, c0] × V 0,
(μ, δ) ∈ B × B , I N (c,μ, δ, W ) = 0 if and only if μ = μ(c, W ), δ = δ(c, W ). Then we can define a differentiable map
Ω : [−c0, c0] × V 0 → P 1

T0
by

Ω(c, W ) = W − [KN
(
c,μ(c, W ), δ(c, W ), Wt

)]
(t), (A.29)

satisfying Ω(0, W �) = W � − [KN(0,0,0, W �
t )](t) = W � − K LΦ1(t)Φ1(t − rn) = 0. Once again, from Lemma A.7, we have

∂
∂W I N(0,0,0, W ) = 0, and differentiating (A.29) with respect to W at c = 0, we can see that ∂

∂W Ω(0, W �) = I . Hence,
∂

∂W Ω(0, W �) : P 1
T0

→ P 1
T0

is bijective. We can now apply the implicit function theorem to solve Eq. (A.29). Specifically,

there are a constant c1 ∈ (0, c0], and a neighborhood V 1 ⊆ V 0 of W � , and a function W ∗ : [−c − 1, c − 1] → V 1 such that
W ∗(0) = W � , and for each (c, W ) ∈ [−c1, c − 1] × V 1, Ω(c, W ) = 0 if and only if W = W ∗(c). Therefore (A.13) has a T0
periodic solution W (t) near zero for ρ,β sufficiently small, if and only if W (t) = cΦ1(t) + W (c, t), ρ = cμ(c, W ∗(c)), β =
cδ(c, W ∗(c)), for some value of c ∈ [−c1, c1], where W ∗(c, t) = (W ∗(c))(t), for all t ∈ R, then I N (c,μ∗(c), δ∗(c), W ∗(c)) ≡
0, for all c ∈ [−c1, c1], where μ∗(c) = μ(c, W ∗(c)), δ∗(c) = δ(c, W ∗(c)). Since dλ

dr (rn) > 0, ∂I N
∂(μ,δ)

(0,0,0, W ) is invertible.
Differentiating I N with respect to c at c = 0, and applying Lemmas A.9, A.10 for c small enough, we arrive at, for some
real h̄ �= 0,

dμ∗
(0) = h̄Γ (n, ξ)c2 + O

(
c3) �= 0, where Γ (k, ξ) = G1

˙ .

dc Real(λ)
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This implies that for each n = 0,1,2, . . . , the Hopf bifurcation arising from the constant positive equilibrium occurs as
the delay r passes monotonically through each rn , and thus proves the proposition. �
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