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1. Introduction

In recent years, there has been considerable interest in travelling wavefront solutions of lattice differential equa-
tions (LDEs). Typically, an LDE has the form

u̇ = F (u) (1.1)

with u ∈ U and F : U → U . Here, U ⊆ B denotes a Banach space which, as a set, is contained in

B = (
R

n)Λ = {
u

∣∣ u : Λ → R
n}, (1.2)

the set of vectors u indexed by the set Λ. In most cases, Λ is a lattice (i.e., a discrete finite or infinite subset of R
d with

some regular spatial structure). Typical examples are the d-dimensional integer lattice Z
d , the hexagonal lattice in R

2 and
the crystallographic lattices in R

3.
In many applications, LDEs are closely related to partial differential equations (PDEs). For example, LDEs might appear

as spatial discretizations of PDEs or, the other way round, PDEs arise naturally as the continuum limit of LDEs if some
discreteness parameter tends to zero. To become even more concrete, let us consider a classical example: The spatially
discrete Nagumo equation is given by

u̇(x, t) = d
(
u(x + 1, t) − 2u(x, t) + u(x − 1, t)

) + f
(
u(x, t)

)
(1.3)

with d > 0, f (u) = u(u − a)(1 − u) and 0 < a < 1
2 . This model system is used, for example, to describe the conduction in

myelinated nerve axons (cf. [1]). In [7, Theorem 1], there has been proved that for every sufficiently large d there exists
a velocity c ∈ R such that this equation has travelling wavefront solutions u(x, t) = u(x + ct) which satisfy u(−∞) = 0 and
u(∞) = 1.
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In numerical calculations (using, for example, the methods presented in [3]), it can be observed that these solutions
increase in width by a factor of

√
d as d → ∞. If we, therefore, rescale the spatial scale by a factor of 1√

d
, it turns out that

the shape of a travelling wavefront solution changes only slightly if the parameter d is varied and, as a matter of fact, has a
limit as d → ∞.

In the following, we investigate this observation analytically. If we plug the travelling wave Ansatz u(x, t) = u(x + ct) into
Eq. (1.3), we get the travelling wave equation

T (u) = 0 (1.4)

with

T (u) = −cu′ + d�2(1, u) + f (u), (1.5)

the discrete second derivative

�2(τ , u; z) =
{

1
τ 2 (u(z + τ ) − 2u(z) + u(z − τ )) for τ �= 0,

u′′(z) for τ = 0,
(1.6)

and the real variable z = x+ct . Using the stretching operator Sτ (u; z) = u(τ z), we obtain the functional differential equation
of mixed type

0 = S−1
1√
d

T S 1√
d
(u) = − c√

d
u′ + �2

(
1√
d
, u

)
+ f (u). (1.7)

Here, 1√
d

serves as the discreteness parameter. Let c̃ = c√
d

. In the continuum limit d → ∞, Eq. (1.7) becomes

0 = −c̃u′(z) + u′′(z) + f
(
u(z)

)
. (1.8)

For c̃ = 1−2a√
2

, this ordinary differential equation has a solution

u(z) = 1

2

(
1 + tanh

(
1√
8

z

))
(1.9)

which satisfies u(−∞) = 0 and u(∞) = 1.
This paper deals with the question whether there exists for some d < ∞ a continuation of this solution of the continuum

limit (1.8) to the original equation (1.4). The continuation of solutions of a (simpler) equation is a standard technique in the
theory of LDEs (see, for example, [6]). But, as a matter of fact, this is done usually without rescaling the solution (i.e., the
discreteness parameter is not touched).

The simple reason for this restriction can be seen if we have a close look at Eq. (1.4): If we rescale u, the parameter τ in
the discrete second derivative �2(τ , u) becomes non-constant. Suppose we are dealing with two Banach spaces V and W
(e.g. two weighted Sobolev spaces) such that �2 : R × V → W . Then, standard tools as the implicit function theorem of
Hildebrandt and Graves are not applicable since the operator �2 has no continuous Frechet derivative. Nevertheless, it is
still possible to use implicit function techniques also in this situation if we give up the uniqueness of the solution. One
of the reasons for this loss of uniqueness lies in the fact that the general solution of the ordinary equation (1.8) has only
two parameters whilst the solution space of the functional differential equation (1.4) is infinite dimensional. In general, this
leads to a bunch of new effects such as pinning (also known as propagation failure).

In the following, we present an implicit function theorem of Craven and Nashed which gives up uniqueness in order
to allow weaker differentiability properties (i.e., some kind of Hadamard differentiability). The main twist of this theorem
is that it needs differentiability only in the direction where the solution actually lies. This direction – together with all
estimates required – can be determined if the solution to be continuated has some additional smoothness (as in our case,
where it is even analytic). This theorem is presented in Section 2. In Section 3, we verify these differentiability properties
for a class of operators (which includes the discrete second derivative �2).

In order to provide an example how the continuum approximation together with the above implicit function theorem
can be utilized in order to give existence results for LDEs, we present in Section 4 an alternate proof for the following
classical result on the spatially discrete Nagumo equation:

Theorem 1.1. Let 0 < a < 1
2 . Then, there exists a d∗ > 0 such that for all d > d∗ there is a c > 0 such that the travelling wave

equation (1.4) has a solution u ∈ C2(R) with u(−∞) = 0 and u(∞) = 1.

It has to be stressed that the interest of this paper is not to prove this well-known result (for even more in depth results
on the Nagumo equation see, for example, [4]) but to develop a technique which allows us to continuate travelling wave
solutions of LDEs from the travelling wave solutions of a PDE, which can be treated as the limit of LDEs.
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2. An implicit function theorem

In the following, we extensively deal with Hadamard differentials. The concept of Hadamard differentiability is one of
the weakest which obey all the common rules of differentiability (including the chain rule).

Definition 2.1. Let X and Y be real Banach spaces. A function G : X → Y is Hadamard differentiable at a ∈ X if there exists
a linear mapping M ∈ L(X, Y ) such that, for any continuous function ω : [0,1] → X for which ω′(0+) exists and ω(0) = a,
the function F = G ◦ ω is differentiable at 0+ , with F (0+) = Mω′(0+) where M is the Hadamard derivative.

In addition, the function G : X → Y is strongly Hadamard differentiable at a ∈ X if F = G ◦ ω is strongly differentiable
at 0+ . This is the case if for any ε > 0 there exists a δ > 0 such that∥∥G

(
ω(u)

) − G
(
ω(v)

) − Mω′(0+)
(u − v)

∥∥ � ε|u − v| (2.1)

whenever |u − v|, |v| � δ.
The function G : X → Y is restricted strongly Hadamard differentiable at a if the strongly Hadamard differentiable property

holds only for ω restricted to be strongly differentiable at 0+ (i.e., if ‖ω(u) − ω(v) − ω′(0+)(u − v)‖ � ε|u − v| whenever
|u − v|, |v| � δ).

Moreover, G is restricted strongly Hadamard differentiable at a with respect to the initial slope c ∈ X if we restrict ω further
to functions with ω′(0+) = c.

In [2, Theorem 2], Craven and Nashed gave an inverse function theorem for Hadamard differentiable functions. In the
following, we will use a reformulation of this theorem in the form of an implicit function theorem (for the equivalence of
inverse and implicit function theorems see, for example, [5]):

Corollary 2.2. Let V and W be real Banach spaces, g0 ∈ V , U ⊂ R × V an open neighbourhood of (0, g0), F : U → W be
Hadamard differentiable at all (τ , g) ∈ U with τ > 0 as well as at (0, g0). Let F (0, g0) = 0 and the Hadamard differential M =
F ′(0, g0) : R × V → W be a bounded linear operator of the form M(τ̄ , ḡ) = M1τ̄ + M2 ḡ.

Suppose M2 has a bounded right inverse M−1
2 : W → V , ḡ0 = −M−1

2 M11 and F is restricted strongly Hadamard differentiable at
(0, g0) with respect to the initial slope (1, ḡ0). Then, there exists a sufficiently small interval I = [0, ε[ and a solution g : I → V such
that g(0) = g0 , g′(0+) = ḡ0 and F (τ , g(τ )) = 0 for all τ ∈ I .

Proof. Let X = R× V , Y = R×W , a = (0, g0), S = R×{0} and G : X → Y be given by G(τ , g) = (τ , F (τ , g)). By construction,
it holds −b = −G(a) = (0,0) ∈ S . The Hadamard derivative

G ′(a) =
(

1 0
M1 M2

)
(2.2)

exists, is bounded linear and has a bounded right inverse

B =
(

1 0
−M−1

2 M1 M−1
2

)
, (2.3)

with bound Γ . In [2], there is made use of the notion of an approximative right inverse Bμ . Since we will assume the
existence of a bounded right inverse B , let Bμ = B , the bound function Γ (μ) = Γ and the weighted spaces Xμ = X
be all independent of μ. Thus, all dependencies on the parameter μ can be neglected. For c = 1

‖(1,ḡ0)‖X
(1, ḡ0), it holds

−[G(a) + G ′(a)c] = ( 1
‖(1,ḡ0)‖ ,0) ∈ S . Thus, all prerequisites – with exception of the smoothness conditions – of [2, Theo-

rem 2] are met.
A short inspection of the proof of [2, Theorem 2] shows that the required smoothness conditions can be weakened

slightly: In fact, Hadamard differentiability is only needed twice: At the very beginning, there is made use of the restricted
strong Hadamard differentiability of G at a with respect to the initial slope c. The more general restricted strong Hadamard
differentiability without restriction to the initial slope is only needed if one does not want to take care about c.

Secondly, at the top of [2, p. 381], there is made use of the Hadamard derivative H ′(ω(u)) = G ′(ω(u)) for u > 0. Since
ω(0+) = a + tc with t > 0, it is guaranteed by construction, that there are only ω(u) = (τu, gu) under consideration with
τu > 0. Also, t can be chosen sufficiently small to give ω(u) ∈ U .

Thus, our requirements on F are sufficient for the proof of [2, Theorem 2] to go through. The resulting solution x(t) =
a + tc + η(t) is strongly differentiable at 0+ . Its τ -component has positive initial slope and, therefore, is strictly increasing
for sufficiently small t . By a reparametrization, we obtain the final solution g(τ ). �
3. Hadamard differentiability of discrete derivatives

In this section, we verify that operators like �2 satisfy all the differentiability properties required for the application of
Corollary 2.2. First, we define some appropriate Banach spaces (equipped with exponential weights, which allow us an easy
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control of the asymptotic behavior of our final solution as z → ±∞) and two basic operators: the shift operator A and the
discrete (first) derivative �. More complex operators can be constructed afterwards by the combination of these two basic
operators.

Definition 3.1. We denote by X(m,α) with m ∈ N0 and α ∈ R the real linear space of functions g : R → R which are
bounded under the weighted norm

‖g‖X(m,α) =
m∑

k=0

sup
z∈R

∣∣∣∣eα|z| dk

dzk
g(z)

∣∣∣∣ (3.1)

and, in addition, satisfy that eα|z| dm

dzm g(z) is uniformly continuous in z ∈ R.

First, we check that X(m,α) is complete and, thus, becomes a Banach space: Given any sequence gn ∈ X(m,α), some
g : R → R which satisfies

lim
n→∞‖gn − g‖X(m,α) = 0 (3.2)

and any ε > 0, there exists an N ∈ N such that for all n � N

‖g − gn‖X(m,α) � ε

3
. (3.3)

Since gN is uniformly continuous, there is a δ > 0 such that whenever |z1 − z2| � δ, we get∣∣∣∣eα|z1| dm

dzm
1

gN(z1) − eα|z2| dm

dzm
2

gN(z2)

∣∣∣∣ � ε

3
. (3.4)

It holds∣∣∣∣eα|z1| dm

dzm
1

g(z1) − eα|z2| dm

dzm
2

g(z2)

∣∣∣∣ �
∣∣∣∣eα|z1| dm

dzm
1

gN(z1) − eα|z2| dm

dzm
2

gN(z2)

∣∣∣∣ +
∣∣∣∣eα|z1| dm

dzm
1

(
g(z1) − gN(z1)

)∣∣∣∣
+

∣∣∣∣eα|z2| dm

dzm
2

(
g(z2) − gN(z2)

)∣∣∣∣
� ε

3
+ 2‖g − gN‖X(m,α)

� ε. (3.5)

Therefore, eα|z| dm

dzm g(z) is also uniformly continuous in z and we are finished.

Definition 3.2. Let m ∈ N0 and α ∈ R. By A : R × X(m,α) → X(m,α) we denote the shift operator

A(τ , g; z) = g(z + τ ). (3.6)

Furthermore, let � : R × X(m + 1,α) → X(m,α) denote the discrete derivative

�(τ , g) =
{ 1

τ (A(τ , g) − g) for τ �= 0,

g′ for τ = 0.
(3.7)

Lemma 3.3. Let m ∈ N0 , α ∈ R and (τ0, g0) ∈ R × X(m + 1,α). Then, the shift operator A : R × X(m,α) → X(m,α) is Hadamard
differentiable at (τ0, g0) with the derivative

M(τ̄ , ḡ) = A
(
τ0, g′

0

)
τ̄ + A(τ0, ḡ). (3.8)

Proof. Let ω : [0,1] → R × X(m,α) with ω(0) = (τ0, g0) and ω′(0+) = (τ̄0, ḡ0) ∈ R × X(m,α). For simplicity, we use the
shortcut notation (τu, gu) = ω(u).

For any ε̂ > 0, we get from the differentiability of ω at 0+ the existence of a δ̂(ε̂) > 0 such that for all u ∈ [0, δ̂(ε̂)] it
holds

|τu − τ0 − τ̄0u| � ε̂u and ‖gu − g0 − ḡ0u‖X(m,α) � ε̂u. (3.9)

For k = 0,1, . . . ,m − 1, the functions eα|z| g(k+2)
0 (z) and eα|z| ḡ(k+1)

0 (z) are bounded. Therefore, eα|z| g(k+1)
0 (z) and eα|z| ḡ(k)

0 (z)

are uniformly continuous. Together with the uniform continuity for k = m, we obtain a δ̌(ε̂) > 0 such that for all k =
0,1, . . . ,m, z ∈ R and ζ ∈ [−δ̌(ε̂), δ̌(ε̂)]
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∣∣eα|z+ζ | g(k+1)
0 (z + ζ ) − eα|z|g(k+1)

0 (z)
∣∣ � ε̂

|τ̄0| , (3.10)

∣∣eα|z+ζ | ḡ(k)
0 (z + ζ ) − eα|z| ḡ(k)

0 (z)
∣∣ � ε̂. (3.11)

Now, let ε > 0,

ε̂ = ε

e|α|(|τ0|+1)(2m + 4 + 2‖g0‖X(m+1,α))
, (3.12)

δ = min

{
δ̂(ε̂),

1

|τ̄0| + ε̂
,

δ̌(ε̂)

|τ̄0| + ε̂
,

ln(1 + ε̂
‖g0‖X(m+1,α)|τ̄0| )

|α|(|τ̄0| + ε̂)
,

ln(1 + ε̂
‖ḡ0‖X(m,α)

)

|α|(|τ̄0| + ε̂)

}
(3.13)

and u ∈ [0, δ]. It holds

∥∥A(τu, gu) − A(τ0, g0) − M(τ̄0, ḡ0)u
∥∥

X(m,α)
= ∥∥A(τu, gu) − A(τ0, g0) − (

A
(
τ0, g′

0

)
τ̄0 + A(τ0, ḡ0)

)
u
∥∥

X(m,α)

�
∥∥A(τu, gu − g0 − ḡ0u)

∥∥
X(m,α)

+ ∥∥A(τu, g0) − A(τ0, g0) − A
(
τ0, g′

0

)
τ̄0u

∥∥
X(m,α)

+ ∥∥A(τu, ḡ0) − A(τ0, ḡ0)
∥∥

X(m,α)
u. (3.14)

In the following, we give estimates for each of the above three terms. From Eq. (3.9) and our definition of δ, we get

|τu| � |τ0| +
(|τ̄0| + ε̂

)
u � |τ0| + 1. (3.15)

It follows

∥∥A(τu, gu − g0 − ḡ0 u)
∥∥

X(m,α)
(3.16)

=
m∑

k=0

sup
z∈R

∣∣∣∣eα|z| dk

dzk

(
gu(z + τu) − g0(z + τu) − ḡ0(z + τu) u

)∣∣∣∣
=

m∑
k=0

sup
z∈R

eα(|z|−|z+τu |)
∣∣∣∣eα|z+τu | dk

dzk

(
gu(z + τu) − g0(z + τu) − ḡ0(z + τu) u

)∣∣∣∣
� e|ατu |‖gu − g0 − ḡ0u‖X(m,α)

� e|α|(|τ0|+1)ε̂u.

In the last line, we used Eqs. (3.15) and (3.9).
Now, we consider the second term in Eq. (3.14). For each k = 0,1, . . . ,m and z ∈ R, there is a ζ between τ0 and τu such

that ∣∣∣∣eα|z| dk

dzk

(
A(τu, g0; z) − A(τ0, g0; z) − A

(
τ0, g′

0; z
)
τ̄0u

)∣∣∣∣
= eα|z|∣∣g(k)

0 (z + τu) − g(k)
0 (z + τ0) − g(k+1)

0 (z + τ0)τ̄0u
∣∣

= eα|z|∣∣g(k+1)
0 (z + ζ )(τu − τ0) − g(k+1)

0 (z + τ0)τ̄0u
∣∣

� eα|z|∣∣g(k+1)
0 (z + ζ )

∣∣|τu − τ0 − τ̄0u| + eα|z|∣∣g(k+1)
0 (z + ζ ) − g(k+1)

0 (z + τ0)
∣∣|τ̄0|u

� e|α|(|τ0|+1)
(∣∣eα|z+ζ | g(k+1)

0 (z + ζ )
∣∣ε̂u + ∣∣eα|z+ζ |g(k+1)

0 (z + ζ ) − eα|z+τ0|g(k+1)
0 (z + τ0)

∣∣|τ̄0|u
+ (

e|α(ζ−τ0)| − 1
)∣∣eα|z+ζ |g(k+1)

0 (z + ζ )
∣∣|τ̄0|u

)
� e|α|(|τ0|+1)

(
2
∣∣eα|z+ζ |g(k+1)

0 (z + ζ )
∣∣ + 1

)
ε̂u. (3.17)

Here, we used Eqs. (3.15), (3.9) and (3.10). Therefore,

∥∥A(τu, g0) − A(τ0, g0) − A
(
τ0, g′

0

)
τ̄0u

∥∥
X(m,α)

� e|α|(|τ0|+1)
(
2‖g0‖X(m+1,α) + m + 1

)
ε̂u. (3.18)
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For the last term in Eq. (3.14), we get from (3.15) and (3.11)

∥∥A(τu, ḡ0) − A(τ0, ḡ0)
∥∥

X(m,α)
=

m∑
k=0

sup
z∈R

∣∣eα|z|(ḡ(k)
0 (z + τu) − ḡ(k)

0 (z + τ0)
)∣∣

� e|α|(|τ0|+1)

m∑
k=0

sup
z∈R

(∣∣eα|z+τu | ḡ(k)
0 (z + τu) − eα|z+τ0| ḡ(k)

0 (z + τ0)
∣∣

+ (
e|α(τu−τ0)| − 1

)∣∣eα|z+τu | ḡ(k)
0 (z + τu)

∣∣)
� e|α|(|τ0|+1)(m + 2)ε̂. (3.19)

Altogether, we obtain∥∥A(τu, gu) − A(τ0, g0) − M(τ̄0, ḡ0)u
∥∥

X(m,α)
� ε (3.20)

which is the stated result. �
Lemma 3.4. Let m ∈ N0 , α ∈ R, τ0 ∈ R, g0 ∈ X(m + 1,α) if τ0 �= 0 and g0 ∈ X(m + 2,α) if τ0 = 0 respectively. Then, the discrete
derivative � : R × X(m + 1,α) → X(m,α) is Hadamard differentiable at (τ0, g0) with the derivative

M(τ̄ , ḡ) =
{ 1

τ0
(A(τ0, g′

0) − �(τ0, g0))τ̄ + �(τ0, ḡ) for τ0 �= 0,

1
2 g′′

0 τ̄ + ḡ′ for τ0 = 0.
(3.21)

Proof. Since X(m + 1,α) ⊂ X(m,α), the case τ0 �= 0 is an immediate consequence of Definition 3.2 and Lemma 3.3.
Now, let τ0 = 0 and g0 ∈ X(m + 2,α). As in the proof of Lemma 3.3, we consider an ω : [0,1] → R × X(m + 1,α) with

ω(0) = (0, g0) and ω′(0+) = (τ̄0, ḡ0) ∈ R× X(m +1,α). Again, we use the shortcut notation (τu, gu) = ω(u) and obtain from
the differentiability of ω at 0+ for any ε̂ > 0 a δ̂(ε̂) > 0 such that for all u ∈ [0, δ̂(ε̂)]

|τu − τ̄0u| � ε̂u and ‖gu − g0 − ḡ0u‖X(m+1,α) � ε̂u. (3.22)

Also, we get from uniform continuity a δ̌(ε̂) > 0 such that for all k = 0,1, . . . ,m, z ∈ R and ζ ∈ [−δ̌(ε̂), δ̌(ε̂)]
∣∣eα|z+ζ | g(k+2)

0 (z + ζ ) − eα|z|g(k+2)
0 (z)

∣∣ � ε̂

|τ̄0| + ε̂
, (3.23)

∣∣eα|z+ζ | ḡ(k+1)
0 (z + ζ ) − eα|z| ḡ(k+1)

0 (z)
∣∣ � ε̂. (3.24)

Let ε > 0,

ε̂ = ε

6(m + 1) + 1
2 ‖g0‖X(m+2,α)

, (3.25)

δ = min

{
δ̂(ε̂),

δ̌(ε̂)

|τ̄0| + ε̂
,

1

|α|(|τ̄0| + ε̂)
,

ln(1 + ε̂
(|τ̄0|+ε̂)‖g0‖X(3,α)

)

|α|(|τ̄0| + ε̂)
,

ln(1 + ε̂
‖ḡ0‖X(2,α)

)

|α|(|τ̄0| + ε̂)

}
(3.26)

and u ∈ [0, δ]. It holds

∥∥�(τu, gu) − �(τ0, g0) − M(τ̄0, ḡ0)u
∥∥

X(m,α)
=

∥∥∥∥�(τu, gu) − g′
0 −

(
1

2
g′′

0 τ̄0 + ḡ′
0

)
u

∥∥∥∥
X(m,α)

�
∥∥�(τu, gu − g0 − ḡ0u)

∥∥
X(m,α)

+
∥∥∥∥�(τu, g0) − g′

0 − 1

2
g′′

0 τ̄0u

∥∥∥∥
X(m,α)

+ ∥∥�(τu, ḡ0) − ḡ′
0

∥∥
X(m,α)

|u|. (3.27)

As in Lemma 3.3, we give estimates for each of these three terms. From Eq. (3.22) and the definition of δ, we get

|τu| � (|τ̄0| + ε̂
)|u| � 1

|α| . (3.28)

For k = 0, . . . ,m, there exists a ζ ∈ [−|τu |, |τu|] such that
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eα|z|
∣∣∣∣ dk

dzk
�(τu, gu − g0 − ḡ0u; z)

∣∣∣∣ = eα|z|∣∣g(k+1)
u (z + ζ ) − g(k+1)

0 (z + ζ ) − ḡ(k+1)
0 (z + ζ )u

∣∣
� e|αζ |ε̂u

� eε̂u. (3.29)

In the second line, we used Eq. (3.22) and in the last line Eq. (3.28).
For τu = 0, the last two terms in Eq. (3.27) become zero and we are finished. In the following, let τu �= 0 without loss

of generality. Using Taylor’s formula g0(z + v) = g0(z) + g′
0(z)v + ∫ v

0 (v − ζ )g′′
0(z + ζ )dζ , we obtain by the use of (3.28) and

(3.23) for k = 0, . . . ,m by the same kind of estimates as in the proof of Lemma 3.3

eα|z|
∣∣∣∣ dk

dzk

(
�(τu, g0; z) − g′

0(z) − 1

2
g′′

0(z)τ̄0u

)∣∣∣∣ � eα|z|
∣∣∣∣∣ 1

τu

τu∫
0

(τu − ζ )
(

g(k+2)
0 (z + ζ ) − g(k+2)

0 (z)
)

dζ

∣∣∣∣∣
+ 1

2

∣∣eα|z|g(k+2)
0 (z)

∣∣|τu − τ̄0u|

�
(

1 + 1

2

∣∣eα|z|g(k+2)
0 (z)

∣∣)ε̂u. (3.30)

Considering the last term in Eq. (3.27), there is a ζ ∈ [−|τu |, |τu|] such that we get by the use of Eq. (3.24)

eα|z|
∣∣∣∣ dk

dzk

(
�(τu, ḡ0; z) − ḡ′

0(z)
)∣∣∣∣ = eα|z|∣∣ḡ(k+1)

0 (z + ζ ) − ḡ(k+1)
0 (z)

∣∣
�

∣∣eα|z+ζ | ḡ(k+1)
0 (z + ζ ) − eα|z| ḡ(k+1)

0 (z)
∣∣

+ (
e|αζ | − 1

)∣∣eα|z+ζ | ḡ(k+1)
0 (z + ζ )

∣∣
� ε̂ + ε̂. (3.31)

Altogether, we have∥∥�(τu, gu) − �(τ0, g0) − M(τ̄0, ḡ0)u
∥∥

X(m,α)
� εu (3.32)

which finishes the proof. �
Lemma 3.5. Let m ∈ N0 , α ∈ R, g0 ∈ X(m+2,α), τ̄0 �= 0 and ḡ0 ∈ X(m+1,α). Then, the discrete derivative � : R× X(m+1,α) →
X(m,α) is restricted strongly Hadamard differentiable at (0, g0) with respect to the initial slope ω′(0+) = (τ̄0, ḡ0).

Proof. Let ω : [0,1] → R × X(m + 1,α) be strongly differentiable with ω(0) = (0, g0) and ω′(0+) = (τ̄0, ḡ0). As before, we
use the shortcut notation (τu, gu) = ω(u). For any ε̂ > 0, we get from the strong differentiability of ω at 0+ the existence
of a δ̂(ε̂) > 0 such that for all u, t ∈ [0, δ̂(ε̂)]∣∣τu − τt − τ̄0(u − t)

∣∣ � ε̂|u − t| and
∥∥gu − gt − ḡ0(u − t)

∥∥
X(m+1,α)

� ε̂|u − t|. (3.33)

For ε̂ <
|τ̄0|

2 , Eq. (3.33) implies

|τ̄0|
2

|u − t| � |τu − τt | � 3|τ̄0|
2

|u − t| (3.34)

which includes the special case

|τ̄0|
2

u � |τu| � 3|τ̄0|
2

u. (3.35)

Again, we obtain from the uniform continuity of eα|z| g(k+2)
0 (z) and eα|z| ḡ(k+1)

0 (z) a δ̌(ε̂) > 0 such that for all k = 0,1, . . . ,m,

z ∈ R and ζ ∈ [−δ̌(ε̂), δ̌(ε̂)]∣∣eα|z+ζ | g(k+2)
0 (z + ζ ) − eα|z|g(k+2)

0 (z)
∣∣ � ε̂, (3.36)∣∣eα|z+ζ | ḡ(k+1)

0 (z + ζ ) − eα|z| ḡ(k+1)
0 (z)

∣∣ � ε̂. (3.37)

Let ε > 0,
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ε̂ = min

{ |τ̄0|
2

,
ε

(m + 1)(20 + 7e) + 1
2‖g0‖X(m+2,α)

}
, (3.38)

δ = min

{
1

|2ατ̄0| , δ̂(ε̂), δ̌(ε̂),
2 ln(1 + ε̂

‖g0‖X(m+2,α)
)

3|ατ̄0| ,
2 ln(1 + ε̂

‖ḡ0‖X(m+1,α)
)

3|ατ̄0|
}

(3.39)

and u, t, |u − t| ∈ [0, δ]. The case t = 0 follows already from Lemma 3.4. Also, the case t = u is trivial. Therefore, let 0 < t < u.
By our choice of ε̂ and Eq. (3.33), this implies 0 < |τt | < |τu |. It holds∥∥�(τu, gu) − �(τt, gt) − M(τ̄0, ḡ0)(u − t)

∥∥
X(m,α)

=
∥∥∥∥�(τu, gu) − �(τt, gt) −

(
1

2
g′′

0 τ̄0 + ḡ′
0

)
(u − t)

∥∥∥∥
X(m,α)

�
∥∥�

(
τt, gu − gt − ḡ0(u − t)

)∥∥
X(m,α)

+ ∥∥�(τu, gu − g0 − ḡ0u) − �(τt, gu − g0 − ḡ0u)
∥∥

X(m,α)

+
∥∥∥∥�(τu, g0) − �(τt, g0) − 1

2
g′′

0 τ̄0(u − t)

∥∥∥∥
X(m,α)

+ ∥∥�(τt, ḡ0) − ḡ′′
0

∥∥
X(m,α)

|u − t| + ∥∥�(τu, ḡ0) − �(τt, ḡ0)
∥∥

X(m,α)
u. (3.40)

From Eq. (3.35), we get |τt | < |τu | < 3|τ̄0|
2 u � 1

|α| . Thus, for k = 0, . . . ,m there exists a ζ ∈ [−|τt |, |τt |] such that

eα|z|
∣∣∣∣ dk

dzk

(
�

(
τt, gu − gt − ḡ0(u − t); z

))∣∣∣∣ = eα|z|∣∣g(k+1)
u (z + ζ ) − g(k+1)

t (z + ζ ) − ḡ(k+1)
0 (z + ζ )(u − t)

∣∣
� e|α|(|z|−|z+ζ |)ε̂|u − t|
� eε̂|u − t|. (3.41)

Here, we used Eq. (3.33).
Next, we consider the second term of Eq. (3.40): ‖�(τu, f ) − �(τt , f )‖X(m,α) with f (z) = gu(z) − g0(z) − ḡ0(z)u. From

Eq. (3.33), we get ‖ f ‖X(m+1,α) � ε̂u. Using Taylor’s formula f (z + w) = f (z) + ∫ w
0 f ′(z + w)dζ , we obtain

eα|z|
∣∣∣∣ dk

dzk

(
�(τu, f ; z) − �(τt, f ; z)

)∣∣∣∣ = eα|z|
∣∣∣∣∣ 1

τu

τu∫
0

f (k+1)(z + ζ )dζ − 1

τt

τt∫
0

f (k+1)(z + ζ )dζ

∣∣∣∣∣
� eα|z|

(∣∣∣∣∣ 1

τu

τu∫
τt

f (k+1)(z + ζ )dζ

∣∣∣∣∣ +
∣∣∣∣∣
(

1

τu
− 1

τt

) τt∫
0

f (k+1)(z + ζ )dζ

∣∣∣∣∣
)

� 6eε̂(u − t). (3.42)

Here, we used Eqs. (3.34) and (3.35).
For the third term of (3.40), Taylor’s formula – together with the same kind of estimates as above – leads to

eα|z|
∣∣∣∣ dk

dzk

(
�(τu, g0; z) − �(τt, g0; z) − 1

2
g′′

0(z)τ̄0(u − t)

)∣∣∣∣ �
(

6 + 1

2

∣∣eα|z|g(k+2)
0 (z)

∣∣)ε̂(u − t). (3.43)

In the same fashion, we get for the remaining terms of (3.40)

eα|z|
∣∣∣∣ dk

dzk

(
�(τt, ḡ0; z) − ḡ′

0(z)
)∣∣∣∣ � 2ε̂ (3.44)

and

eα|z|
∣∣∣∣ dk

dzk

(
�(τu, ḡ0; z) − �(τt, ḡ0; z)

)∣∣∣∣u � 12ε̂(u − t). (3.45)

Thus, we end up with∥∥�(τu, gu) − �(τt, gt) − M(τ̄0, ḡ0)(u − t)
∥∥

X(m,α)
� ε|u − t| (3.46)

which is the stated result. �
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Lemma 3.6. Let m ∈ N0 , α ∈ R, (τ0, g0) ∈ R × X(m + 2,α), τ̄0 �= 0 and ḡ0 ∈ X(m + 1,α). Then, the shift operator
A : R × X(m + 1,α) → X(m,α) and the discrete derivative � : R × X(m + 1,α) → X(m,α) are restricted strongly Hadamard
differentiable at (τ0, g0) with respect to the initial slope ω′(0+) = (τ̄0, ḡ0).

Proof. The shift operator A can be written in the form

A(τ , g) = (τ − τ0)�
(
τ − τ0, A(τ0, g)

) + A(τ0, g). (3.47)

Since A(τ0, g) does not depend on τ and, therefore, is linear in (τ , g), the restricted strongly Hadamard differentiability of
A(τ , g) at (τ0, g0) with respect to the initial slope (τ̄0, ḡ0) follows immediately from Lemma 3.5 and the common rules of
differentiation.

Moreover, we get by Definition 3.2 the restricted strongly Hadamard differentiability of �(τ , g) at (τ0, g0) with respect
to the initial slope (τ̄0, ḡ0) for τ0 �= 0. The case τ0 = 0 has already been proved in Lemma 3.5. �
Corollary 3.7. Let m ∈ N0 , α ∈ R, τ0 ∈ R, g0 ∈ X(m + 2,α) if τ0 �= 0 and g0 ∈ X(m + 3,α) if τ0 = 0 respectively. Then, the discrete
second derivative �2 : R × X(m + 2,α) → X(m,α) given by

�2(τ , g) =
{

1
τ 2 (A(τ , g) − 2g + A(−τ , g)) for τ �= 0,

g′′ for τ = 0
(3.48)

is Hadamard differentiable at (τ0, g0) with the derivative

M(τ̄ , ḡ) =
⎧⎨
⎩ (

A(τ0,g′
0)−A(−τ0,g′

0)

τ 2
0

− 2
τ0

�2(τ0, g0))τ̄ + �2(τ0, ḡ) for τ0 �= 0,

ḡ′′ for τ0 = 0.
(3.49)

Furthermore for τ̄0 �= 0 and ḡ0 ∈ X(m + 2,α), it is restricted strongly Hadamard differentiable at (τ0, g0) ∈ R × X(m + 3,α) with
respect to the initial slope ω′(0+) = (τ̄0, ḡ0).

Proof. Since

�2(τ , g) = �
(
τ ,�(−τ , g)

)
, (3.50)

this corollary is an immediate consequence of Lemma 3.6 and the chain rule. �
4. Existence of travelling wavefronts for the spatially discrete Nagumo equation

After these more general preparations, we are now able to prove Theorem 1.1. First, we give a lemma on the right
invertibility of the relevant derivative. This result will be the main ingredient in the subsequent proof of the theorem.

Lemma 4.1. Let 0 < b < 1. Then, the linear bounded operator Lb : R × X(2,1) → X(0,1) given by

Lb(c, u; z) = −4
(
1 − tanh2(z)

)
c + u′′(z) − 2bu′(z) − 2

(
3 tanh2(z) + 2b tanh(z) − 1

)
u(z) (4.1)

has a bounded right inverse.

Proof. Let 0 < b < 1 and f ∈ X(0,1). The inhomogeneous equation Lb(c, u) = f is equivalent to L̂b(u) = f̂ (c) with

L̂b(u; z) = u′′(z) − 2bu′(z) − 2
(
3 tanh2(z) + 2b tanh(z) − 1

)
u(z) (4.2)

and

f̂ (c; z) = f (z) + 4
(
1 − tanh2(z)

)
c. (4.3)

The homogeneous linear differential equation L̂b(u) = 0 has the two linearly independent solutions

u1(z) = 1 − tanh2(z), (4.4)

u2(z) = e2bz 1

1 − tanh2(z)

(
3 tanh4(z) − 6b tanh3(z) + 6

(
b2 − 1

)
tanh2(z)

− 2b
(
2b2 − 5

)
tanh(z) + (

2b4 − 8b2 + 3
))

(4.5)
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and the Wronskian

W (z) = 4b
(
b2 − 1

)(
b2 − 4

)
e2bz. (4.6)

Let us choose

c = −
∫ ∞
−∞

u1(ζ )
W (ζ )

f (ζ )dζ

4
∫ ∞
−∞

u1(ζ )
W (ζ )

(1 − tanh2(ζ ))dζ
. (4.7)

Both integrals exist since the integrands go exponentially to zero for z → ±∞. Also, the denominator is nonzero since the
integrand is positive. Then, f̂ satisfies

∞∫
−∞

u1(ζ )

W (ζ )
f̂ (c; ζ )dζ = 0. (4.8)

A solution of the inhomogeneous linear differential equation L̂b(u) = f̂ (c) is given by the variation of constants formula

u(z) = −u1(z)

z∫
0

u2(ζ )

W (ζ )
f̂ (c; ζ )dζ − u2(z)

∞∫
z

u1(ζ )

W (ζ )
f̂ (c; ζ )dζ. (4.9)

Solving the inhomogeneous equation L̂b(u) = f̂ (c) for u′′ , we obtain

u′′(z) = f̂ (c; z) + 2bu′(z) + 2
(
3 tanh2(z) + 2b tanh(z) − 1

)
u(z). (4.10)

Since e|z| f̂ (c; z) is uniformly continuous, the same becomes true for e|z|u′′(z) if e|z|u(z) and e|z|u′(z) have a bounded deriva-
tive. Thus, it is only left to prove the boundedness of u and its first two derivatives in our weighted norm.

It holds∣∣u1(z)
∣∣ � 4e−2|z|,

∣∣u′
1(z)

∣∣ =� 8e−2|z|, (4.11)∣∣u2(z)
∣∣ � 38e2bze2|z|,

∣∣u′
2(z)

∣∣ � 96e2bze2|z|,
1

|W (z)| � 1

4b(b − 1)
e−2bz < ∞.

In the case z � 0, this leads to

∣∣u(z)
∣∣ �

∣∣u1(z)
∣∣ z∫

0

|u2(ζ )|
|W (ζ )|

∣∣ f̂ (c; ζ )
∣∣ dζ + ∣∣u2(z)

∣∣ ∞∫
z

|u1(ζ )|
|W (ζ )|

∣∣ f̂ (c; ζ )
∣∣ dζ

� 4e−2z

z∫
0

19

2b(b − 1)
eζ

∥∥ f̂ (c)
∥∥

X(0,1)
dζ + 38e2(b+1)z

∞∫
z

1

b(b − 1)
e−(3+2b)ζ

∥∥ f̂ (c)
∥∥

X(0,1)
dζ

� 1

b(b − 1)

(
38

(
e−z − e−2z) + 38

3 + 2b
e−z

)∥∥ f̂ (c)
∥∥

X(0,1)

� 51

b(b − 1)
e−|z|∥∥ f̂ (c)

∥∥
X(0,1)

(4.12)

and in the same fashion∣∣u′(z)
∣∣ � 108

b(b − 1)
e−|z|∥∥ f̂ (c)

∥∥
X(0,1)

. (4.13)

In the case z < 0, we get by Eq. (4.8)

∣∣u(z)
∣∣ �

∣∣u1(z)
∣∣ 0∫

z

|u2(ζ )|
|W (ζ )|

∣∣ f̂ (c; ζ )
∣∣ dζ + ∣∣u2(z)

∣∣ z∫
−∞

|u1(ζ )|
|W (ζ )|

∣∣ f̂ (c; ζ )
∣∣ dζ

� 76

b(b − 1)
e−|z|∥∥ f̂ (c)

∥∥
X(0,1)

, (4.14)

∣∣u′(z)
∣∣ � 172

e−|z|∥∥ f̂ (c)
∥∥

X(0,1)
. (4.15)
b(b − 1)
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Using once more Eq. (4.10), we obtain for all z ∈ R∣∣u′′(z)
∣∣ = ∣∣ f̂ (c; z) + 2bu′(z) + 2

(
3 tanh2(z) + 2b tanh(z) − 1

)
u(z)

∣∣
� e−|z|(∥∥ f̂ (c)

∥∥
X(0,1)

+ 2
∥∥u′∥∥

X(0,1)
+ 12‖u‖X(0,1)

)
� 1257

b(b − 1)
e−|z|∥∥ f̂ (c)

∥∥
X(0,1)

. (4.16)

Thus, the linear bounded operator Lb : R × X(2,1) → X(0,1) has a bounded right inverse. �
Proof of Theorem 1.1. Let 0 < a < 1

2 and u0(z) = 1
2 (1 + tanh(z)). We describe the asymptotic transition d → ∞ by letting

τ → 0+ in

d(τ ) = 1

8τ 2
, (4.17)

c(τ ) = 1 − 2a

4τ
+ c1(τ ), (4.18)

u(τ ) = u0 + τu1(τ ) (4.19)

with u1(τ ) ∈ X(2,1). Let τ > 0 be sufficiently small. Using the stretching operator Sτ (u; z) = u(τ z), we get

T̂
(
τ , c1(τ ), u1(τ )

) = 1

τ
S−1
τ T Sτ

(
u(τ )

)
= −c(τ )u′(τ ) + τd(τ )�2(τ , u(τ )

) + 1

τ
f
(
u(τ )

)
= −1 − 2a

4
u′

1(τ ) + 1

8
�2(τ , u1(τ )

) − u′
0c1(τ ) + û0(τ ) + f̂

(
τ , u1(τ )

)
(4.20)

with

û0(τ ; z) = 1

τ

(
−1 − 2a

4
u′

0(z) + 1

8
�2(τ , u0; z) + f

(
u0(z)

))

= 1

8τ

(
tanh2(τ )

τ 2(1 − tanh2(τ ) tanh2(z))
− 1

)
tanh(z)

(
tanh2(z) − 1

)
, (4.21)

f̂
(
τ , u1(τ )

) = 1

τ

(
f
(
u0(z) + τu1(τ ; z)

) − f
(
u0(z)

))
= −τ 2u3

1(τ ; z) − τ

2

(
(1 − 2a) − 3 tanh(z)

)
u2

1(τ ; z)

− 1

4

(
3 tanh2(z) + 2(1 − 2a) tanh(z) − 1

)
u1(τ ; z). (4.22)

Since

lim
τ→0+ û0(τ ; z) = 0, (4.23)

the operator T̂ is well defined in the limit τ → 0+ . Then, it becomes

T̂ (0, c1, u1; z) = −1 − 2a

4
u′

1(z) + 1

8
u′′

1(z) − 1

2

(
1 − tanh2(z)

)
c1

− 1

4

(
3 tanh2(z) + 2(1 − 2a) tanh(z) − 1

)
u1(z). (4.24)

From û0(τ ) ∈ X(0,1), it follows that T̂ maps R
+
0 × R × X(2,1) → X(0,1). By Corollary 3.7 and the common rules of differ-

entiation, it is Hadamard differentiable at all (τ , c1, u1) ∈ R
+
0 × R × X(2,1) with τ �= 0 as well as at the origin. Also, it is

restricted strongly Hadamard differentiable at the origin with respect to any initial slope (1, c̄1, ū1) ∈ {1} × R × X(2,1).
For τ = 0, T̂ is already a linear bounded operator. Therefore, M2 = D(c1,u1) T̂ (0,0,0) : R × X(2,1) → X(0,1) is given
by the right-hand side of Eq. (4.24). If we multiply M2 by 8 and set b = 1 − 2a, we get the linear bounded operator
Lb : R × X(2,1) → X(0,1) given by

Lb(c1, u1; z) = −4
(
1 − tanh2(z)

)
c1 + u′′

1(z) − 2bu′
1(z) − 2

(
3 tanh2(z) + 2b tanh(z) − 1

)
u1(z). (4.25)

By Lemma 4.1, it has a bounded right inverse.
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Now, we are able to apply Corollary 2.2. For sufficiently small τ � 0, we obtain the existence of a family of functions
(c1(τ ), u1(τ )) ∈ R × X(2,1) which satisfy (c1(0), u1(0)) = (0,0), limτ→0+ (c1(τ ), u1(τ )) = (0,0) and

T̂
(
τ , c1(τ ), u1(τ )

) = 0. (4.26)

The backward transformation leads to a solution

u(z) = u0(τ z) + τu1(τ ;τ z) (4.27)

of the travelling wave equation (1.4) for d = 1
8τ 2 and c = 1−2a

4τ + c1(τ ). By construction, it holds u ∈ X(2,0) ⊂ C2(R),
u(−∞) = 0 and u(∞) = 1. Furthermore, c > 0 if 0 � τ is sufficiently small. �
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