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1. Introduction

Suppose that £2 is a domain in RN with sufficiently smooth boundary 3£2. Consider the quasilinear elliptic problem

—Appu=fKx,u) ing,
u=0 onas2,

where Apxu = div(jVu|P®=2vuy) is the p(x)-Laplace operator and f : 2 x R — R is a Caratheodory function. When p is a
constant this operator appears in models which describe a variety of phenomena in nature including:

(i) Fluid dynamics. The shear stress T (x) and the gradient Vu of the velocity of the fluid are related via the equation
T (x) = r(x)|Vu(x)|P~2Vu(x). When the fluid is Newtonian p =2 while if it is pseudoplastic or dilatant, p > 2 or p < 2
respectively [9].

(ii) Flow through porous media (for instance in flow through rock filled dams), where p =3/2, see [16].

(iii) Nonlinear elasticity, with p > 2, see [12,18].
(iv) Glaciology, p € (1,4/3], see [13].
(v) Image restoration, p € [1, 2], see [5,7].

When the exponent p(.) is not constant, the p(x)-Laplace operator appears in models for

(i) electrorheological fluids [3,15];
(ii) image restoration, where p(x) € [1, 2], see [8];
(iii) nonlinear Darcy’s law in porous medium [4].
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In this paper we study the problem

(1)

—Apl = —Aa®)|ulP®~2u + ubx)[ul9®=2u — ec(®)|u*™@~2u  in £2,
u=0 onads2,

where £2 is a bounded domain in RN with sufficiently smooth boundary 82, p,q,t: £2 — (1, +00) are continuous functions
while A, u and € are positive constants. We assume further that the function b(.) changes sign while a(.) and c(.) remain
nonnegative in £2. Problem (1) was considered in [2] for the case ¢ =0 with p(x) < q(x) in £2 where, via an application of
the mountain pass theorem, the existence of an infinite number of solutions was proved. The case £2 = RN is studied in [1]
where, under appropriate assumptions on the behavior of q(.) at infinity, the existence of a solution is shown. Note that the
sign of the solutions is not examined in [2], while none of the aforementioned papers examines the case where q(x) < p(x)
in £2.

Our purpose in this work is to provide conditions on the data of (1) which guarantee the existence of a nonnegative
solution and also examine the behavior of the solution and the energy functional as € — 0. To do this we employ Pohozaev’s
fibering method, see [11,14], which decomposes the Sobolev space Wg,p()(g) into rays and examines the behavior of the
energy functional on them.

2. Mathematical background
In this section we recall some definitions and basic properties of the variable exponent spaces LP®)(£2) and W1-PO(£2).
For more details see [10].

Let

C+(£2)={p:2 — R: pis continuous and p(x) > 1 for every x € 2}.

If s € C4(£2) we denote st := sup,.g s(x) and s~ :=inf, 5 s(x).
Given p € C(£2), the variable exponent Lebesgue space LP")(£2) is defined by

LPO(Q) = {u : 2 — R: u is measurable and f [ulP® dx < oo}.
2
This space supplied with the so-called Luxemburg norm

. u
lullpe) = mf{A > 0: /‘X
2

becomes a Banach space and shares many of the properties of the classical Lebesgue spaces like separability, reflexivity and
uniform convexity. It is easy to see that ||ufl,) satisfies the following inequalities:

1/p~ 1/p*
(/|u|ﬂ<x>dx) <lullpe) < ([|u|ﬂ<x>dx) if [|ullpe) < 1 (2)
2 2

1

1/p* /p~
( / |u|P<">dx) <ullp) < ( f |u|p<">dx) if ullpe) > 1. 3)
22 22

Furthermore, if p, s € C(§2) with p(x) < s(x) in 2, then the embedding L5¢)(£2) C LP")(£2) is continuous.
The variable exponent Sobolev space W1-P0)(2) is defined by

pX)

dxgl}

and

WhPO(2) = {u e PV (2): [Vul € LPV(£2)}
and is equipped with the norm
lull1,pey = ullpey + 1VUllpe)-

The closure of C3°(£2) in W1-P1)(£2) is denoted by Wé’p(')(()). The critical Sobolev exponent is defined by

Np(x)
p*(x) = { N PG <N,
400 if p(x) > N.
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The spaces W1PO)(£2) and wg'p“(g) are separable, reflexive and uniformly convex Banach spaces. The analogue of
Poincaré’s inequality states that if u e W(;'p(') (£2), then

lullpey) < CliVullpe (4)

for some C > 0. Consequently, the norms |[u|l1 p¢) and ||Vu|l,() are equivalent on Wé’p(‘)(.Q). Furthermore, if q(x) < p*(x)
in £2, then W1-PO)(2) is imbedded compactly in L) (£2). Thus, if u € Wé‘p(')(Q), in view of (2), (3) and (4)

B
/|u|q(")dx<c(/|Vu|p(x)dx) , (5)
2 2

where ¢ > 0 and

if |lullgy <1and [|[Vullp) <1,

Z%
g g—i if ullq) = 1and [Vullpy <1, (6)
| & if il > 1and [ Vullp > 1,
g_j if lullgcy <1and |Vullp) > 1.

3. Hypotheses and main results
We make the following assumptions concerning the data of problem (1):

H(1) p,q,t e C,(£2) with p(x) < N and q(x) < p* < t(x) for every x € 2.
H(2) a,b,ce L*°(82) with a,c >0 a.e. in £2 and m{x € £2: b(x) >0} > 0.

The energy functional of problem (1) is defined on the space E := Wé‘p(‘)(fz) N L'©)(£2) which is supplied with the norm

lulle =: llullt,pey + lullecy,

and is given by
1 a(x b(x c(x
q>5(u)=/—|Vu|P<X>dx+A/Q|u|P(X>dx—u/Q|u|q<">dx+sfﬂ|u|“">dx. (7)
pX) pX) q(x) t(x)
Q Q 2 Q
We define the extended functional F : R x E — R by setting for any r >0 and v € E

1
F(r, v)=f—|Vv|p(")rp(")dx+)x/‘@|V|p(X)rp(x)dx
p(x) J P

b®) a0 a0 / X x0t00
- — |11 dx + e | —=|v|"Ort'® dx. 8
M!q(X)l | J ! (8)

If u =rv is a non-trivial critical point of &.(.), then

Fr(r,v)=0. 9)
Assume that r =r(v) > 0 satisfies (9) for every v in E\{0} and r(.) € C!(E\{0}). Then the reduced functional

B, (V) i= @, (r(v)v) (10)

is well defined and it is continuously differentiable on E. We will study 58(.) subject to the constraint

H(v)=1,
where H : E — R is defined by
Hv) :=/[|Vv|l’<x>+Aa(x)|v|P<">]dx+s/c(x)|u|f<x> dx. (11)
2 2

The main tool we will use is the fibering method which is based on the following fact:
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Lemma 1. (See [14, Theorem 1.2.2].) Let H : E — R be a functional which is continuously Fréchet-differentiable in E and satisfies the
conditions:

H©0)=0 and (H'(v),v)#0 ifH(v)=1. (12)

If v # 0 is a conditional critical point of o, (.) under the constraint H(v) = 1, then u :=r(v)v is a nonzero critical point of ®.(.).

It is clear that the functional H, as defined in (11), satisfies (12).
We distinguish the following cases:

Casel. gt <p~.
Theorem 2. Suppose that H(1) and H(2) are satisfied, 1., v > 0 and ¢ > 0. Then (1) admits a nonnegative solution.

Proof. Let

s':={veE: Hwv) =1} (13)

and

B:= {v €E: /b(x)|v|q<x> dx > 0}.
2

Relation (9) is equivalent to

/[|Vv|P<"> + 2a(x)|v[P@]rP® dx+s/c(x)|v|‘<">rf<"> dx:ﬂfb(x)|v|Q(x)rq(x) dx, (14)
2 2 2

which, in view of H(2), has a unique positive solution r :=r(v) for every v € B. By the implicit function theorem, see
Theorem 4.B, p. 150 in [17], r(.) € C1(E\{0}). If v e SN B and r(v) > 1, then by H(1) and (14)

rpf{/[Wvlp(")+Aa(x)|v|p(")]dx+s/c(x)|v|‘(")dx} =P gu/b(x)|v|q°‘)rq<") dxgr‘ﬁ,u/lep(") dx,
2 2 2 2
and so

Pt ,u/b|v|p(") dx.
Q
Therefore, r(.) is bounded on S! N B. On the other hand, if v € S N B, by H(1), (8) and (14),

~ 1 1 1 1 1 1
D (v) < (T — _+> / |Vv|p(x)rp(x) dX+A<f _ _+> /a|v|P(X)rP(X) dX+€<T _ _+) [C|V|t(x)rp(x) dx,
p q A p q A t q 5

and so (/55(\/) < 0. Consequently,
M :=inf{®.(v): v e S'nB} <0.

We will show that the infimum is attained at a point in S N B. To show this we let v, € S!, n € N, be a sequence such that
@(vn) — M. Since v, is bounded in E, there exists a subsequence of vy, still denoted by v,, such that v, — vo weakly
in WS”JO(Q) and L' (£2) and strongly in LP)(£2) and L) (£2). Furthermore, since r(.) is bounded on S' N B, we may also
assume that r(v,) — ro. By the lower semicontinuity of the norms ||.|l1,p¢) and ||.[l¢) we see that

@, (rgvo) < liminf g (vy) = M, (15)
n—+o00
which shows that rg > 0 and vq # 0. Also, by applying (14) to the sequence v, and allowing n — +o0, we get

/lVVolp(x)rg(X) dx+x/a|v0|p(x)rg(x) dx+8/c|vo|t()<)r6(x)dx

<u / blvo|* g™ dx,
2
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which yields rg <1(vp) and rovg € B. If we assume that ry < r(vg), then by exploiting the fact that the function r — @, (rv)
is strictly decreasing on the interval [0, r(vg)] we have

B¢ (v0) = D¢ (r(vo)vo) < Pe(rovo) = M. (16)
On the other hand, for p > 0, in view of (14), r(pvo) satisfies

/ IV pvolP@r(pve)P™ dx + A / alpvolPWr(pvo)?™ dx
2

- f blpvol"™r(pve) 1™ dx+ & / clpvol™™r(pve)'™ dx=0
2 2
Thus,

[IVVOIP(X)[PT(PVO)]p(X) dX+A/alvulp(")[pr(pvo)]”(") dx

2
- / blvol"™[pr(pvo) ™™ dx + ¢ / clvol @[ pr(pvo)]™ dx=0,
2
which shows that
r(vo) = pr(pvo). (17)

Let s > 0 be such that svy € S'. Combining relations (16) and (17) we get

D, (svo) = P (r(tvo)svo) = Pe (r(vo)vo) = Ps (Vo) < M,

contradicting the definition of M. Thus, we must have ro =r(vg), and so (15) and (17) imply that @, (svp) = M. By Lemma 1
we see that u :=r(vg)vp is a solution of (1). Since |u| is also a minimizer, we may assume that u > 0. O

Case2. pt <q~.

The following lemma demonstrates that in this case (1) may not have a non-trivial solution. It is based on a similar
result in [6].

Lemma 3. Assume that H(1) and H(2) hold with b(x) > 0 a.e. and c(x) > n > 0 a.e. in 2. Then, for every A, & > 0O there exists
w* (A, &) > 0 such that (1) does not admit a non-trivial solution for 0 < ;t < w*(A, ).

Proof. Let u be a solution to (1). Then we have

/[|Vu|p(") +Aa(x)|u|P<">]dx+s/c(x)|u|f<x> dx:u/b(x)|u|q(")dx. (18)
2 2 2

Young's inequality implies that

eqt ®
u [ beom ax< 5 [ Ol d+ T =0 7 e ¢ [ ccomm ax,

2 2 2
where
+ . + .
t—tqur ifpu>1, s tfj if [bllec 2 1,
y:: _ = _
t : t :
W lfl/L<l, W 1f||b”00<1s
% ife >1
g=1"0
tﬂ? ife <1,

and so (18) yields

x)
f |Vu|p(x)+Aa(x)|u|p(x)]dx< = —4 ———u|bl.e ¢/c(x)q<x‘§—r<x> dx. (19)
2 2
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By (6) and (18) we get
1

. B
c(/b(x)lul"(") dx) g/[wuwm+Aa(x)|u|l’<">]dx<u,fb(x)|u|q® dx (20)
2 2 2

where ¢ > 0 and B is defined by (6) with g in the place of s. Thus,

BN 5 1
(%)ﬁ 1 gé(/b(x)|u|q<x)dx>ﬁ. 1)
2

In view of (19)-(21) we get

o _p1
t— ¢ch-1g¢ y(B—D+1
. Od

w=pr ) :=< - 0
T by, Sy co T dx

Lemma 4. Suppose that c1, ¢y are positive constants, y : 2 — R is a nonnegative essentially bounded function with m{x € £:
y(x) >0} >0and q: 2 — R is a continuous function such that 1 < p < q(x) <t for every x € 2, where p,t € R. Then, for large
enough p > 0, the equation

ar? +cor' —,uf y(ri®dx =0
2

admits two solutions r1,r, > 0.

Proof. Let g(r) :=c1 4+ cor'™P — [, y ()ri®=Pdx, r > 0. Then g(0) =c¢q and lim,_, ;o g(r) = 4oc. It is easy to see that
g/(r) has a unique positive zero. Since infy-o g(r) < 0 for large enough w > 0, the result follows. O

For the next existence result we make the following hypotheses concerning the function c(.) and the exponents p,q
and ¢:

H(3) supp(b(.)™) C supp(c(.)), where b(x)* = max{b(x), 0}, x € £2.

. —ptrt—p— —(t——p~
H(@) p* (= p7)>q (" —q") and £ <min{ T Plmbd o, S0,
H(5) q(.) is a constant or p(.) and t(.) are constants.

Note that if p(.), q(.) and t(.) are constant functions, then H(4) is satisfied if t < p +q.

Theorem 5. Suppose that H(1)-H(5) hold with p™ < q. Then for every A, & > 0 there exists ;* (X, &) > 0, such that (1) admits a
nonnegative solution for every pu > (t*(%, €).

Proof. Assume first that g(.) is constant. For v € B and r > 0 define

JolIVVIP® 4 2a(x) | v[POrPO~0dx + ¢ [, c(x)|v]*®rf®—ddx
Jo b@)|v]9dx ’

JolIVVIP® + 2a(x)|v[P®]dx

Job(|viddx

Ge(r,v):=

c1(v):=

and

& [oc|v[*® dx

W) == v dx

Then, if r > 1,

WP et "1 =gl(r,v) < Ge(r,v)
<ghrv)=c(r 4 vyt I (22)

while, if r <1,
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WP eyt 1= gl (r,v) <Ge(r,v)
<glrvy=cir’ T+t O (23)
Thus,

lim G.(r,v) = lim Gg(r,v) = +o0.
r—0t r——+00
Note that 2G,(.,v) =0 iff

/(q —p@)[IVVIPY +ra@)|v|PP]rP® dx — & /(t(x) —q)c()|v|*Pr® dx = 0. (24)
2 2

It is easy to see that (24) has a unique zero r,(v) which is a point of global minimum for G, (., v). Consequently, for large
i > 0, the equation G.(r,v) = has exactly two solutions r1(v) and ry(v) with r{(v) < ra(v). Note that r{(v) and rp(v)
are also the solutions of (14). We define r(v) :=r,(v). It is easy to see that r(v) increases as j increases or ¢ decreases.
Let
Bo(w) == {u € B: 1> Ge(ru(u), u)}.

It is clear that Bf(u) # @ if p is large enough. Next, we will find an upper bound for r.(v) when v € Bf(u). By the
definition of Bg (1)

/ pPRO[IVYIPD +2a() VPO, (v)PX® dx + & / EX)CE)|v[ P, (v)!® dx
2 2
<uqr*(v)"/b(x)|v|qu,
2
so, if ry(v) > 1, then

) et / VI dx < pugra(v) / b0V dx,
2 2

while if r,(v) < 1, then

r*(v)t+et_/c(x)|v|t(") dx < Mqr*(v)qu(x)lvlq dx.

2 2
Consequently,
1/(t7—q)
1 [o bx)|v|?dx ,
r*(v) < [81‘7 fg C(X)'V't(x) dX ’ lfr*(v) 2 17 (25)
and
b agy V-
r(vy < [ 9L bIVITdx ifrv) <1.
et~ [ c(X)|v|*® dx

We shall show that if v € B§() N S! then

n
1</c(x)|v|t(")dx+d</c(x)|v|t(")dx> ,
2 2

where d > 0 and
I
%ﬁqﬁ‘“’) if vl <1andre(v) >1,
_ A if [[vllg <1and ry(v) <1,
=1 qet-pH—tt@-pH)
tH(tt—q)

A
%ﬁqﬁ‘“’) if |vllg>1andr.(v) > 1.

iflvlg=>Tandr.(v) <1,
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We will only present the case where [[v[q <1 and r.(v) > 1, the remaining three can be treated similarly. Since
Go(re(v),v) < u, we have

/[|Vv|p(") +2a() VPO (v)P® dx < Mr*(v)q/b(x)|v|q dx, (26)
2 2

and so

()P / [IVVIP® 4+ 2a@)|vIPP]dx < r.(v)Tu / b)|v|?dx,
2 2
which, in view of (11), yields

(1 —/c(x)|v|“"> dx) <r*(v)q_p7;¢/b(x)|v|qu.
2 2

On combining this inequality with (25) we get

q=p_

(8/c(x)|v|t(x) dx) c (1 —/c(x)|v|t(") dx)
2 Q

N =
< (“ti_) - (M/b(x)|v|qu> - 27)
2

Hypotheses H(3) and H(4), (2) and (3) imply that

q
N +
/b(x)|v|qu<d</c(x)|v|f(")dx)t
2 2

for some d > 0, which, in view of (27), gives

qt~—p)—tt@-p)

a =yt ap)
1</c(x)|v|f<")dx+d</c(x)|v|f<x>dx> ce
2 2

where d > 0. Consequently, fQ c)|v|'Wdx, v e Bg (1), is bounded away from 0. By (14)

/c(x)|v|t(x)rt(x) dx < ,urq/b(x)|v|q dx,
2 2
which implies that, if r > 1,

PR W [obx)|v|9dx

< — 28
& [o c(X)|v|'® dx (28)
while, if r <1
b(x)|v|9dx
g o W fob@)|v]| (29)

= & [oc|v[(®dx’

Since fg cx)|v|®dx, v e B§ (), is bounded away from 0 we see that r(v), v € Bg(u), is bounded above. In view of (8),
(10) and (14)

~ 1 b
@ (v) < E/[|Vv|p(x)+Aa(x)|v|p(")]rp(x) dx—u/ %Wﬂrqu—f-efCt(—f)|v|t(")rt(x) dx
2 2 2

1 1 1 1
= (5 - t_—) /[Wvlp(") + 2a@)|v|PO]rP® dx — ,u(a - t_—) /b(x)|v|qrq dx. (30)
2 2

Since r(v) increases with p and p(x) < q in £, by taking u large enough, say u*(x, &), we have that as(v) < 0 for at
least one v e S1 N B (p* (1, €)). We claim that the infimum for 58(.) is attained at a point of S1 N Bg(p* (%, €)). To show
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this, let v, € S', neN, be a sequence such that @(vn) — M. Since v, is bounded in E, there exists a subsequence of vy,
still denoted by vy, such that v, — vg weakly in W(l)’p(‘)(.Q) and L'©(£2) and strongly in LP®)(£2) and L9(£2). Furthermore,
since r(.) is bounded in S' N Bg(p* (1, €)), we may also assume that vg # 0 and r(v,) — ro > 0. Working as in case 1
and exploiting the fact that the function r — &, (rv) has a global minimum at r =r(vg) we conclude that rg = r(vg). The
sequence r.(uy), n € N, is bounded so we may assume that r,(u;) — rg. In view of (22) and (23) we get

ming>1 gl (r, ve)  ifr(ve) 21,
Ming<r<1 g2(r, vn) ifru(vy) <1,

Ge (r*(Vn)a Vn) = [

g g-p™

for every n € N. Since min; >4 g} (r, vp) = miny~g gl1 (r, vn) = c1(vp) =P co(vy) 7 -PT , with a similar inequality holding for
ming<r<1 g (v, vn), we see that, in the limit, G4 (r%, vo) > 0. Thus r? > 0. The lower semicontinuity of the norms yields

"= Gg(rg, vp). Since the minimum of r — G.(r, vg) occurs at r =r,(vp), we also have u > G (r«(vg), vo). We claim that
U > Gg(re(vp), vo). Indeed, let us assume that p = G, (r«(vo), Vo). Since u = G¢(r(vy), vy) for every n € N, we obtain

/[Ianl"(X) +2a(0) vy PO Tr (v PP dX+S/C(X)Ivnl“")r(vn)“x) dx
2 2

—urvn)® [ bolvaltax
Q
which in the limit gives

[ [IVvolP® + xa(x)|volPPJr(vo)P™® dx + ¢ / c®)|vol"@r(vo)'™ dx

Q Q
<Mr(vO)q[b(X)lvOlqu,
Q
that is, w > G¢(r(vo), vo). Thus
r«(vo) =r(vo) =ro. (31)
On the other hand, %Gg(r*(vn), vp) =0, and so for every n e N

( / PE[IVValP® 4+ 2a(0) [va PO | (va) PX dx + & / r<x>c<x>|vn|f<">r*(vn)“”)( / b<x>|vn|qr*(vn>"dx>
2 2 2

= </[|an|"(x)+ka(X)lvnl"(")]r*(vn)p"‘) dX+8/C(X)Ivnl“")r*(vn)“X)><fq(X)b(X)Ivnlqr*(vn)qu>,
2 2 2

which implies that

(a-r7) /[lenH’(X) + 2000 [Va PP T, (va)P® dx
2

>e(t” —q) / vl ®r.(va) ™ dx. (32)
2
In view of (8), (14), (31), (32)

M= nEToo D¢ (r(va)vn)

, @-pHE —q "-
= HETOO‘?( 1 p+p(q —p) Lo + 1 /C(x)lvﬂ|t(x)r*(vn)t(x) dx >0,
2

a contradiction. Thus u > G¢(r«(vo), Vo), that is vg € BS(,LL*(A, ¢€)). Working as in the proof of Theorem 2 we conclude that
u :=|r(vg)vp| is a solution to (1). . _
Assume next that p(x) = p and t(x) =t for every x € £2 while q(.) varies with x € £2. By (14),
rP/[|VV|P<"> +ka(x)|v|p(x)]dx+8rt/c(x)|v|t(x) dx:ufb(x)|v|q(x)rq(x) dx, (33)
Q Q Q
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and Lemma 4 implies that (33) admits exactly two solutions r1(v) and ra(v) with r{(v) < r2(v). A nonnegative solution
to (1) can be obtained by modifying the previous arguments to our current assumptions. O

It is clear that if ¢ =0 the previous theorem is not valid. In order to further study problem (1) we will examine the
behavior of the solutions to (1) as € — 0. Let A >0, &0 > 0 and @ > w*(A, &). Theorem 5 implies that (1) has a solution
Up =Tey(Vey)Vey, Ve € BG(11) N S1. Assume first that q(.) is a constant. We claim that (1) admits a solution ug; = re(ve) Ve
for every € € (0, &o). Indeed, if v € B§(i) then G (r(v), v) < max{gl(r}, v), g2(r2, v)}, where r],r2 are the points of global
minimum for the functions gl(.,v) and g2(., v). In view of (22) and (23),

tt—q q-pt_
2u(ri v) =kici (V)T cp(v) TRt

t+—q q-p* -p*
k1 (o [IVVIPD +2a()|v[PDO]dx) F=2" ([ c(x)|v]*® dx) FF=pF g F7-pF

JobGolv|ddx

and

2(,.2 =g q=p—
8u (rw V) =kyc1(v)t P~ co(v)t P~
P Py o o A A
_ ka(fplIVVIP® + aa@)|vPP1dx) "7 ([o c@lv[* W dx) T et
JobGolv|9dx

where k1, ky are some positive constants independent of ¢ and v. Thus, G¢(r«(v),v) J 0 as € | 0 and 50 G¢ (1 (vey), Vey) <
for every & € (0, o). Consequently, v, € Bg(u) N s1, and so Bg(n) N S1 =£ . On the other hand, in view of (22) and (23),
re(vey) — 400 as € — 0. By (30), 5‘9(‘/80) < 0 for every ¢ € (0, &9). Thus, inf{ffg(v): vesin Bj()} < 0 for every ¢ €
(0, £9). By repeating the arguments in the proof of Theorem 2 we get that (1) has a solution u, =1¢(ve)ve, Ve € Bg(1) nst,
for every ¢ € (0, &o). Since rg(ve,) — 400 as € — 0, (30) implies that 35(v50) — —o0. Thus, &, (u,) = t’,‘D\g(vs) — —00 as
well. By (5) and (7) we get that |ug||[g — +00 as € — 0. We are led to the same conclusions if we assume that p(.) and
t(.) are constants while q(.) varies with x € £2.
Therefore we have the following:

Theorem 6. Suppose that hypotheses H(1)-H (5) are satisfied with p* <q~, A > 0, 89 > 0 and |t > (* (X, &o). Then the problem (1)
admits a solution u, for every € € (0, €9) with ||ug||g — +o0o and & (uz) - —oc as € — 0.

Np(x)

N—pog 10 £2, and in this

Remark 7. The results presented here also hold if we assume that t(.) is subcritical, that is t(x) <
case E := W;’p(')(Q).
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