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By using the fibering method we study the existence of nonnegative solutions for the
elliptic problem

−�p(x)u = −λa(x)|u|p(x)−2u + μb(x)|u|q(x)−2u − εc(x)|u|t(x)−2u in Ω,

u = 0 on ∂Ω,

}
where Ω ⊆ R

N is a bounded domain, a(.), b(.), c(.) are essentially bounded functions and
p(.), q(.), t(.) are continuous on Ω .

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Suppose that Ω is a domain in R
N with sufficiently smooth boundary ∂Ω . Consider the quasilinear elliptic problem

−�p(x)u = f (x, u) in Ω,

u = 0 on ∂Ω,

}
where �p(x)u = div(|∇u|p(x)−2∇u) is the p(x)-Laplace operator and f : Ω × R → R is a Caratheodory function. When p is a
constant this operator appears in models which describe a variety of phenomena in nature including:

(i) Fluid dynamics. The shear stress −→τ (x) and the gradient ∇u of the velocity of the fluid are related via the equation
−→τ (x) = r(x)|∇u(x)|p−2∇u(x). When the fluid is Newtonian p = 2 while if it is pseudoplastic or dilatant, p > 2 or p < 2
respectively [9].

(ii) Flow through porous media (for instance in flow through rock filled dams), where p = 3/2, see [16].
(iii) Nonlinear elasticity, with p � 2, see [12,18].
(iv) Glaciology, p ∈ (1,4/3], see [13].
(v) Image restoration, p ∈ [1,2], see [5,7].

When the exponent p(.) is not constant, the p(x)-Laplace operator appears in models for

(i) electrorheological fluids [3,15];
(ii) image restoration, where p(x) ∈ [1,2], see [8];

(iii) nonlinear Darcy’s law in porous medium [4].
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In this paper we study the problem

−�p(x)u = −λa(x)|u|p(x)−2u + μb(x)|u|q(x)−2u − εc(x)|u|t(x)−2u in Ω,

u = 0 on ∂Ω,

}
(1)

where Ω is a bounded domain in R
N with sufficiently smooth boundary ∂Ω , p,q, t : Ω → (1,+∞) are continuous functions

while λ,μ and ε are positive constants. We assume further that the function b(.) changes sign while a(.) and c(.) remain
nonnegative in Ω . Problem (1) was considered in [2] for the case c ≡ 0 with p(x) < q(x) in Ω where, via an application of
the mountain pass theorem, the existence of an infinite number of solutions was proved. The case Ω = R

N is studied in [1]
where, under appropriate assumptions on the behavior of q(.) at infinity, the existence of a solution is shown. Note that the
sign of the solutions is not examined in [2], while none of the aforementioned papers examines the case where q(x) < p(x)
in Ω .

Our purpose in this work is to provide conditions on the data of (1) which guarantee the existence of a nonnegative
solution and also examine the behavior of the solution and the energy functional as ε → 0. To do this we employ Pohozaev’s
fibering method, see [11,14], which decomposes the Sobolev space W 1,p(.)

0 (Ω) into rays and examines the behavior of the
energy functional on them.

2. Mathematical background

In this section we recall some definitions and basic properties of the variable exponent spaces L p(.)(Ω) and W 1,p(.)(Ω).
For more details see [10].

Let

C+(Ω) = {
p : Ω → R: p is continuous and p(x) > 1 for every x ∈ Ω

}
.

If s ∈ C+(Ω) we denote s+ := supx∈Ω s(x) and s− := infx∈Ω s(x).
Given p ∈ C+(Ω), the variable exponent Lebesgue space L p(.)(Ω) is defined by

Lp(.)(Ω) :=
{

u : Ω → R: u is measurable and
∫
Ω

|u|p(x) dx < ∞
}
.

This space supplied with the so-called Luxemburg norm

‖u‖p(.) = inf

{
λ > 0:

∫
Ω

∣∣∣∣u

λ

∣∣∣∣p(x)

dx � 1

}
becomes a Banach space and shares many of the properties of the classical Lebesgue spaces like separability, reflexivity and
uniform convexity. It is easy to see that ‖u‖p(.) satisfies the following inequalities:( ∫

Ω

|u|p(x) dx

)1/p−

� ‖u‖p(.) �
( ∫

Ω

|u|p(x) dx

)1/p+

if ‖u‖p(.) < 1 (2)

and ( ∫
Ω

|u|p(x) dx

)1/p+

� ‖u‖p(.) �
( ∫

Ω

|u|p(x) dx

)1/p−

if ‖u‖p(.) � 1. (3)

Furthermore, if p, s ∈ C+(Ω) with p(x) < s(x) in Ω , then the embedding Ls(.)(Ω) ⊆ L p(.)(Ω) is continuous.
The variable exponent Sobolev space W 1,p(.)(Ω) is defined by

W 1,p(.)(Ω) := {
u ∈ Lp(.)(Ω): |∇u| ∈ Lp(.)(Ω)

}
and is equipped with the norm

‖u‖1,p(.) = ‖u‖p(.) + ‖∇u‖p(.).

The closure of C∞
0 (Ω) in W 1,p(.)(Ω) is denoted by W 1,p(.)

0 (Ω). The critical Sobolev exponent is defined by

p∗(x) =
{

Np(x)
N−p(x) if p(x) < N,
+∞ if p(x) � N.
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The spaces W 1,p(.)(Ω) and W 1,p(.)
0 (Ω) are separable, reflexive and uniformly convex Banach spaces. The analogue of

Poincaré’s inequality states that if u ∈ W 1,p(.)
0 (Ω), then

‖u‖p(.) � C‖∇u‖p(.) (4)

for some C > 0. Consequently, the norms ‖u‖1,p(.) and ‖∇u‖p(.) are equivalent on W 1,p(.)
0 (Ω). Furthermore, if q(x) < p∗(x)

in Ω , then W 1,p(.)(Ω) is imbedded compactly in Lq(.)(Ω). Thus, if u ∈ W 1,p(.)
0 (Ω), in view of (2), (3) and (4)∫

Ω

|u|q(x) dx � c

( ∫
Ω

|∇u|p(x) dx

)β

, (5)

where c > 0 and

β :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

q−
p+ if ‖u‖q(.) < 1 and ‖∇u‖p(.) < 1,

q+
p+ if ‖u‖q(.) � 1 and ‖∇u‖p(.) < 1,

q+
p− if ‖u‖q(.) � 1 and ‖∇u‖p(.) � 1,

q−
p− if ‖u‖q(.) < 1 and ‖∇u‖p(.) � 1.

(6)

3. Hypotheses and main results

We make the following assumptions concerning the data of problem (1):

H(1) p,q, t ∈ C+(Ω) with p(x) < N and q(x) < p∗ < t(x) for every x ∈ Ω .
H(2) a,b, c ∈ L∞(Ω) with a, c � 0 a.e. in Ω and m{x ∈ Ω: b(x) > 0} > 0.

The energy functional of problem (1) is defined on the space E := W 1,p(.)
0 (Ω) ∩ Lt(.)(Ω) which is supplied with the norm

‖u‖E =: ‖u‖1,p(.) + ‖u‖t(.),

and is given by

Φε(u) =
∫
Ω

1

p(x)
|∇u|p(x) dx + λ

∫
Ω

a(x)

p(x)
|u|p(x) dx − μ

∫
Ω

b(x)

q(x)
|u|q(x) dx + ε

∫
Ω

c(x)

t(x)
|u|t(x) dx. (7)

We define the extended functional F : R × E → R by setting for any r > 0 and v ∈ E

F (r, v) =
∫
Ω

1

p(x)
|∇v|p(x)r p(x) dx + λ

∫
Ω

a(x)

p(x)
|v|p(x)r p(x) dx

− μ

∫
Ω

b(x)

q(x)
|v|q(x)rq(x) dx + ε

∫
Ω

c(x)

t(x)
|v|t(x)rt(x) dx. (8)

If u = rv is a non-trivial critical point of Φε(.), then

Fr(r, v) = 0. (9)

Assume that r = r(v) > 0 satisfies (9) for every v in E\{0} and r(.) ∈ C1(E\{0}). Then the reduced functional

Φ̂ε(v) := Φε

(
r(v)v

)
(10)

is well defined and it is continuously differentiable on E . We will study Φ̂ε(.) subject to the constraint

H(v) = 1,

where H : E → R is defined by

H(v) :=
∫
Ω

[|∇v|p(x) + λa(x)|v|p(x)]dx + ε

∫
Ω

c(x)|u|t(x) dx. (11)

The main tool we will use is the fibering method which is based on the following fact:
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Lemma 1. (See [14, Theorem 1.2.2].) Let H : E → R be a functional which is continuously Fréchet-differentiable in E and satisfies the
conditions:

H(0) = 0 and
〈
H ′(v), v

〉 �= 0 if H(v) = 1. (12)

If v �= 0 is a conditional critical point of Φ̂ε(.) under the constraint H(v) = 1, then u := r(v)v is a nonzero critical point of Φε(.).

It is clear that the functional H , as defined in (11), satisfies (12).
We distinguish the following cases:

Case 1. q+ < p− .

Theorem 2. Suppose that H(1) and H(2) are satisfied, λ,μ > 0 and ε � 0. Then (1) admits a nonnegative solution.

Proof. Let

S1 := {
v ∈ E: H(v) = 1

}
(13)

and

B :=
{

v ∈ E:
∫
Ω

b(x)|v|q(x) dx > 0

}
.

Relation (9) is equivalent to∫
Ω

[|∇v|p(x) + λa(x)|v|p(x)]r p(x) dx + ε

∫
Ω

c(x)|v|t(x)rt(x) dx = μ

∫
Ω

b(x)|v|q(x)rq(x) dx, (14)

which, in view of H(2), has a unique positive solution r := r(v) for every v ∈ B . By the implicit function theorem, see
Theorem 4.B, p. 150 in [17], r(.) ∈ C1(E\{0}). If v ∈ S1 ∩ B and r(v) � 1, then by H(1) and (14)

r p−
{∫

Ω

[|∇v|p(x) + λa(x)|v|p(x)]dx + ε

∫
Ω

c(x)|v|t(x) dx

}
= r p− � μ

∫
Ω

b(x)|v|q(x)rq(x) dx � rq+
μ

∫
Ω

b|v|p(x) dx,

and so

r p−−q+ � μ

∫
Ω

b|v|p(x) dx.

Therefore, r(.) is bounded on S1 ∩ B . On the other hand, if v ∈ S1 ∩ B , by H(1), (8) and (14),

Φ̂ε(v) <

(
1

p− − 1

q+

)∫
Ω

|∇v|p(x)r p(x) dx + λ

(
1

p− − 1

q+

)∫
Ω

a|v|p(x)r p(x) dx + ε

(
1

t− − 1

q+

)∫
Ω

c|v|t(x)r p(x) dx,

and so Φ̂ε(v) < 0. Consequently,

M := inf
{
Φ̂ε(v): v ∈ S1 ∩ B

}
< 0.

We will show that the infimum is attained at a point in S1 ∩ B . To show this we let vn ∈ S1, n ∈ N, be a sequence such that
Φ̂ε(vn) → M . Since vn is bounded in E , there exists a subsequence of vn , still denoted by vn , such that vn → v0 weakly
in W 1,p(.)

0 (Ω) and Lt(.)(Ω) and strongly in L p(.)(Ω) and Lq(.)(Ω). Furthermore, since r(.) is bounded on S1 ∩ B , we may also
assume that r(vn) → r0. By the lower semicontinuity of the norms ‖.‖1,p(.) and ‖.‖t(.) we see that

Φ̂ε(r0 v0) � lim inf
n→+∞ Φ̂ε(vn) = M, (15)

which shows that r0 > 0 and v0 �= 0. Also, by applying (14) to the sequence vn and allowing n → +∞, we get∫
Ω

|∇v0|p(x)r p(x)
0 dx + λ

∫
Ω

a|v0|p(x)r p(x)
0 dx + ε

∫
Ω

c|v0|t(x)rt(x)
0 dx

� μ

∫
b|v0|q(x)rq(x)

0 dx,
Ω
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which yields r0 � r(v0) and r0 v0 ∈ B . If we assume that r0 < r(v0), then by exploiting the fact that the function r → Φε(rv)

is strictly decreasing on the interval [0, r(v0)] we have

Φ̂ε(v0) = Φε

(
r(v0)v0

)
< Φ̂ε(r0 v0) = M. (16)

On the other hand, for ρ > 0, in view of (14), r(ρv0) satisfies∫
Ω

|∇ρv0|p(x)r(ρv0)
p(x) dx + λ

∫
Ω

a|ρv0|p(x)r(ρv0)
p(x) dx

− μ

∫
Ω

b|ρv0|q(x)r(ρv0)
q(x) dx + ε

∫
Ω

c|ρv0|t(x)r(ρv0)
t(x) dx = 0.

Thus, ∫
Ω

|∇v0|p(x)[ρr(ρv0)
]p(x)

dx + λ

∫
Ω

a|v0|p(x)[ρr(ρv0)
]p(x)

dx

−
∫
Ω

b|v0|q(x)[ρr(ρv0)
]q(x)

dx + ε

∫
Ω

c|v0|t(x)[ρr(ρv0)
]t(x)

dx = 0,

which shows that

r(v0) = ρr(ρv0). (17)

Let s > 0 be such that sv0 ∈ S1. Combining relations (16) and (17) we get

Φ̂ε(sv0) = Φε

(
r(tv0)sv0

) = Φε

(
r(v0)v0

) = Φ̂ε(v0) < M,

contradicting the definition of M . Thus, we must have r0 = r(v0), and so (15) and (17) imply that Φ̂ε(sv0) = M . By Lemma 1
we see that u := r(v0)v0 is a solution of (1). Since |u| is also a minimizer, we may assume that u � 0. �
Case 2. p+ < q− .

The following lemma demonstrates that in this case (1) may not have a non-trivial solution. It is based on a similar
result in [6].

Lemma 3. Assume that H(1) and H(2) hold with b(x) � 0 a.e. and c(x) > η > 0 a.e. in Ω . Then, for every λ,ε > 0 there exists
μ∗(λ, ε) > 0 such that (1) does not admit a non-trivial solution for 0 < μ < μ∗(λ, ε).

Proof. Let u be a solution to (1). Then we have∫
Ω

[|∇u|p(x) + λa(x)|u|p(x)]dx + ε

∫
Ω

c(x)|u|t(x) dx = μ

∫
Ω

b(x)|u|q(x) dx. (18)

Young’s inequality implies that

μ

∫
Ω

b(x)|u|q(x) dx � εq+

t−

∫
Ω

c(x)|u|t(x) dx + t+ − q−

t− μγ ‖b‖δ∞ε−ζ

∫
Ω

c(x)
q(x)

q(x)−t(x) dx,

where

γ :=
⎧⎨⎩

t+
t−−q+ if μ � 1,

t−
t+−q− if μ < 1,

δ :=
⎧⎨⎩

t+
t−−q+ if ‖b‖∞ � 1,

t−
t+−q− if ‖b‖∞ < 1,

ζ :=
⎧⎨⎩

q−
t−−q+ if ε � 1,

q+
t+−q− if ε < 1,

and so (18) yields∫ [|∇u|p(x) + λa(x)|u|p(x)]dx � t+ − q−

t− μγ ‖b‖δ∞ε−ζ

∫
c(x)

q(x)
q(x)−t(x) dx. (19)
Ω Ω
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By (6) and (18) we get

ĉ

( ∫
Ω

b(x)|u|q(x) dx

) 1
β

�
∫
Ω

[|∇u|p(x) + λa(x)|u|p(x)]dx � μ

∫
Ω

b(x)|u|q(x) dx (20)

where ĉ > 0 and β is defined by (6) with q in the place of s. Thus,(
ĉβ

μ

) 1
β−1

� ĉ

( ∫
Ω

b(x)|u|q(x) dx

) 1
β

. (21)

In view of (19)–(21) we get

μ � μ∗(λ, ε) :=
(

t−

t+ − q−
ĉ

β
β−1 εζ

‖b‖δ∞
∫
Ω

c(x)
q(x)

q(x)−t(x) dx

) β−1
γ (β−1)+1

. �

Lemma 4. Suppose that c1, c2 are positive constants, γ : Ω → R is a nonnegative essentially bounded function with m{x ∈ Ω:
γ (x) > 0} > 0 and q : Ω → R is a continuous function such that 1 < p < q(x) < t for every x ∈ Ω , where p, t ∈ R. Then, for large
enough μ > 0, the equation

c1r p + c2rt − μ

∫
Ω

γ (x)rq(x) dx = 0

admits two solutions r1, r2 > 0.

Proof. Let g(r) := c1 + c2rt−p − μ
∫
Ω

γ (x)rq(x)−p dx, r > 0. Then g(0) = c1 and limr→+∞ g(r) = +∞. It is easy to see that
g′(r) has a unique positive zero. Since infr>0 g(r) < 0 for large enough μ > 0, the result follows. �

For the next existence result we make the following hypotheses concerning the function c(.) and the exponents p,q
and t:

H(3) supp(b(.)+) ⊆ supp(c(.)), where b(x)+ = max{b(x),0}, x ∈ Ω .
H(4) p+(t− − p−) > q−(t− − q+) and t+ � min{ q− p+(q+−p−)

p+(t−−p−)−q−(t−−q+)
,

q−(t−−p−)

q+−p− }.
H(5) q(.) is a constant or p(.) and t(.) are constants.

Note that if p(.), q(.) and t(.) are constant functions, then H(4) is satisfied if t < p + q.

Theorem 5. Suppose that H(1)–H(5) hold with p+ < q. Then for every λ,ε > 0 there exists μ∗(λ, ε) > 0, such that (1) admits a
nonnegative solution for every μ > μ∗(λ, ε).

Proof. Assume first that q(.) is constant. For v ∈ B and r > 0 define

Gε(r, v) :=
∫
Ω

[|∇v|p(x) + λa(x)|v|p(x)]r p(x)−q dx + ε
∫
Ω

c(x)|v|t(x)rt(x)−q dx∫
Ω

b(x)|v|q dx
,

c1(v) :=
∫
Ω

[|∇v|p(x) + λa(x)|v|p(x)]dx∫
Ω

b(x)|v|q dx

and

c2(v) := ε
∫
Ω

c(x)|v|t(x) dx∫
Ω

b(x)|v|q dx
.

Then, if r � 1,

c1(v)r p−−q + c2(v)rt−−q = g1
l (r, v) � Gε(r, v)

� g1
u(r, v) = c1(v)r p+−q + c2(v)rt+−q (22)

while, if r < 1,
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c1(v)r p+−q + c2(v)rt+−q = g2
l (r, v) � Gε(r, v)

� g2
u(r, v) = c1(v)r p−−q + c2(v)rt−−q. (23)

Thus,

lim
r→0+ Gε(r, v) = lim

r→+∞ Gε(r, v) = +∞.

Note that ∂
∂r Gε(. , v) = 0 iff∫

Ω

(
q − p(x)

)[|∇v|p(x) + λa(x)|v|p(x)]r p(x) dx − ε

∫
Ω

(
t(x) − q

)
c(x)|v|t(x)rt(x) dx = 0. (24)

It is easy to see that (24) has a unique zero r∗(v) which is a point of global minimum for Gε(. , v). Consequently, for large
μ > 0, the equation Gε(r, v) = μ has exactly two solutions r1(v) and r2(v) with r1(v) < r2(v). Note that r1(v) and r2(v)

are also the solutions of (14). We define r(v) := r2(v). It is easy to see that r(v) increases as μ increases or ε decreases.
Let

Bε
0(μ) := {

u ∈ B: μ > Gε

(
r∗(u), u

)}
.

It is clear that Bε
0(μ) �= ∅ if μ is large enough. Next, we will find an upper bound for r∗(v) when v ∈ Bε

0(μ). By the
definition of Bε

0(μ)∫
Ω

p(x)
[|∇v|p(x) + λa(x)|v|p(x)]r∗(v)p(x) dx + ε

∫
Ω

t(x)c(x)|v|t(x)r∗(v)t(x) dx

< μqr∗(v)q
∫
Ω

b(x)|v|q dx,

so, if r∗(v) � 1, then

r∗(v)t−εt−
∫
Ω

c(x)|v|t(x) dx < μqr∗(v)q
∫
Ω

b(x)|v|q dx,

while if r∗(v) < 1, then

r∗(v)t+εt−
∫
Ω

c(x)|v|t(x) dx < μqr∗(v)q
∫
Ω

b(x)|v|q dx.

Consequently,

r∗(v) <

[
μq

∫
Ω

b(x)|v|q dx

εt− ∫
Ω

c(x)|v|t(x) dx

]1/(t−−q)

, if r∗(v) � 1, (25)

and

r∗(v) <

[
μq

∫
Ω

b(x)|v|q dx

εt− ∫
Ω

c(x)|v|t(x) dx

]1/(t+−q)

, if r∗(v) < 1.

We shall show that if v ∈ Bε
0(μ) ∩ S1 then

1 <

∫
Ω

c(x)|v|t(x) dx + d

( ∫
Ω

c(x)|v|t(x) dx

)η

,

where d > 0 and

η :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

q(t−−p−)−t+(q−p−)

t+(t−−q)
if ‖v‖q < 1 and r∗(v) � 1,

p+
t+ if ‖v‖q < 1 and r∗(v) < 1,

q(t+−p+)−t+(q−p+)

t+(t+−q)
if ‖v‖q � 1 and r∗(v) < 1,

q(t−−p−)−t+(q−p−)
+ − if ‖v‖q � 1 and r∗(v) � 1.
t (t −q)
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We will only present the case where ‖v‖q < 1 and r∗(v) � 1, the remaining three can be treated similarly. Since
Gε(r∗(v), v) < μ, we have∫

Ω

[|∇v|p(x) + λa(x)|v|p(x)]r∗(v)p(x) dx < μr∗(v)q
∫
Ω

b(x)|v|q dx, (26)

and so

r∗(v)p−
∫
Ω

[|∇v|p(x) + λa(x)|v|p(x)]dx < r∗(v)qμ

∫
Ω

b(x)|v|q dx,

which, in view of (11), yields(
1 −

∫
Ω

c(x)|v|t(x) dx

)
< r∗(v)q−p−

μ

∫
Ω

b(x)|v|q dx.

On combining this inequality with (25) we get(
ε

∫
Ω

c(x)|v|t(x) dx

) q−p−
t−−q

(
1 −

∫
Ω

c(x)|v|t(x) dx

)

<

(
μq+

t−

) q−p−
t−−q

(
μ

∫
Ω

b(x)|v|q dx

) t−−p−
t−−q

. (27)

Hypotheses H(3) and H(4), (2) and (3) imply that∫
Ω

b(x)|v|q dx � d̂

( ∫
Ω

c(x)|v|t(x) dx

) q
t+

for some d̂ > 0, which, in view of (27), gives

1 <

∫
Ω

c(x)|v|t(x) dx + d

( ∫
Ω

c(x)|v|t(x) dx

) q(t−−p−)−t+(q−p−)

t+(t−−q)

,

where d > 0. Consequently,
∫
Ω

c(x)|v|t(x) dx, v ∈ Bε
0(μ), is bounded away from 0. By (14)∫

Ω

c(x)|v|t(x)rt(x) dx � μrq
∫
Ω

b(x)|v|q dx,

which implies that, if r � 1,

rt−−q �
μ

∫
Ω

b(x)|v|q dx

ε
∫
Ω

c(x)|v|t(x) dx
(28)

while, if r < 1

rt+−q �
μ

∫
Ω

b(x)|v|q dx

ε
∫
Ω

c(x)|v|t(x) dx
. (29)

Since
∫
Ω

c(x)|v|t(x) dx, v ∈ Bε
0(μ), is bounded away from 0 we see that r(v), v ∈ Bε

0(μ), is bounded above. In view of (8),
(10) and (14)

Φ̂ε(v) � 1

p

∫
Ω

[|∇v|p(x) + λa(x)|v|p(x)]r p(x) dx − μ

∫
Ω

b(x)

q
|v|qrq dx + ε

∫
Ω

c(x)

t− |v|t(x)rt(x) dx

=
(

1

p
− 1

t−

)∫
Ω

[|∇v|p(x) + λa(x)|v|p(x)]r p(x) dx − μ

(
1

q
− 1

t−

)∫
Ω

b(x)|v|qrq dx. (30)

Since r(v) increases with μ and p(x) < q in Ω , by taking μ large enough, say μ∗(λ, ε), we have that Φ̂ε(v) < 0 for at
least one v ∈ S1 ∩ Bε(μ∗(λ, ε)). We claim that the infimum for Φ̂ε(.) is attained at a point of S1 ∩ Bε(μ∗(λ, ε)). To show
0 0
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this, let vn ∈ S1, n ∈ N, be a sequence such that Φ̂ε(vn) → M . Since vn is bounded in E , there exists a subsequence of vn ,
still denoted by vn , such that vn → v0 weakly in W 1,p(.)

0 (Ω) and Lt(.)(Ω) and strongly in L p(.)(Ω) and Lq(Ω). Furthermore,
since r(.) is bounded in S1 ∩ Bε

0(μ
∗(λ, ε)), we may also assume that v0 �= 0 and r(vn) → r0 > 0. Working as in case 1

and exploiting the fact that the function r → Φε(rv) has a global minimum at r = r(v0) we conclude that r0 = r(v0). The
sequence r∗(un), n ∈ N, is bounded so we may assume that r∗(un) → r0∗ . In view of (22) and (23) we get

Gε

(
r∗(vn), vn

)
�

{
minr�1 g1

l (r, vn) if r∗(vn) � 1,

min0<r<1 g2
l (r, vn) if r∗(vn) < 1,

for every n ∈ N. Since minr�1 g1
l (r, vn) � minr>0 g1

l (r, vn) = c1(vn)
t+−q

t+−p+ c2(vn)
q−p+

t+−p+ , with a similar inequality holding for
min0<r<1 g1

l (r, vn), we see that, in the limit, Gε(r0∗, v0) > 0. Thus r0∗ > 0. The lower semicontinuity of the norms yields
μ � Gε(r0∗, v0). Since the minimum of r → Gε(r, v0) occurs at r = r∗(v0), we also have μ � Gε(r∗(v0), v0). We claim that
μ > Gε(r∗(v0), v0). Indeed, let us assume that μ = Gε(r∗(v0), v0). Since μ = Gε(r(vn), vn) for every n ∈ N, we obtain∫

Ω

[|∇vn|p(x) + λa(x)|vn|p(x)]r(vn)
p(x) dx + ε

∫
Ω

c(x)|vn|t(x)r(vn)
t(x) dx

= μr(vn)
q
∫
Ω

b(x)|vn|q dx

which in the limit gives∫
Ω

[|∇v0|p(x) + λa(x)|v0|p(x)]r(v0)
p(x) dx + ε

∫
Ω

c(x)|v0|t(x)r(v0)
t(x) dx

� μr(v0)
q
∫
Ω

b(x)|v0|q dx,

that is, μ � Gε(r(v0), v0). Thus

r∗(v0) = r(v0) = r0. (31)

On the other hand, ∂
∂r Gε(r∗(vn), vn) = 0, and so for every n ∈ N( ∫

Ω

p(x)
[|∇vn|p(x) + λa(x)|vn|p(x)]r∗(vn)

p(x) dx + ε

∫
Ω

t(x)c(x)|vn|t(x)r∗(vn)
t(x)

)( ∫
Ω

b(x)|vn|qr∗(vn)
q dx

)

=
( ∫

Ω

[|∇vn|p(x) + λa(x)|vn|p(x)]r∗(vn)
p(x) dx + ε

∫
Ω

c(x)|vn|t(x)r∗(vn)
t(x)

)( ∫
Ω

q(x)b(x)|vn|qr∗(vn)
q dx

)
,

which implies that(
q − p−)∫

Ω

[|∇vn|p(x) + λa(x)|vn|p(x)]r∗(vn)
p(x) dx

� ε
(
t− − q

)∫
Ω

c(x)|vn|t(x)r∗(vn)
t(x) dx. (32)

In view of (8), (14), (31), (32)

M = lim
n→+∞Φε

(
r(vn)vn

)
� lim

n→+∞ε

(
(q − p+)(t− − q)

p+(q − p−)
− t+ − q

t+

)∫
Ω

c(x)|vn|t(x)r∗(vn)
t(x) dx � 0,

a contradiction. Thus μ > Gε(r∗(v0), v0), that is v0 ∈ Bε
0(μ∗(λ, ε)). Working as in the proof of Theorem 2 we conclude that

u := |r(v0)v0| is a solution to (1).
Assume next that p(x) = p and t(x) = t for every x ∈ Ω while q(.) varies with x ∈ Ω . By (14),

r p
∫ [|∇v|p(x) + λa(x)|v|p(x)]dx + εrt

∫
c(x)|v|t(x) dx = μ

∫
b(x)|v|q(x)rq(x) dx, (33)
Ω Ω Ω
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and Lemma 4 implies that (33) admits exactly two solutions r1(v) and r2(v) with r1(v) < r2(v). A nonnegative solution
to (1) can be obtained by modifying the previous arguments to our current assumptions. �

It is clear that if c ≡ 0 the previous theorem is not valid. In order to further study problem (1) we will examine the
behavior of the solutions to (1) as ε → 0. Let λ > 0, ε0 > 0 and μ > μ∗(λ, ε0). Theorem 5 implies that (1) has a solution
u0 = rε0(vε0 )vε0 , vε0 ∈ Bε

0(μ) ∩ S1. Assume first that q(.) is a constant. We claim that (1) admits a solution uε = rε(vε)vε

for every ε ∈ (0, ε0). Indeed, if v ∈ Bε
0(μ) then Gε(r∗(v), v) � max{g1

u(r1
u, v), g2

u(r2
u, v)}, where r1

u, r2
u are the points of global

minimum for the functions g1
u(. , v) and g2

u(. , v). In view of (22) and (23),

g1
u

(
r1

u, v
) = k1c1(v)

t+−q
t+−p+ c2(v)

q−p+
t+−p+

= k1(
∫
Ω

[|∇v|p(x) + λa(x)|v|p(x)]dx)
t+−q

t+−p+ (
∫
Ω

c(x)|v|t(x) dx)
q−p+

t+−p+ ε
q−p+

t+−p+∫
Ω

b(x)|v|q dx

and

g2
u

(
r2

u, v
) = k2c1(v)

t−−q
t−−p− c2(v)

q−p−
t−−p−

= k2(
∫
Ω

[|∇v|p(x) + λa(x)|v|p(x)]dx)
t−−q−
t−−p−

(
∫
Ω

c(x)|v|t(x) dx)
q−p−

t−−p− ε
q−p−

t−−p−∫
Ω

b(x)|v|q dx
,

where k1,k2 are some positive constants independent of ε and v . Thus, Gε(r∗(v), v) ↓ 0 as ε ↓ 0 and so Gε(r∗(vε0 ), vε0 ) < μ
for every ε ∈ (0, ε0). Consequently, vε0 ∈ Bε

0(μ) ∩ S1, and so Bε
0(μ) ∩ S1 �= ∅. On the other hand, in view of (22) and (23),

rε(vε0 ) → +∞ as ε → 0. By (30), Φ̂ε(vε0 ) < 0 for every ε ∈ (0, ε0). Thus, inf{Φ̂ε(v): v ∈ S1 ∩ Bε
0(μ)} < 0 for every ε ∈

(0, ε0). By repeating the arguments in the proof of Theorem 2 we get that (1) has a solution uε = rε(vε)vε , vε ∈ Bε
0(μ)∩ S1,

for every ε ∈ (0, ε0). Since rε(vε0 ) → +∞ as ε → 0, (30) implies that Φ̂ε(vε0 ) → −∞. Thus, Φε(uε) = Φ̂ε(vε) → −∞ as
well. By (5) and (7) we get that ‖uε‖E → +∞ as ε → 0. We are led to the same conclusions if we assume that p(.) and
t(.) are constants while q(.) varies with x ∈ Ω .

Therefore we have the following:

Theorem 6. Suppose that hypotheses H(1)–H(5) are satisfied with p+ < q− , λ > 0, ε0 > 0 and μ > μ∗(λ, ε0). Then the problem (1)
admits a solution uε for every ε ∈ (0, ε0) with ‖uε‖E → +∞ and Φε(uε) → −∞ as ε → 0.

Remark 7. The results presented here also hold if we assume that t(.) is subcritical, that is t(x) <
Np(x)

N−p(x) in Ω , and in this

case E := W 1,p(.)
0 (Ω).
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