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We show that principles from nonstandard analysis hold to some extent for nonlinear
generalized functions. The generalized functions under consideration are constructed as
families of functions modulo a free filter, as it is usually done in applied analysis. In
contrast with models of nonstandard analysis, we do not require the filter to be an
ultrafilter. The principles are intended to be used as a tool for proving theorems, which
we illustrate by means of an automatic continuity result that was not suspected by experts
in the field.
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1. Introduction

During the past decades, algebras of nonlinear generalized functions have been developed as a framework for model-
ing and understanding nonlinear partial differential equations and differential geometry with singular data [3,4,6,13]. As
a rule, nonlinear generalized functions are constructed as equivalence classes of families of smooth functions. In contrast
with distribution theory, such generalized functions can be viewed as pointwise functions acting on generalized points. The
similarity with the generalized objects in nonstandard analysis has been observed in an early stage [11,13]. More recently,
a number of fundamental tools for nonlinear generalized functions like internal sets and a saturation principle have been de-
veloped in a publication in this journal [16]. Unlike the objects in nonstandard analysis [17], nonlinear generalized functions
are usually not constructed as families of smooth functions modulo a free ultrafilter. One can however view them naturally
as families of smooth functions modulo a free filter, usually with a further identification, e.g. by means of certain growth
conditions.

It is the goal of this paper to develop a number of principles known from nonstandard analysis (transfer, internal defini-
tion, countable saturation, spilling principles) in the more general setting of families modulo a free filter, relevant in practice
for the theory of nonlinear generalized functions. Because of the more general setting, some of the principles only hold in
a restricted form, but, contrary to what one could perhaps expect, transfer (e.g.) does not break down to the extent that it
would become useless. We illustrate this by showing a result that came as a surprise to experts in the nonlinear theory of
generalized functions (Theorem 7.5).

In fact, our setting is the same as Schmieden and Laugwitz’s [18], in which such principles to our knowledge have not
been investigated. The reason for this probably is the success of the corresponding theory using ultrafilters (i.e., nonstandard
analysis), in which stronger versions of the principles hold, giving rise to a more elegant theory. In this context, we want
to emphasize that the current paper does not intend to advocate the use of free filters instead of free ultrafilters. On the
contrary, we hope that this paper will increase the awareness amongst researchers in the theory of nonlinear generalized
functions of the usefulness of nonstandard ideas and the potential that nonstandard theories [15,19] may have to offer. We
should also remark that the status of the generalized objects in nonstandard analysis often is one of idealized, ‘auxiliary’

E-mail address: hvernaev@cage.ugent.be.
0022-247X/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2011.06.002

http://dx.doi.org/10.1016/j.jmaa.2011.06.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:hvernaev@cage.ugent.be
http://dx.doi.org/10.1016/j.jmaa.2011.06.002


H. Vernaeve / J. Math. Anal. Appl. 384 (2011) 536–548 537
objects, used to facilitate proofs about nongeneralized objects, whereas the nonlinear generalized functions are ‘legitimate’
objects in themselves, used as models for real world phenomena. As a result, it may be considered natural that, if a family
( fε)ε∈(0,1] of functions represents the generalized function 0, at least fε → 0 should hold as ε → 0, a property that can be
easily achieved modulo a free filter, but not modulo a free ultrafilter. Also, sometimes properties can more easily be shown
modulo certain free filters than modulo a free ultrafilter (Theorem 7.9).

2. Generalized objects

For the definition of a filter, we refer to books on set theory or topology (e.g. [7–9]). A filter F on a set I is free if⋂
S∈F S = ∅. A formula Pε depending on ε ∈ I holds a.e. iff {ε ∈ I: Pε} belongs to F .
Throughout this paper, we fix an infinite index set I and a free filter F on I .
In particular, for applications to nonlinear generalized function theory, one can keep in mind the choice

I = N with F = {S ⊆ N: N \ S is finite} (1)

(F is the so-called Fréchet-filter) or

I = (0,1] with F = {
S ⊆ (0,1]: (∃η ∈ (0,1]) (0, η) ⊆ S

}
. (2)

Then a property Pε depending on ε ∈ N (resp. ε ∈ (0,1]) holds a.e. iff Pε holds for sufficiently large ε ∈ N (resp. for
sufficiently small ε ∈ (0,1]).

For the sake of generality, we develop the theory for any free filter F on any infinite index set (hence also including the
case of a free ultrafilter F ; only starting from Section 5, we will impose extra conditions on F ).1

As in nonstandard analysis (i.e., the case in which F is an ultrafilter), we define generalized real numbers as elements
of ∗R := RI/F : families (aε)ε∈I of real numbers modulo F . Hence by definition, for the equivalence classes [aε], [bε], we
have

[aε] = [bε] ⇐⇒ aε = bε a.e.

Further, we inductively define so-called internal objects:

1. By definition, elements of ∗R are internal objects.
2. Let m ∈ N. If [a1,ε], . . . , [am,ε] are internal objects, then[

(a1,ε, . . . ,am,ε)
] := ([a1,ε], . . . , [am,ε]

)
is an internal object.

3. If Aε are nonempty sets (for each ε ∈ I) such that for each choice of aε ∈ Aε , [aε] is an internal object, then

[Aε] := {[aε]: aε ∈ Aε a.e.
}

is an internal object.

Any internal object is defined by applying these rules finitely many times.
In accordance with mathematical practice in analysis, we do not consider tuples to be sets (set-theorists will e.g. use the

Kuratowski definition (a,b) := {{a}, {a,b}}). Hence [(aε,bε)] cannot be mistaken for an internal object defined by a family
of sets (which, if well defined, yields another definition, unless F is an ultrafilter).

As in nonstandard analysis, we also define ∗a := [a] (the internal object corresponding to the constant family (a)ε). In
this text, a nongeneralized object is (by definition) an object a for which ∗a is well defined.

Remark 2.1. The map ∗ in this paper is a restriction of the map ∗ defined in nonstandard analysis. We can see this more
explicitly as follows. Let P∅(A) := {B ⊆ A: B 
= ∅}. Given a set X , let S be the smallest set satisfying

1. X ∈ S,
2. if Y ∈ S, then also P∅(Y ) ∈ S,
3. if Y1, . . . , Yn ∈ S (for some n ∈ N), then also Y1 × · · · × Yn ∈ S.

Then the restricted superstructure of X is the set X̂ := ⋃
Y ∈S

Y , i.e.,

X̂ = X ∪ P∅(X) ∪
⋃
n∈N

Xn ∪ P∅
(

P∅(X)
) ∪

⋃
n∈N

P∅
(

Xn) ∪
⋃

n,m∈N

Xn × P∅
(

Xm) ∪ · · · .

1 A tutorial text for the use of nonstandard principles in generalized function theory intended for researchers in the nonlinear theory of generalized
functions, focusing on the filter (2) and with additional examples can be found on http://arxiv.org/abs/1101.6075. For comparison, tutorial texts
on nonstandard analysis are e.g. [2,12].
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The set R̂ is the set of nongeneralized objects. The internal objects in this paper form a subset of ∗̂R. (If F is an ultrafilter,
the internal objects in this paper are exactly those internal objects from nonstandard analysis that belong to ∗̂R.) The map ∗
is a (non-surjective) map R̂ → ∗̂R.

Hence (in contrast with the superstructure from nonstandard analysis), informally speaking, a set A ∈ X̂ can only contain
elements ‘of the same type’: A cannot contain both elements of X and subsets of X , nor can A contain both subsets of X
and functions X → X , . . . .

Lemma 2.2. Let [aε], [bε] be internal objects. Then:

1. [aε] = [bε] iff aε = bε a.e.
2. [aε] ∈ [bε] iff aε ∈ bε a.e.

Proof. 1. We proceed by induction. Equality in ∗R is by definition equality a.e. on representatives. For m-tuples, we find by
induction[

(a1,ε, . . . ,am,ε)
] = [

(b1,ε, . . . ,bm,ε)
]

⇐⇒ [a j,ε] = [b j,ε], for j = 1, . . . ,m

⇐⇒ a j,ε = b j,ε a.e., for j = 1, . . . ,m

⇐⇒ (a1,ε, . . . ,am,ε) = (b1,ε, . . . ,bm,ε) a.e.

For nonempty sets Aε , Bε , if Aε = Bε a.e., then by definition [Aε] = [Bε]. The converse statement follows if we show that
[Aε] ⊆ [Bε] implies that Aε ⊆ Bε a.e.:

Choose xε ∈ Aε \ Bε , if Aε � Bε , and xε ∈ Aε , if Aε ⊆ Bε . Then [xε] ∈ [Aε] ⊆ [Bε], so xε ∈ Bε a.e. By the choice of xε , this
implies that Aε ⊆ Bε a.e.

2. By the definition of an internal set (rule 3). �
Remark 2.3. If we would allow ∅ as an internal object, the previous lemma would not hold. This motivates our choice to
exclude ∅ from the restricted superstructure ∗̂R.

In order to incorporate m-ary relations R with domain D , we identify (as usual in set theory and nonstandard analysis)
R with its graph G R = {(x1, . . . , xm) ∈ D: R(x1, . . . , xm)}. For a family (Rε)ε∈I of relations with domains A1,ε × · · · × Am,ε

(with [A j,ε] internal sets, j = 1, . . . ,m), we therefore have

[G Rε ] = {[
(x1,ε, . . . , xm,ε)

]
: Rε(x1,ε, . . . , xm,ε) a.e.

}
which is the graph of a relation, denoted by [Rε], with domain [A1,ε] × · · · × [Am,ε] and

[Rε]
([x1,ε], . . . , [xm,ε]

) ⇐⇒ Rε(x1,ε, . . . , xm,ε) a.e.

Similarly, we consider a map f : A → B as a particular binary relation: R(a,b) iff f (a) = b. The map f is thus identified
with its graph G f = {(x, f (x)): x ∈ A}. A family ( fε)ε of maps fε : Aε → Bε (with [Aε], [Bε] internal sets) defines therefore
a map [ fε] : [Aε] → [Bε] with

[ fε]
([xε]

) = [
fε(xε)

]
.

Remark 2.4. The internal subsets of a given internal set X , together with ∅, form a Boolean algebra under the operations
A ∧ B := A ∩ B , A ∨ B := [Aε ∪ Bε] and A′ := [Xε \ Aε] (with X = [Xε], A = [Aε], B = [Bε]). Notice that A ∪ B ⊆ A ∨ B and
A′ ⊆ X \ A, but that A ∪ B and X \ A are in general not internal, unless F is an ultrafilter.

3. Transfer

As in nonstandard analysis, we will proceed to show a transfer principle, i.e., for certain statements P (a1, . . . ,am) involv-
ing (nongeneralized) objects a j , we generally have that P (a1, . . . ,am) is true iff P (∗a1, . . . ,

∗am) is true.
First, we define the formal language containing the statements that we will consider.
The language contains variables and function variables.
Inductively, terms are defined by the following rules:

T1. A variable is a term.
T2. If t1, . . . , tm are terms (m > 1), then also the m-tuple (t1, . . . , tm) is a term.
T3. If t is a term and f is a function variable, then also f (t) is a term.
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Inductively, formulas are defined by the following rules:

F1. (Atomic formulas) If t1, t2 are terms, then t1 = t2, and t1 ∈ t2 are formulas.
F2. If P , Q are formulas, then P ∧ Q is a formula.
F3. If P is a formula, x is a variable free in P and t is a term in which x does not occur, then (∃x ∈ t) P is a formula.
F4. If P is a formula, x is a variable free in P and t is a term in which x does not occur, then (∀x ∈ t) P is a formula.
F5. If P , Q are formulas, then P �⇒ Q is a formula.
F6. If P is a formula, then ¬P is a formula.
F7. If P , Q are formulas, then P ∨ Q is a formula.

A sentence is a formula in which all occurring free variables are substituted by objects, which we call the constants or
parameters of the sentence. The meaning associated to a sentence is given by the natural semantics. We introduce brackets
in formulas to make clear the precedence of the operations. It is silently understood that function variables are substituted
in such a way that the objects to which a substituted function f is applied are within the domain of f .

Notation. We denote t(x1, . . . , xm) (or shortly t(x j)) for a term t in which the only occurring variables are x1, . . . , xm . We
denote by t(c1, . . . , cm) (or shortly t(c j)) the term t in which the variable x j has been substituted by the object c j (for
j = 1, . . . ,m).

Similarly, we denote P (x1, . . . , xm) (or shortly P (x j)) for a formula P in which the only occurring free variables are
x1, . . . , xm . We denote by P (c1, . . . , cm) (or shortly P (c j)) the formula P in which the variable x j has been substituted by
the object c j (for j = 1, . . . ,m).

In order for transfer to be valid, we do not consider, in accordance with mathematical practice in analysis, real numbers
as sets (equivalences of Cauchy sequences of rational numbers, e.g.). Similarly, we do not consider generalized real numbers
as sets.2 This avoids that sentences involving elements of real numbers (in which one is anyway not interested in analysis)
like (∃x ∈ QN) (x ∈ 1) would complicate the transfer principle. With this convention, internal sets contain only internal
elements. We will also identify ∗a ∈ ∗R with a ∈ R and hence consider R ⊆ ∗R.

Definition 3.1. A formula P (x j) is called transferrable if for all internal objects [c j,ε],
P (c j,ε) is true a.e.

is equivalent with

P
([c j,ε]

)
is true.

Lemma 3.2. Let t(x j) be a term formed by rules T1–T3. For internal objects [c j,ε],[
t(c j,ε)

] = t
([c j,ε]

)
.

Proof. T1. If t is a variable, this is clear.
T2. Let t1, . . . , tm be terms. For the term (t1, . . . , tm), we find inductively,[

(t1, . . . , tm)(c j,ε)
] = [(

t1(c j,ε), . . . , tm(c j,ε)
)] = ([

t1(c j,ε)
]
, . . . ,

[
tm(c j,ε)

])
= (

t1
([c j,ε]

)
, . . . , tm

([c j,ε]
)) = (t1, . . . , tm)

([c j,ε]
)
.

T3. Let t(x j) be a term and f a function variable. For the term f (t), we find inductively (with [φε] an internal function),[
f (t)(φε, c j,ε)

] = [
φε

(
t(c j,ε)

)] = [φε]
([

t(c j,ε)
]) = [φε]

(
t
([c j,ε]

)) = f (t)
([φε], [c j,ε]

)
. �

Proposition 3.3. Let P (x j) be a formula formed by applying rules T1–T3, F1–F4 only. Then P (x j) is transferrable.

Proof. F1. For atomic formulas, this follows immediately from Lemmas 2.2 and 3.2.
We proceed by induction for more general formulas. We put c j := [c j,ε].
F2. For a formula of the form P (x j) ∧ Q (x j), we find inductively,

P (c j) ∧ Q (c j) is true

⇐⇒ P (c j,ε) is true a.e., and Q (c j,ε) is true a.e.

⇐⇒ P (c j,ε) ∧ Q (c j,ε) is true a.e.

2 In order to realize this within set theory, one identifies R and ∗
R with sets of atoms [8].
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F3. For a formula of the form (∃x ∈ t(x j)) P (x, x j), we find inductively,(∃x ∈ t(c j)
)

P (x, c j) is true

⇐⇒ there exists c ∈ t(c j) such that P (c, c j) is true

⇐⇒ there exists (cε)ε with cε ∈ t(c j,ε) a.e. such that P (cε, c j,ε) is true a.e.

⇐⇒ (∃x ∈ t(c j,ε)
)

P (x, c j,ε) is true a.e.

F4. For a formula of the form (∀x ∈ t(x j)) P (x, x j), we find inductively,(∀x ∈ t(c j)
)

P (x, c j) is true

⇐⇒ for each [cε] with cε ∈ t(c j,ε) a.e., P
([cε], c j

)
is true

⇐⇒ if cε ∈ t(c j,ε) a.e., then P (cε, c j,ε) is true a.e.

We show that this is still equivalent with: (∀x ∈ t(c j,ε)) P (x, c j,ε) is true a.e.
�⇒: Choose

cε ∈ t(c j,ε) with ¬P (cε, c j,ε), if ¬(∀x ∈ t(c j,ε)
)

P (x, c j,ε),

cε ∈ t(c j,ε), if
(∀x ∈ t(c j,ε)

)
P (x, c j,ε).

(Since t(c j) is internal, t(c j) 
= ∅, so w.l.o.g. t(c j,ε) 
= ∅, ∀ε.) Then by assumption, P (cε, c j,ε) is true a.e. By the choice of cε ,
this implies that (∀x ∈ t(c j,ε)) P (x, c j,ε) is true a.e.

⇐�: Let cε ∈ t(c j,ε) a.e. Then by assumption, P (cε, c j,ε) is true a.e. �
Theorem 3.4 (Transfer principle, restricted). Let P (a1, . . . ,am) be a sentence formed by applying rules T1–T3, F1–F4 only, in which
the constants a j are nongeneralized objects. Then P (a1, . . . ,am) is true iff P (∗a1, . . . ,

∗am) is true.

Proof. This is a special case of Proposition 3.3. �
Remark 3.5. If F is a nonmaximal free filter, the full transfer principle (i.e., including rules F5–F7) cannot hold. E.g., in that
case, ∗R is partially, but not totally ordered. Hence transfer cannot apply to the statement (containing ∨)

(∀x, y ∈ R) (x � y ∨ y � x).

Similarly, in that case, ∗R is a ring, but not a field. Hence transfer cannot apply to the statement (containing ¬)

(∀x, y ∈ R)
(¬(x = 0) �⇒ (∃y ∈ R) (xy = 1)

)
.

4. Internal definition and transfer (extended)

Theorem 4.1 (Internal definition principle, I.D.P.). Let P (x, x j) be a transferrable formula. Let A, a j be internal objects. Let {x ∈ A:
P (x,a j)} 
= ∅. Then {x ∈ A: P (x,a j)} is internal.

Explicitly, if A = [Aε] and a j = [a j,ε], then {x ∈ A: P (x,a j)} = [{x ∈ Aε: P (x,a j,ε)}].

Proof. Let {x ∈ A: P (x,a j)} 
= ∅, i.e., (∃x ∈ A) P (x,a j). By transfer, (∃x ∈ Aε) P (x,a j,ε) holds a.e. For an internal object
c = [cε], we have by transfer,

c ∈ {
x ∈ A: P (x,a j)

} ⇐⇒ c ∈ A and P (c,a j)

⇐⇒ cε ∈ Aε and P (cε,a j,ε) a.e.

⇐⇒ cε ∈ {
x ∈ Aε: P (x,a j,ε)

}
a.e.

⇐⇒ c ∈ [{
x ∈ Aε: P (x,a j,ε)

}]
,

where the latter internal set is well defined since the corresponding family is a family of nonempty sets (a.e.). Further, as A
is internal, A has only internal elements. Hence {x ∈ A: P (x,a j)} = [{x ∈ Aε: P (x,a j,ε)}] is internal. �

Identifying R with a subset of ∗R, for a map f : Rn → Rm , we have that ∗ f : ∗Rn → ∗Rm is an extension of f (in view
of [ fε]([xε]) = [ fε(xε)]). We will therefore denote ∗ f by f (as usual in nonstandard analysis). In the case of relations on R,
some confusion may arise in dropping the stars. E.g., for a,b ∈ ∗R, a(∗
=)b is not equivalent with ¬(a = b). We will drop the
stars for �; on the other hand, we will use a 
= b for ¬(a = b), a � b for ¬(a � b), and a < b for a � b ∧ a 
= b. By transfer,
(∗R,+, ·,�) is a partially ordered commutative ring.
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Example 4.2. 1. The archimedean property of R

(∀x ∈ R) (∃n ∈ N)
(
n � |x|)

yields, by transfer,(∀x ∈ ∗R
) (∃n ∈ ∗N

) (
n � |x|).

2. For a ∈ R and R ∈ R (R > 0), let B(a, R) = {x ∈ R: |a| � R}. Then by transfer (or by I.D.P.),

∗(B(a, R)
) = {

x ∈ ∗R: |a| � R
}
.

The version of transfer obtained so far is too weak for practical use. We will therefore allow another rule in the formation
of terms:

T4. If P is a formula, x is a variable free in P and t is a term in which x does not occur, then {x ∈ t: P } is a term.

We will call such a term a set term. We call the variable x bound (by the set term). We will denote by t(x j) a term t with x j

as its only free variables.
We define a unary predicate N (‘is recursively nonempty’) with the following semantics:

1. If a is not a tuple, then N(a) iff a 
= ∅.
2. If a = (a1, . . . ,am), then N(a) iff N(a1) ∧ · · · ∧ N(am).

Lemma 4.3. Let t(x j) be a term formed by rules T1–T4, in which all occurring formulas are transferrable. Let [c j,ε] be internal objects.
If N(t([c j,ε])), then[

t(c j,ε)
] = t

([c j,ε]
)
.

Proof. T1. Clear.
T2. If t = (t1, . . . , tm), then N(t([c j,ε])) iff N(ti([c j,ε])) for i = 1, . . . ,m. Hence the claim follows by induction (as in

Lemma 3.2).
T3. If t = f (s), then t([φε], [c j,ε]) = [φε](s([c j,ε])) is assumed to be well defined. In particular, s([c j,ε]) is internal, and

therefore N(s([c j,ε])). Hence the claim follows by induction (as in Lemma 3.2).
T4. Let P be a transferrable formula in which x is free and let t(x j) be a term in which x does not occur. For the term

{x ∈ t(x j): P (x, x j)} with (by assumption) {x ∈ t([c j,ε]): P (x, [c j,ε])} 
= ∅, we have that also t([c j,ε]) is a nonempty set, and
thus N(t([c j,ε])). Further, we find inductively by Theorem 4.1[{

x ∈ t(c j,ε): P (x, c j,ε)
}] = {

x ∈ [
t(c j,ε)

]
: P

(
x, [c j,ε]

)} = {
x ∈ t

([c j,ε]
)
: P

(
x, [c j,ε]

)}
. �

The condition that set terms cannot be recursively empty leads us to the adapted rules:

F1′ . If t1, t2 are terms, then t1 = t2 ∧ N(t1) ∧ N(t2) and t1 ∈ t2 ∧ N(t1) ∧ N(t2) are formulas.
F4′ . If P is a formula, x is a variable free in P and t is a term in which x does not occur, then [(∀x ∈ t)P ] ∧ N(t) is a

formula.

Notice that for terms t(x j) formed by rules T1–T3 and internal objects c j , the side condition N(t(c j)) 
= ∅ is always satisfied
(and hence can be omitted from the formula).

Proposition 4.4. Let P (x j) be a formula formed by applying rules T1–T4, F1′ , F2, F3, F4′ . Then P (x j) is transferrable.

Proof. The induction of Proposition 3.3 goes through, provided that we can at any moment in the proof write [t(c j,ε)] =
t([c j,ε]). This is exactly what the side condition N(t) accomplishes: if N(t([c j,ε])), then by induction, Lemma 4.3 can be
applied.

Notice that also the side condition is transferrable: if the last rule applied in the formation of t is T1 or T3, then N(t(. . .))
is always true. If t = (t1, . . . , tm), then inductively,

N
(
t
([c j,ε]

)) ⇐⇒ N
(
ti
([c j,ε]

))
for i = 1, . . . ,m

⇐⇒ N
(
ti(c j,ε)

)
a.e. for i = 1, . . . ,m ⇐⇒ N

(
t(c j,ε)

)
a.e.
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Finally, if t = {x ∈ s: P }, then inductively,

N
({

x ∈ s
([c j,ε]

)
: P

(
x, [c j,ε]

)}) ⇐⇒ (∃x ∈ s
([c j,ε]

))
P
(
x, [c j,ε]

)
⇐⇒ (∃x ∈ s(c j,ε)

)
P (x, c j,ε) a.e.

⇐⇒ N
({

x ∈ s(c j,ε): P (x, c j,ε)
})

a.e.

Hence the side condition also transfers properly. �
Theorem 4.5 (Transfer principle, extended). Let P (a1, . . . ,am) be a sentence formed by applying rules T1–T4, F1′ , F2, F3, F4′ , in which
the constants a j are nongeneralized objects. Then P (a1, . . . ,am) is true iff P (∗a1, . . . ,

∗am) is true.

Proof. This is a special case of Proposition 4.4. �
In practice, an important corollary is that transfer can be applied to formulas that also contain ‘�⇒’, under a constraint

that is almost always fulfilled in practice:

F5′ . If P , Q are formulas, x is a variable free in P and Q , and t is a term in which x does not occur, then [(∀x ∈ t)
(P �⇒ Q )] ∧ [(∃x ∈ t) P ] is a formula.

Corollary 4.6. Let P (x j) be a formula formed by applying rules T1–T3, F1–F4, F5′ . Then P (x j) is transferrable.

Proof. The formula F5′ is equivalent with [(∀x ∈ {x′ ∈ t: P }) Q ] ∧ N({x′ ∈ t: P }), which is transferrable by Proposi-
tion 4.4. �

In practice, we will apply transfer to the formula (∀x ∈ t) (P �⇒ Q ), silently checking that the side condition (∃x ∈ t) P
is fulfilled.

Remarks.

1. The formula (∀x ∈ t) [(P �⇒ Q ) ∧ R] can be treated similarly. In fact, it is equivalent with [(∀x ∈ t) (P �⇒ Q )] ∧
[(∀x ∈ t) R]. Similarly, (∀x ∈ t) (∃y ∈ s) (P �⇒ Q ) is equivalent with (∀x ∈ t) ([(∀y ∈ s) P ] �⇒ [(∃y ∈ s) Q ]).

2. A sentence containing the connective ∨ can sometimes be transferred using idempotent elements in ∗R. E.g., the sen-
tence (∀x, y ∈ R) (x � y ∨ y � x) is equivalent with (∀x, y ∈ R) (∃e ∈ R) (e2 = e ∧ xe � ye ∧ x(1 − e) � y(1 − e)), which
is transferrable.

3. A sentence containing the connective ¬ can sometimes be transferred if it can be pulled through to an atomic formula.
E.g., (∀x ∈ R) (x 
= 0 �⇒ (∃y ∈ R) (xy = 1)) can be transferred as (∀x ∈ ∗R) (x(∗
=)0 �⇒ (∃y ∈ ∗R) (xy = 1)). Notice
that for x ∈ ∗R, x(∗
=)0 is a stronger condition than x 
= 0 (unless F is an ultrafilter).

5. Saturation

Definition 5.1. We call a free filter F on I selective if for each sequence (Sn)n∈N with Sc
n := I \ Sn /∈ F , there exist εn ∈ Sn

such that {εn: n ∈ N}c /∈ F .
We call a free filter F on I blocked if for each S j ⊆ I with Sc

j /∈ F ( j = 1,2), there exist disjoint T j ⊆ S j with T c
j /∈ F

( j = 1,2).3

Similarly, we call a free filter F on I σ -blocked if for each S j ⊆ I with Sc
j /∈ F ( j ∈ N), there exist mutually disjoint

T j ⊆ S j with T c
j /∈ F ( j ∈ N).

A free filter F on I is called ℵ1-regular (resp. ℵ1-incomplete, also called σ -incomplete or δ-incomplete) [7] if there exist
Sn ∈ F such that

⋂
n∈N

Sn = ∅ (resp.
⋂

n∈N
sn /∈ F ). For an ultrafilter, ℵ1-regular is equivalent with ℵ1-incomplete.

We call a filter F common if F is an ℵ1-regular selective blocked free filter.
A filter F is called Ramsey [1] if for each decreasing sequence (Sn)n∈N with Sn ∈ F , there exist εn ∈ Sn such that

{εn: n ∈ N} ∈ F .

Lemma 5.2.

1. Let F be a free ultrafilter. Then F is selective iff F is Ramsey.
2. If F is a selective free filter, then F is ℵ1-incomplete.

3 The name blocked stems from the fact that this property is an obstruction for the filter to be an ultrafilter.
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Proof. 1. For an ultrafilter, Sc /∈ F iff S ∈ F . Replacing Sn ∈ F by S1 ∩ · · · ∩ Sn ∈ F , we may restrict ourselves to decreasing
sequences only.

2. As F is selective, there exist εn ∈ I such that {εn: n ∈ N}c /∈ F . As F is free, Sn := {εn}c ∈ F for each n ∈ N, but⋂
n∈N

Sn /∈ F . �
Part 1 of Lemma 5.2 shows that our definition of a selective free filter is consistent with the fact that a Ramsey ultrafilter

is also called a selective ultrafilter [10].

Examples 5.3.

1. The filters (1) and (2) are common. E.g., to see that they are selective, let (Sn)n∈N be a sequence with Sc
n /∈ F , for each n.

Then we can construct an increasing (resp. decreasing) sequence of elements εn ∈ Sn such that εn → ∞ (resp. εn → 0).
Then {εn: n ∈ N}c /∈ F .
In particular, it is trivial to construct selective free filters (in contrast with selective free ultrafilters on N, whose exis-
tence is not guaranteed under the ZFC axioms of set theory).

2. Let ω1 be the first uncountable ordinal. Let

I = ω1 with F = {
S ⊆ ω1: (∃η ∈ ω1) (η,ω1) ⊆ S

}
. (3)

Then F is σ -blocked: for each n ∈ N, let Sn ⊆ ω1 with Sc
n /∈ F , i.e., for each η ∈ ω1, there exists ε � η with ε ∈ Sn .

Inductively choose for limit ordinals λ ∈ ω1 and n ∈ N

ελ := sup
α<λ

εα ∈ ω1,

ελ+n ∈ Sn, ελ+n > ελ+n−1.

Then Tn := {ελ+n: λ ∈ ω1 is a limit ordinal} ⊆ Sn are mutually disjoint. Also εα � α for each α ∈ ω1. For any η ∈ ω1,
there exists a limit ordinal λ ∈ ω1 with λ � η. Then Tn � ελ+n � λ + n � η. Hence T c

n /∈ F .
Further, F is ℵ1-complete: if Sn ∈ F , for each n ∈ N, then there exist ηn ∈ ω1 such that (ηn,ω1) ⊆ Sn . Then F �
(supn∈N ηn,ω1) ⊆ ⋂

n∈N
Sn .

It follows that F is also not selective by Lemma 5.2.

Lemma 5.4. Let F be a selective blocked free filter. Then F is σ -blocked.

Proof. Let S j ⊆ I with Sc
j /∈ F , for each j ∈ N. As F is blocked, we find S j,2 ⊆ S j with Sc

j,2 /∈ F and S1,2 ∩ S2,2 = ∅ (as

F is free, w.l.o.g. S j,2 � S j , ∀ j). For each n ∈ N (n > 2), we similarly find (repeatedly using the fact that F is blocked)
S j,n � S j,n−1 with Sc

j,n /∈ F and with mutually disjoint S1,n, . . . , Sn,n . As F is selective, we find ε1,n ∈ S1,n such that {ε1,n:
n ∈ N}c /∈ F . Let T1 := {ε1,n: n ∈ N}. Similarly, {ε2,n: n ∈ N}c /∈ F for some ε2,n ∈ S2,n , and we let T2 := {ε2,n: n ∈ N} \ T1. As
T1 ∩ T2 is finite, T c

2 /∈ F . And so on. �
Theorem 5.5 (Saturation principle). Let F be a common filter. Let X be an internal set. For each n ∈ N, let An ⊆ X be internal and
Bn ⊆ X such that X \ Bn is internal or Bn = X. If A1 ∩ · · · ∩ An ∩ B j 
= ∅ for each n, j ∈ N, then

⋂
n∈N

An ∩ Bn 
= ∅.

Proof. Assume first that Bn 
= X , for some n. Then w.l.o.g. Bn 
= X for each n. Let X = [Xε], An = [An,ε] and X \ Bn = [Cn,ε]
for each n. As Cn,ε ⊆ Xε a.e., we may assume that X \ Bn = [Xε \ Bn,ε] for some Bn,ε ⊆ Xε . Choose xn, j ∈ A1 ∩ · · · ∩ An ∩ B j
for each n, j ∈ N with j � n. As X is internal, also xn, j ∈ X are internal. Let xn, j = [xn, j,ε]. Then xn, j,ε ∈ A1,ε ∩ · · · ∩ An,ε a.e.
Hence

S̃n := {
ε ∈ I: (∀ j,k � n) (xn, j,ε ∈ Ak,ε)

} ∈ F , ∀n ∈ N.

As F is ℵ1-regular, we find Sn ∈ F , Sn ⊆ S̃n , (Sn)n decreasing and
⋂

n Sn = ∅.
Further, xn, j /∈ [Xε \ B j,ε], i.e. xn, j,ε /∈ B j,ε does not hold a.e.
Let Tn, j := {ε ∈ I: xn, j,ε ∈ B j,ε} ∩ Sn . As Sn ∈ F , also T c

n, j /∈ F , ∀n, j ∈ N, j � n.
By Lemma 5.4, F is σ -blocked. So we find mutually disjoint Un, j ⊆ Tn, j with U c

n, j /∈ F . As F is selective, there exist
εn, j ∈ Un, j such that {εn, j: n, j ∈ N, j � n}c /∈ F . Let

xε :=
{

xn, j,ε, ε = εn, j ( j � n),

xn,1,ε, ε ∈ (Sn \ Sn+1) \ {εn, j: n, j ∈ N, j � n}.
As

⋂
n∈N

Sn = ∅, this unambiguously defines xε for each ε ∈ S1.
(1) Let n ∈ N. We show that Sn \ {εk, j: j � k < n} ⊆ {ε ∈ I: xε ∈ An,ε}, whence [xε] ∈ An .
Let ε ∈ Sn . Then ε ∈ Sm \ Sm+1 for some m � n. If ε /∈ {εn, j: n, j ∈ N, j � n}, then xε = xm,1,ε ∈ An,ε by definition of Sm .

If ε = εk, j for some j � k with k � n, then εk, j ∈ Uk, j ⊆ Sk . Hence xε = xk, j,ε ∈ An,ε by definition of Sk .
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(2) Let j ∈ N. We show that {εn, j: n ∈ N, j � n} ⊆ {ε ∈ I: xε ∈ B j,ε}, whence [xε] ∈ B j .
If ε = εn, j (n � j), then ε ∈ Un, j and xε = xn, j,ε; hence xε ∈ B j,ε by definition of Un, j .
Finally, if Bn = X for each n, then the proof is a simplified version of the previous argument (i.e., choosing xn ∈ A1 ∩

· · · ∩ An , S̃n := {ε ∈ I: (∀k � n) (xn,ε ∈ Ak,ε)} and xε := xn,ε for ε ∈ Sn \ Sn+1). �
The following special case resembles the classical countable saturation in nonstandard analysis more closely:

Corollary 5.6. Let F be common filter. Let X be an internal set. For each n ∈ N, let An ⊆ X such that An or X \ An is internal. If (An)n∈N

has the finite intersection property, then
⋂

n∈N
An 
= ∅.

In contrast with nonstandard analysis (i.e., the case in which F is a free ultrafilter), a sequence of nonempty cointernal
sets automatically has a nonempty intersection if F is a common filter.

Corollary 5.7 (Quantifier switching, Q.S.). Let F be a common filter. Let X be an internal set. For each n ∈ N, let Pn(x, xn, j), Q n(x, yn, j)

be transferrable formulas. Let an, j , bn, j be internal constants. If Pn gets stronger as n increases (i.e., for each n ∈ N and x ∈ X,
Pn+1(x,an+1, j) �⇒ Pn(x,an, j)) and if

(∀n,m ∈ N) (∃x ∈ X)
(

Pn(x,an, j) ∧ ¬Q m(x,bm, j)
)
,

then also

(∃x ∈ X) (∀n ∈ N)
(

Pn(x,an, j) ∧ ¬Q n(x,bn, j)
)
.

Proof. Let An := {x ∈ X: Pn(x,an, j)} and Bn := {x ∈ X: ¬Q n(x,bn, j)}. By I.D.P., An , X \ Bn are internal or empty. By as-
sumption, An are not empty and An+1 ⊆ An , ∀n. If X \ Bn is empty, then Bn = X . By assumption, for each n,m ∈ N,
A1 ∩ · · · ∩ An ∩ Bm = An ∩ Bm 
= ∅. The result follows by the saturation principle. �
6. Overspill and underspill

Definition 6.1. Let a,b ∈ ∗R. Then a is called infinitely large if |a| � n, for each n ∈ N; a is called finite if |a| � N , for some
N ∈ N; a is called infinitesimal if |a| � 1/n, for each n ∈ N. We denote a ≈ b iff a − b is infinitesimal. We denote the set of
finite elements of ∗R, resp. ∗N by Fin(∗R), resp. Fin(∗N) and the set of infinitely large elements by ∗R∞ , resp. ∗N∞ .

Example 6.2. If F is not ℵ1-regular, then ∗N∞ = ∅: If [nε] ∈ ∗N∞ , then nε ∈ N for each ε ∈ I and for each m ∈ N, there
exists Xm ∈ F such that nε � m, for each ε ∈ Xm . As F is not ℵ1-regular, there exists ε0 ∈ ⋂

m∈N
Xm . Then nε0 � m for each

m ∈ N, a contradiction.

This example shows that the condition that F is ℵ1-regular cannot be dropped in the statement of the saturation
principle.

Lemma 6.3. Let F be a common filter. Let a ∈ ∗R. If |a| � m for each m ∈ ∗N∞ , then a is finite.

Proof. Suppose that a is not finite. Then (∀n ∈ N) (∃m ∈ ∗N) (m � n ∧|a| � m). By Q.S., there exists m ∈ ∗N such that |a| � m
and m � n, for each n ∈ N, contradicting the hypotheses. �

Recall that P∅(A) = {X ⊆ A: X 
= ∅}.

Lemma 6.4. Let A 
= ∅ be a nongeneralized set. Then ∗P ∅(A) is the set of all internal subsets of ∗A.

Proof. By definition, ∗P ∅(A) only has internal elements. Further,

[Xε] ∈ ∗P ∅(A) ⇐⇒ Xε ∈ P∅(A) a.e. ⇐⇒ Xε ⊆ A a.e.

As in the proof of Lemma 2.2, this is still equivalent with [Xε] ⊆ ∗A. �
Just like Q.S., the applications of saturation known as overspill and underspill are convenient for practical use.

Theorem 6.5 (Spilling principles). Let F be a common filter. Let A ⊆ ∗N be internal.

1. (Overspill) If A contains arbitrarily large finite elements (i.e., for each n ∈ N, there exists m ∈ A with m � n), then A contains an
infinitely large element.
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2. (Underspill) If A contains arbitrarily small infinitely large elements (i.e., for each ω ∈ ∗N∞ , there exists a ∈ A with a � ω), then A
contains a finite element.

3. (Overspill) If N ⊆ A, then there exists ω ∈ ∗N∞ such that {n ∈ ∗N: n � ω} ⊆ A.
4. (Underspill) If ∗N∞ ⊆ A, then A ∩ N 
= ∅.

Proof. 1. As (∀n ∈ N) (∃m ∈ A) (m � n), A ∩ ∗N∞ 
= ∅ by Q.S.
2. By transfer on the sentence(∀X ∈ P∅(N)

)
(∃m ∈ X) (∀n ∈ X) (n � m),

every internal subset of ∗N has a smallest element. Let nmin be the smallest element of A. Then nmin � ω, for each ω ∈ ∗N∞ .
By Lemma 6.3, nmin is finite.

3. First, let n0 ∈ N. By transfer on the sentence(∀X ∈ P∅(N)
) [

(1 ∈ X ∧ · · · ∧ n0 ∈ X) �⇒ (∀m ∈ N) (m � n0 �⇒ m ∈ X)
]

(side conditions are trivially fulfilled), any internal subset of ∗N that contains N also contains {m ∈ ∗N: m � n0}, for any
n0 ∈ N. Then

B = {
n ∈ ∗N:

(∀m ∈ ∗N
)
(m � n �⇒ m ∈ A)

}
is internal by I.D.P. (since the side condition is trivially fulfilled and B 
= ∅) and contains N. By part 1, B contains an
infinitely large ω. Hence {n ∈ ∗N: n � ω} ⊆ A.

4. Let

B = {
n ∈ ∗N:

(∀m ∈ ∗N
)
(m � n �⇒ m ∈ A)

}
.

By I.D.P., B is internal (since the side condition is trivially fulfilled and B 
= ∅). By part 2, B contains a finite element, i.e.,
there exists n ∈ B and N ∈ N such that n � N . By definition of B , N ∈ A. �
7. Applications to generalized function theory

Remark 7.1. In generalized function theory, the spaces considered are usually not ∗R or other spaces introduced so far, but
they are rather quotients of these spaces modulo a further identification (e.g. by means of certain growth conditions). The
reason why we nevertheless introduced them is that they can be used advantageously to prove statements about generalized
functions, using the strong principles that were described in the previous sections. We briefly exemplify this in the following
sections.

Similar principles for the objects obtained after a further identification often do not hold. In particular the transfer
principle and the internal definition principle are then too restricted for practical use: e.g., with analogous definitions of
internal objects, {x ∈ A: x � 0} need no longer be internal if A is an internal set [16].

7.1. Automatic continuity

Assumption. In this section, we work with the filter (2) on I = (0,1].

We also denote ρ := [ε] ∈ ∗R.
Let E be a locally convex vector space (belonging to the nongeneralized objects) with its topology generated by a family

of seminorms (pλ)λ∈Λ . The Colombeau module constructed on E [5] is defined as G E := M E/N E , where

M E = {
(uε)ε ∈ E I : (∀λ ∈ Λ) (∃N ∈ N)

(
pλ(uε) � ε−N a.e.

)}
,

N E = {
(uε)ε ∈ E I : (∀λ ∈ Λ) (∀n ∈ N)

(
pλ(uε) � εn a.e.

)}
.

For E = R (resp. E = C), one denotes R̃ := GR (resp. C̃ := GC).
If we define

M∗E = {
u ∈ ∗E: (∀λ ∈ Λ) (∃N ∈ N)

(∗pλ(u) � ρ−N)}
,

N∗E = {
u ∈ ∗E: (∀λ ∈ Λ) (∀n ∈ N)

(∗pλ(u) � ρn)},
then, in view of Lemma 2.2, the identity map on representatives introduces isomorphisms M E/F ∼= M∗E and N E/F ∼= N∗E .
It follows that G E ∼= (M E/F )/(N E/F ) ∼= M∗E/N∗E , where the first isomorphism is also introduced by the identity on
representatives (expressing that the identification up to N E can equivalently performed in two steps, in the first step only
identifying modulo F ).
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Definition 7.2. We call ρ-topology on ∗E the translation invariant topology with finite intersections of sets Bλ(0,ρm) (λ ∈ Λ,
m ∈ N) as a base of neighborhoods of 0. Here Bλ(0, r) := {u ∈ ∗E: ∗pλ(u) < r} for r ∈ ∗R, r � 0.

For u, v ∈ ∗E , we write u � v iff u − v ∈ N∗E .

Proposition 7.3 (ρ-continuity). Let E, F be locally convex spaces and let the topology of E, resp. F be generated by an increasing
sequence of seminorms (pn)n∈N , resp. (qn)n∈N . Let T : ∗E → ∗F be internal and u ∈ ∗E. Then the following are equivalent:

1. (∀m ∈ N) (∃n ∈ N) (∀v ∈ ∗E) (∗pn(v − u) � ρn �⇒ ∗qm(T (v) − T (u)) � ρm),
2. (∀v ∈ ∗E) (v � u �⇒ T (v) � T (u)).

Proof. �⇒: Let v ∈ ∗E with v � u. Hence ∗pn(u − v) � ρn , for each n ∈ N. Let m ∈ N. By assumption, ∗qm(T (v)− T (u)) � ρm .
As m ∈ N is arbitrary, T (v) � T (u).

⇐�: Let m ∈ N. Consider the map p : N × E → R: p(n, u) := pn(u). By transfer, ∗p(n, u) = ∗pn(u) for each n ∈ N and
u ∈ ∗E . Also by transfer, as (pn)n∈N is increasing,(∀u ∈ ∗E

) (∀n,m ∈ ∗N
) (

n � m �⇒ ∗p(n, u) � ∗p(m, u)
)

(the side condition for the implication is always fulfilled). Similarly for q(n, v) := qn(v). Define

A := {
n ∈ ∗N:

(∀v ∈ ∗E
) (∗p(n, v − u) � ρn �⇒ ∗q

(
m, T (v) − T (u)

)
� ρm)}

.

Let n ∈ ∗N∞ . If ∗p(n, v − u) � ρn , then v � u. Hence, by assumption, also T (v) � T (u), and in particular ∗q(m, T (v) −
T (u)) � ρm .

So A contains all infinitely large n ∈ ∗N. By I.D.P., A is internal (the side condition for the implication is always fulfilled).
By underspill, A ∩ N 
= ∅. �
Definition 7.4. Let E , F be locally convex spaces. In analogy of [16], we call a map T : G E → G F internal if there exist
Tε : E → F (for each ε ∈ I) such that T ([uε]) = [Tε(uε)] for each [uε] ∈ G E (here [.] denotes the equivalence class mod-
ulo N E , resp. N F ). This definition implies in particular that

(uε)ε ∈ M E �⇒ (
Tε(uε)

)
ε
∈ M F , (4)

(uε)ε ∈ M E , (vε)ε ∈ M E , (uε − vε)ε ∈ N E �⇒ (
Tε(uε) − Tε(vε)

)
ε
∈ N F . (5)

The sharp topology on G E is the topology induced by the ρ-topology on M∗E , i.e., with pλ : G E → R̃: pλ([uε]) :=
[pλ(uε)], it is the translation invariant topology with finite intersections of sets{

u ∈ G E : pλ(u) < [ε]m}
(λ ∈ Λ, m ∈ N)

as a base of neighborhoods of 0 [5].
The following result came as a surprise to specialists in the theory of nonlinear generalized functions:

Theorem 7.5 (Automatic continuity). Let E, F be metrizable locally convex spaces. Let T : G E → G F be internal. Then T is continuous
for the sharp topology.

Proof. If T ([uε]) = [Tε(uε)], let T̄ be the internal map [Tε] : ∗E → ∗F . By (4), T̄ (M∗E) ⊆ M∗F and by (5), u � v �⇒
T̄ u � T̄ v , for each u, v ∈ M∗E . By Proposition 7.3, this means that T̄ is ρ-continuous on M∗E . Hence T is continuous for
the sharp topology on G E . �
7.2. Pointwise regularity

For an open set Ω ⊆ Rd , the usual locally convex topology on C∞(Ω) is described by the seminorms pm(u) :=
supx∈Km, |α|�m |∂αu(x)|, where (Km)m is a compact exhaustion of Ω (m ∈ N). In this case, one usually denotes G(Ω) :=
GC∞(Ω) . We denote ∗Ωc := ⋃

K�Ω
∗K .

Proposition 7.6. M∗C∞(Ω) = {u ∈ ∗C∞(Ω): (∀α ∈ Nd) (∀x ∈ ∗Ωc) (∂αu(x) ∈ M∗R)}.

Proof. For a finite set A = {a1, . . . ,an}, we denote Pa1 ∧ · · · ∧ Pan as
∧

a∈A Pa . Let m ∈ N. By transfer on

(∀r ∈ R)
(∀u ∈ C∞(Ω)

) [
pm(u) � r ⇐⇒ (∀x ∈ Km)

( ∧
α∈Nd, |α|�m

∣∣∂αu(x)
∣∣ � r

)]
,

we find for u ∈ ∗C∞(Ω) that
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(∃N ∈ N)
(∗pm(u) � ρ−N)

⇐⇒ (∃N ∈ N)
(∀x ∈ ∗K m

) (∀α ∈ Nd, |α| � m
) (∣∣∂αu(x)

∣∣ � ρ−N)
⇐⇒ (∀α ∈ Nd, |α| � m

)
(∃N ∈ N)

(∀x ∈ ∗K m
) (∣∣∂αu(x)

∣∣ � ρ−N)
.

By Q.S. on the negation of the latter formula, it is equivalent with(∀α ∈ Nd, |α| � m
) (∀x ∈ ∗K m

)
(∃N ∈ N)

(∣∣∂αu(x)
∣∣ � ρ−N)

.

Hence

u ∈ M∗C∞(Ω)

⇐⇒ (∀m ∈ N)
(∀α ∈ Nd, |α| � m

) (∀x ∈ ∗K m
)
(∃N ∈ N)

(∣∣∂αu(x)
∣∣ � ρ−N)

⇐⇒ (∀α ∈ Nd) (∀x ∈ ∗Ωc
) (

∂αu(x) ∈ M∗R
)
. �

Similarly, N∗C∞(Ω) = {u ∈ ∗C∞(Ω): (∀α ∈ Nd) (∀x ∈ ∗Ωc) (∂αu(x) ∈ N∗R)}.

Definition 7.7. The subalgebra G∞(Ω) of G∞-regular Colombeau generalized functions on Ω is defined as{
(uε)ε ∈ C∞(Ω)I : (∀K � Ω) (∃N ∈ N)

(∀α ∈ Nd) (
sup
x∈K

∣∣∂αuε(x)
∣∣ � ε−N a.e.

)}
/NC∞(Ω).

As in Section 7.1 (and by transfer, as in the proof of Proposition 7.6),

G∞(Ω) ∼= {
u ∈ ∗C∞(Ω): (∀K � Ω) (∃N ∈ N)

(∀α ∈ Nd) (∀x ∈ ∗K
) (∣∣∂αu(x)

∣∣ � ρ−N)}
/N∗C∞(Ω).

Definition 7.8. We say that u ∈ ∗C∞(Ω) is G∞-regular at x ∈ ∗Ω if there exists N ∈ N such that for each α ∈ Nd ,
|∂αu(x)| � ρ−N .

Theorem 7.9 (Pointwise characterization of G∞(Ω)). Let u ∈ ∗C∞(Ω). The following are equivalent:

1. (∀K � Ω) (∃N ∈ N) (∀α ∈ Nd) (∀x ∈ ∗K ) (|∂αu(x)| � ρ−N ),
2. u is G∞-regular at each x ∈ ∗Ωc .

Proof. �⇒: Clear.
⇐�: Suppose that 1 does not hold. Then we find K � Ω and αn ∈ Nd , ∀n ∈ N such that (∀n ∈ N) (∃x ∈ ∗K ) (|∂αn u(x)| �

ρ−n). By Q.S., (∃x ∈ ∗K ) (∀n ∈ N) (|∂αn u(x)| � ρ−n), contradicting the hypotheses. �
Hence (cf. [14, Thm. 5.1]),

G∞(Ω) = {
u ∈ ∗C∞(Ω): u is G∞-regular at each x ∈ ∗Ωc

}
/N∗C∞(Ω).

If one works instead with an ultrafilter extending the common filter (2), as in [15], the proof of Theorem 7.9 breaks down,
since cointernal sets then do not automatically have the finite intersection property.
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