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Trigonometric non-Fourier moment problems arise as a result of various control problem
study. In current paper, the extremal solution, i.e. the one with the least L2-norm is
searched for. Proposed is an algorithm that allows to change an infinite system of equations
into the linear one with only a finite number of equations. The mentioned algorithm is
based on the fact, that in the case of a Fourier moment problem, the extremal solution is
periodic and easy to construct. The extremal solution of a non-Fourier moment problem
close to a Fourier one is approximated by a sequence of solutions with periodicity
disturbed in a finite number of equations. It is proved that this sequence of approximations
converges to the desired extremal solution. The paper is concluded with the particular
example whose consideration leads to a moment problem elaborated in the first part of
the article.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The non-Fourier moment problem arises very often, when we deal with the control related problems of non-
homogeneous objects [15,16]. The results about existence of solutions of such moment problems are well-known (e.g. see
[1,2] and references therein) and used by many authors. When the existence is proved, the next problem arising, is to give
an effective algorithm for finding or approximating a particular solution. In many cases, the solution needed in applications
is the optimal one, i.e. the one with the extremal norm. In the case of the Fourier moment problem, it is proved that the
extremal solution, in the sense of L2-norm, is a periodic function [7]. In the case of non-Fourier moment problem, the
periodicity may be disturbed, what causes difficulties while dealing with the analytical solution of such problems. In this
paper, the idea of periodicity is used to deal with a non-Fourier moment problem that is close to a Fourier one.

We propose an algorithm that approximates the extremal solution of non-Fourier moment problem stated in Hilbert
space L2. We use the fact that considered moment problem (1) is quadratically close to a Fourier one and the last has an
easy to describe extremal solution ũo that is a periodic function (Theorem 2). We claim that the extremal solution of (1)
can be approximated by a sequence (uN ) of solutions of the moment problems, where equations

T∫
0

u(t)exp(iωnt)dt = bn

are replaced with
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T∫
0

u(t)exp(int)dt = 0

for n > N . The above moment problem still is an infinite set of integral equations, but approximating its extremal solution
with the use of the proposed algorithm leads to a finite set of linear equations. In fact, it is a Cramer system of equations.

The idea of replacing the infinite set of equations of some non-Fourier moment problem by a finite set is used, for
example, by T. Strohmer and K. Gröchenig [17,6]. In those papers the problem of reconstruction of a function, given some
sampling set is studied. The authors deal with some infinite set of equations, and their idea to approximate the solution is to
truncate the problem to a finite set of equations. To deal with possible ill-posedness, they approximate the obtained system
of equations by some set of trigonometric polynomials. In current paper, we use the idea of quadratically close sets [5] and
a fact that the considered basis (exp(iωnt)) is quadratically close to a Fourier set (exp(int)). This situation is characteristic
for non-homogeneous objects. The finite set of equations is obtained as a consequence of periodicity of a function given by
Fourier series.

The correctness of the proposed algorithm is checked in Section 3. We use the results of [5] to prove that the sequence
(uN ) converges to the extremal solution of (1).

As an application, we consider the non-homogeneous string. In order for this paper to be self-contained, we state main
result (Theorems 7) about location points of the eigenvalues of the operator connected with vibrations of this object. The
proofs of facts stated in Section 4 use technics of mixed differential-integral equations and then the Neumann series de-
scribed in [15] and in [16]. The different proofs of the mentioned theorems can be found in monographs [9,10,13,12] and
others. The paper is concluded with numerical example in which, we obtain the approximation of the optimal control for
a particular non-homogeneous string.

2. Extremal solution approximation

We consider the following non-Fourier moment problem.

T∫
0

u(t)exp(iωnt)dt = bn, n ∈ Z (1)

with T > 0, bn ∈ C, the ωn ’s are different numbers and ωn − n = O (1/n).

Remark 1. Assume T � 2π . The necessary and sufficient condition for the existence of a solution u ∈ L2(0, T ) of the sys-
tem (1) is the convergence of the series

∑∞
n=−∞ b2

n , [11,18].

The function uo ∈ L2(0, T ) having the least L2-norm and satisfying (1) is called the extremal solution. Our interest is to
find exactly or, at least, to approximate such a function.

We consider the closure L of linear span over{
exp(iωnt): n ∈ Z, 0 � t � T

}
.

Proposition 1. The extremal solution of (1) belongs to L.

For the proof we notice that if u is any solution of (1), then it can be written in a unique way as uo + u⊥ , where uo ∈ L
and u⊥ belongs to the orthogonal complement of L. Therefore uo satisfies (1) and

‖u‖2
2 = ‖uo‖2

2 + ‖u⊥‖2
2.

Consequently, ‖u‖2 � ‖uo‖2 and the L2-norm of u attains the least value if and only if ‖u⊥‖2 = 0. The last means that the
solution u of (1) with the least norm is equal to uo , the member of L.

Further on, we assume T � 2π and use the transformation f �→ f̂ from L2(0, T ) to L2(0,2π) defined as follows. Let m
be a positive integer with property 2(m − 1)π � T < 2mπ . We consider an extension of f onto [0,2mπ ], where f (t) = 0
on (T ,2mπ ]. With this in mind we put

f̂ (t) =
m−1∑
k=0

f (t + 2kπ), 0 � t � 2π.

To simplify the notation we set

hn(t) =
{

exp(iωnt) for 0 � t � T

0 for T < t � 2mπ .
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Theorem 2. Provided ωn = n for all n ∈ Z, the optimal solution uo of (1) is a periodic function on [0, T ] (for T � 2π ) with period 2π ,
i.e. if t, t + 2π ∈ [0, T ], then uo(t) = uo(t + 2π).

Considering the moment problem (1) for ωn = n we have:

bn =
T∫

0

u(t)exp(int)dt =
2π∫
0

û(t)exp(int)dt. (2)

Because {exp(int)}n∈Z constitutes an orthonormal basis on [0,2π ], there is a unique function v ∈ L2(0,2π) satisfying (2).
We extend v/m periodically onto [0, T ] to obtain function uo . It is easy to show that uo satisfies (2) and it is a member of
L2(0, T ) and, moreover, of L. Thus uo is extremal.

Our task is to approximate uo in general case. For this purpose, given N > 0, we study the closure LN of linear span
over {

hn(t): |n| � N, 0 � t � T
} ∪ {

exp(int): |n| > N, 0 � t � T
}

and replace moment problem (1) with

T∫
0

u(t)hn(t)dt = bn for |n| � N

T∫
0

u(t)exp(int)dt = 0 for |n| > N . (3)

We shall show (Section 3) that the extremal solution uN of the moment problem (3) (in particular uN ∈ LN ) approxi-
mates uo , in the sense that

lim
N→∞ uN = uo.

In a moment we shall prove that uN can be found after solving the system of linear equations. Thus the infinite system (3)
will be replaced with a finite one.

Remark 2. The systems that span L and LN constitute Riesz bases in [0,2π ]. They still may be considered for T > 2π ,
but solutions of moment problems (1) or (3) are no longer unique. If T < 2π , mentioned moment problems may have no
solution, as considered systems are not minimal on L2(0, T ). Therefore we assume that T � 2π .

In order to find uN , we propose the following algorithm.

Algorithm. We know that uN belongs to LN and write

uN =
N∑

n=−N

αnhn + g, (4)

where g is periodical on [0, T ] with period 2π and

2π∫
0

g(t)exp(int)dt = 0 for |n| � N . (5)

We need to find the function g and coefficients αn for |n| � N . Assuming |n| > N and using (4), (5), we obtain

0 =
T∫

0

(
N∑

n=−N

αnhn(t) + g(t)

)
exp(int)dt

=
m−1∑
k=0

2(k+1)π∫
2kπ

(
N∑

n=−N

αnhn(t) + g(t)

)
exp(int)dt

=
2π∫ (

N∑
n=−N

αnĥn(t) + ĝ(t)

)
exp(int)dt.
0
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Therefore

N∑
n=−N

αnĥn(t) + ĝ(t) =
N∑

n=−N

dn exp(int)

for some dn ’s. We notice that

ĝ(t) =
{

mg(t) for 0 � t � T − 2(m − 1)π

(m − 1)g(t) for T − 2(m − 1)π < t � 2π .

In particular, if we define the function m : [0, T ] → R by formula

m(t) =
{−1/m for 0 � t � T − 2(m − 1)π

−1/(m − 1) for T − 2(m − 1)π < t � 2π

then for 0 � t � 2π ,

g(t) = m(t)
N∑

n=−N

αnĥn(t) − m(t)
N∑

n=−N

dn exp(int)

and it extends periodically onto [0, T ].
Now, we use (5) and for |n| � N obtain:

0 =
2π∫
0

g(t)exp(int)dt

=
N∑

k=−N

αk

2π∫
0

m(t )̂hk(t)exp(int)

−
N∑

k=−N

dk

2π∫
0

m(t)exp
(
i(k + n)t

)
dt. (6)

What follows is the system of 2N +1 equations with 4N +2 unknown, the αk ’s and dk ’s. The second set of 2N +1 equations
we obtain from Eq. (4). Namely,

bn =
T∫

0

uN(t)hn(t)dt

=
N∑

k=−N

αk

( T∫
0

hk(t)hn(t)dt +
2π∫
0

m(t )̂hk(t )̂hn(t)dt

)

−
N∑

k=−N

dk

2π∫
0

m(t )̂hn(t)exp(ikt)dt (7)

for |n| � N .

3. Correctness of the algorithm

We are going to proof that the function uN obtained as a result of solution of the system of Eqs. (6)–(7) approximates
the extremal solution of the moment problem (1). We shall use results and terminology of [5].

Let H be a (separable) Hilbert space. We say that two sequences (ϕξ ) and (ϕ′
ξ ) are quadratically ε-close if∑

ξ

∥∥ϕξ − ϕ′
ξ

∥∥2
< ε, for some ε > 0.

Lemma 3. Assume (ψξ ) and (ψ ′
ξ ) are Riesz bases biorthogonal to (ϕξ ) and (ϕ′

ξ ) respectively. If (ϕξ ) and (ϕ′
ξ ) are quadratically ε-close

then there exists a constant M, such that (ψξ ) and (ψ ′ ) are quadratically Mε-close.
ξ
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For the proof, we recall that all (ψξ ), (ψ ′
ξ ), (ϕξ ) and (ϕ′

ξ ) are Riesz bases and therefore there exists an orthonormal basis
(eξ ) of H and isomorphisms R , S with properties

Reξ = ϕξ , Seξ = ϕ′
ξ ,

(
R∗)−1

eξ = ψξ ,
(

S∗)−1
eξ = ψ ′

ξ .

By hypothesis,
∑

ξ ‖ϕξ − ϕ′
ξ‖2 < ε. We start with consideration of the terms of the last series.∥∥ϕξ − ϕ′

ξ

∥∥2 = ∥∥(R − S)eξ

∥∥ = ∥∥R
(

I − R−1 S
)
eξ

∥∥2 �
∥∥R−1

∥∥−2∥∥(
I − R−1 S

)
eξ

∥∥2
,

where I denotes the identity operator. We consider the expression ‖ψξ − ψ ′
ξ‖2 next. We have∥∥ψξ − ψ ′

ξ

∥∥2 = ∥∥((
R∗)−1 − (

S∗)−1)
eξ

∥∥ = ∥∥(
S∗)−1(

S∗(R∗)−1 − I
)
eξ

∥∥2 �
∥∥S−1

∥∥2∥∥(
I − R−1 S

)∗
eξ

∥∥2
.

Now, let W be an operator with property
∑

ξ ‖W eξ‖2 < ∞. Then∑
ξ

‖W eξ‖2 =
∑
ξ,ζ

∣∣〈W eξ , eζ 〉∣∣2 =
∑
ξ,ζ

∣∣〈eξ , W ∗eζ

〉∣∣2 =
∑
ξ

∥∥W ∗eξ

∥∥2
.

Because∑
ξ

∥∥(
I − R−1 S

)
eξ

∥∥2
<

∥∥R−1
∥∥2

ε < ∞

we may apply the above reasoning. Putting M = ‖S−1‖2‖R‖2, we obtain∑
ξ

∥∥ψξ − ψ ′
ξ

∥∥2 � M
∑
ξ

∥∥ϕξ − ϕ′
ξ

∥∥2
< Mε.

Therefore (ψξ ) and (ψ ′
ξ ) are Mε-close.

Let us notice that our bases are “close” to orthogonal one: (exp(int)). It may be shown that in this case the constant M
is close to 1.

Let H = L2(0, T ). We denote

ϕn = exp(iωnt), ϕN
n =

{
exp(iωnt), for |n| � N

exp(int), for |n| > N

for integer n. Then L and LN are closures of linear spans over {ϕn: n ∈ Z} and {ϕN
n : n ∈ Z} respectively.

Proposition 4. Given ε > 0, there exists N0 such that for N � N0 , sequences (ϕn) and (ϕN
n ) are quadratically ε-close provided

ωn − n = O (1/n).

In the beginning of the proof, we notice that ωn − n = O (1/n) means the convergence of the series
∑∞

n=−∞(ωn − n)2.
Let ε > 0 be given. We need to find N0 such that for all N � N0 the inequality∑

|n|>N

∥∥eiωnt − eint
∥∥2

< ε (8)

holds. We consider ‖eiωnt − eint‖2 to obtain

∥∥eiωnt − eint
∥∥2 = 2

T∫
0

dt −
T∫

0

ei(ωn−n)t dt −
T∫

0

e−i(ωn−n)t dt

= 2T − 2
sin((ωn − n)T )

ωn − n

�
(
T 3/3

)
(ωn − n)2.

Therefore the series
∑

|n|>N ‖eiωnt − eint‖2 converges and for sufficiently large N , Eq. (8) holds.

We consider the orthogonal complements L⊥ , L⊥
N of L and LN respectively. Let (xk) be the orthonormal basis of L⊥

and let P : L⊥ → L⊥
N , the projection. Then P is an isomorphism, so, in particular, (P xk) forms a Riesz basis in L⊥

N .

Proposition 5. There exists a constant C , such that for any sufficiently small ε the systems (xk) and (P xk) are quadratically Cε-close
provided (ϕn) and (ϕN

n ) are quadratically ε-close.
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Given x ∈ L⊥ , we write x = P x + Q x, where Q : L⊥ → LN is the projection. Then, because (ϕN
n ) is a Riesz basis, there

exists a constant C such that for any y ∈ LN the inequality

‖y‖2 � C
∑

n

∣∣〈y,ϕN
n

〉∣∣2

holds and because (ϕN
n ) is quadratically ε-close to (ϕn), for sufficiently small ε, C can be chosen universally for all

N � N0 [18]. Then we have∑
k

‖xk − P xk‖2 =
∑

k

‖Q xk‖2 � C
∑
k,n

∣∣〈Q xk,ϕ
N
n

〉∣∣2

= C
∑
k,n

∣∣〈xk,ϕ
N
n

〉∣∣2

= C
∑
k,n

∣∣〈xk,ϕ
N
n − ϕn

〉∣∣2
.

Because (xk) constitutes the orthonormal set, the last is less or equal to [3]

C
∑

n

∥∥ϕN
n − ϕn

∥∥2
.

What follows is∑
k

‖xk − P xk‖2 � C
∑

n

∥∥ϕN
n − ϕn

∥∥2
< Cε.

The proof is complete.
Now, let (ψξ ) = (ψn) ∪ (xk) and (ψN

ξ ) = (ψN
n ) ∪ (P xk).

By Lemma 3, we get that the systems (ψN
ξ ), (ψξ ) biorthogonal to (ϕN

ξ ) and (ϕξ ) respectively, are quadratically Mε-close.

Theorem 6. The sequence (uN ) of functions obtained in Section 2 converges to the function uo which is the extremal solution of the
moment problem (1).

Because (ψξ ) and (ψN
ξ ) are Riesz bases in H we may write

uo =
∑
ξ

〈uo,ϕξ 〉ψξ , uN =
∑
ξ

〈
uN ,ϕN

ξ

〉
ψN

ξ .

Let ε > 0 be given. Let σ = ∑
n∈Z

|bn|2. By Proposition 4, there exists N1, such that for any N > N1 inequality∑
n∈Z

∥∥ψn − ψN
n

∥∥2
<

ε

4σ

holds. Further on, we have the existence of N2 with property∥∥∥∥ ∑
|n|>N

bnψn

∥∥∥∥ <

√
ε

2
for N > N2.

Ultimately, we obtain for N > max{N1, N2}:

‖uo − uN‖ =
∥∥∥∥ ∑

n∈Z

〈uo,ϕn〉ψn −
∑
n∈Z

〈
uN ,ϕN

n

〉
ψN

n

∥∥∥∥ =
∥∥∥∥ ∑

|n|�N

bn
(
ψn − ψN

n

) +
∑

|n|>N

bnψn

∥∥∥∥.

Because (a + b)2 � 2(a2 + b2) for any positive numbers a and b, we get

‖uo − uN‖2 � 2

(∥∥∥∥ ∑
|n|�N

bn
(
ψn − ψN

n

)∥∥∥∥2

+
∥∥∥∥ ∑

|n|>N

bnψn

∥∥∥∥2)

< 2

( ∑
|n|�N

|bn|2
∑

|n|�N

∥∥ψn − ψN
n

∥∥2 + ε

4

)
< ε.

Therefore (uN ) converges to uo .
We conclude this section with a following remark.
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Remark 3. The major impact on the actual size of N is given by the speed the sequence (bn) tends to 0 (while n → ±∞). If
that speed is slow, the sum σ takes large values and the constant N1 must be also large. Here is the way how to deal with
this inconvenience. We consider the moment problem

T∫
0

v N(t)exp(iωnt)dt = bn for |n| � N

T∫
0

v N(t)exp(int)dt = bn for |n| > N. (9)

Let us define the function y(t) = (1/T )
∑∞

n=−∞ bn exp(−int) and replace v N in (9) by uN + y. As a result, we obtain the

moment problem (3), but with coefficients bn − ∫ T
0 y(t)exp(iωnt)dt for |n| � N . Then we apply the Section 2 algorithm, to

find the approximation uN and immediately after it, v N .

4. Example of application

The non-Fourier moment problem (1) considered in previous sections arises naturally while studying controllability of a
non-homogeneous generalization of the wave equation

ẅ(x, t) = κ w ′′(x, t), (10)

where ẇ , ẅ mean the first and the second derivative with respect to variable t and prime denotes derivatives with respect
to x.

Several authors (starting with pioneer work [13]) considered various generalizations of Eq. (10) for various purposes.
Their study lead to the results similar to the ones outlined below. For our purposes, we consider a non-homogeneous,
normalized (i.e. of length 1) string [14] given by the equation

v̈(x, t) = a(x)v ′′(x, t) (11)

with Dirichlet with boundary conditions and one-side boundary control:

v(0, t) = 0, v(1, t) = u(t) for t � 0.

The control problem for the object described by the above equations is to, given time T > 0, find an L2(0, T )-function
u : [0, T ] → R that, while imposed on the string, allows to control it from the initial state of rest

v(x,0) = v̇(x,0) = 0 (0 � x � 1) (12)

to the final position

v(x, T ) = yT (x), v̇(x, T ) = ẏT (x) (0 � x � 1) (13)

where yT , ẏT are some functions defined on [0,1].
The movement operator A given by formula Aϕ = −aϕ′′ is considered in Hilbert space H , whose underlying set is

L2(0,1), but the inner product is defined by

〈ϕ1,ϕ2〉 =
1∫

0

1

a(x)
ϕ1(x)ϕ2(x)dx.

The domain D(A) of the operator A is equal to{
ϕ ∈ H2(0,1): ϕ(0) = ϕ(1) = 0

}
.

It turns out that A is positive and self-adjoint, so its eigenvectors (vn) form an orthogonal basis in H and the corresponding
eigenvalues are simple and form an increasing sequence

0 < λ1 � λ2 � · · · → ∞.

Namely, following technics used (for example) in [15] one may prove the next theorem.

Theorem 7. If λn is an eigenvalue of the operator A, then

λn =
( 1∫

0

ds√
a(s)

)−2(
nπ + O

(
1

n

))2

.

Basing on the ideas from the monograph [8], we obtain the following.
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Theorem 8. The unique weak solution of the initial value problem (11), (12) is

y(x, t) =
∞∑

n=1

(
(−1)n+1̂cn

t∫
0

u(s) sin
(√

λn(t − s)
)

ds

)
vn(x), (14)

where vn is an eigenvector of the operator A with the corresponding eigenvalue λn and ĉn = (−1)n+1〈Id, vn〉 with Id : x �→ x.

Elementary calculations give the result ĉn = (−1)n v ′
n(1)/λn . Therefore ĉn cannot be equal to zero or (by the uniqueness

of the solution of the Cauchy problem) it would mean vn = 0 identically.
Now we can state the optimal control problem for the object considered by us.

Optimal Control Problem. Find the control function u ∈ L2(0, T ) with the least norm, such that the weak solution (14) of
the initial value problem (11), (12) satisfies end conditions (13).

To use the algorithm described in Section 2, we need to state the above problems as a moment problem, whose extremal
solution will be the optimal control, i.e. a function that solves problems stated above. We mention that the method of
reducing the controllability problem to an exponential moment problem is given in many papers, including [1,4,12]. We
point out a couple of items to show the way how the coefficients in the moment problem arise from the parameters of the
object itself and the final state functions yT , ẏT .

For n � 1, let us define (real) numbers

ċn = (−1)n+1

ĉn

(
〈yT , vn〉 sin(

√
λn T ) + 〈 ẏT , vn〉√

λn
cos(

√
λn T )

)
cn = (−1)n+1

ĉn

(
−〈yT , vn〉 cos(

√
λn T ) + 〈 ẏT , vn〉√

λn
sin(

√
λn T )

)
. (15)

It follows from the Theorem 8 that the control u must satisfy the following infinite system of equations.

T∫
0

u(t) cos(
√

λnt)dt = ċn

T∫
0

u(t) sin(
√

λnt)dt = cn. (16)

It is the moment problem in the trigonometric form. The equivalent to (16) exponential moment problem in the form (1)
we obtain after putting

J =
1∫

0

ds√
a(s)

, ωn = J

π

√
λn, ω−n = −ωn,

bn = π

J
(ċn + icn), b−n = π

J
(ċn − icn).

Let us put additionally ω0 = 0 and b0 equal to some constant, say C , so the algorithm may be applied. Finally one may find
the correct value of C using the Lagrange multiplier method.

As it was noticed (Remark 1), the solution of the moment problem (16) exists, provided T � 2π and
∑∞

n=−∞ |bn|2 < ∞.
Therefore the algorithm described in Section 2 may be applied.

5. Numerical example

We consider the non-homogeneous string equation (11) with a(x) = (x + 1)2. The operator A ruling the movement of
this string has eigenvalues (for n � 1) λn = 1/4 + (nπ/ ln 2)2 and the corresponding (normalized) eigenvectors are given by

vn(x) =
√

2

ln 2

√
x + 1 sin

(
nπ

ln 2
ln(x + 1)

)
.

We apply the described algorithm for optimal control to reach the final state given by the sequence bn = (1/n2 + i/n2) in
time T = 6π . The 5th approximation (i.e. N = 5) of the optimal control function is given in Fig. 1.

The norm (see estimations at the end of Section 3) of uo is approximated by ‖uN‖ up to 0.01. For comparison, we include
the graph of the 10th approximation (see Fig. 2). The graphs were obtained using the Delphi program that is a realization
of proposed algorithm.
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Fig. 1. The 5th approximation of the optimal control function.

Fig. 2. The 10th approximation of the optimal control function.
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