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1. Introduction

In this paper, we consider the following polytropic filtration equation with absorption and source⎧⎪⎨
⎪⎩

ut = div
(∣∣∇um

∣∣p−2∇um
) − αuq + λur, x ∈ Ω, t > 0,

u(x,0) = u0(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

(1.1)

where m > 0, 0 < m(p − 1) < 1, λ, r,α > 0, q � 1, Ω ⊂ R
N (N > p) is a bounded domain with smooth boundary, and the

initial data u0(x) is a non-negative and bounded function with um
0 (x) ∈ W 1,p

0 (Ω).
Eq. (1.1) is the well-known non-Newtonian polytropic filtration equations, and this type of equations arises in various

fields (see [9,11,25] and the references therein, where a more detailed physical background can be found). For exam-
ple, in the mathematical model for a heat conduction process, the function u(x, t) represents the temperature, the term
div(|∇um|p−2∇um) represents the thermal diffusion, −αuq is the absorption and λur is the source.

Because of the degeneracy and the singularity, Eq. (1.1) might not have classical solutions in general, and hence we
introduce the definition of the weak solution. The definition of the weak solution of problem (1.1) reads as follows. For
convenience, we define ΩT = Ω × (0, T ), T > 0.

Definition 1.1. A non-negative measurable function u(x, t) defined in ΩT is called a weak solution of problem (1.1), if

(1) for any T > 0,

u(x, t) ∈ X = {
L2q(ΩT ) ∩ L2r(ΩT ), ut(x, t) ∈ L2(ΩT ),∇um ∈ Lp(ΩT )

}
,

and 0 < ϕ(x, t) ∈ X = {L2(ΩT ), ut(x, t) ∈ L2(ΩT ),∇u ∈ L p(ΩT ), u|∂Ω×(0,T ) = 0};
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(2) the integral equality∫
Ω

u(x, T )ϕ(x, T )dx −
∫
Ω

u0(x)ϕ(x,0)dx

=
T∫

0

∫
Ω

(
uϕτ − ∣∣∇um

∣∣p−2∇um∇ϕ − αuqϕ + λurϕ
)

dx dτ (1.2)

holds, and

u(x,0) = u0(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω × (0, T ).

Furthermore, we can define a subsolution (resp., supersolution) u(x, t) (resp., u(x, t)). We need only to replace ‘=’ in (1.2)
by ‘�’ (resp., ‘�’) for any ϕ(x, t) > 0, u(x, t) � 0 (resp., u(x, t) � 0) in ∂Ω × (0, T ), and u(x,0) � u0(x) (resp., u(x,0) � u0(x))
in Ω .

Under the some assumptions, the existence of a weak solution to problem (1.1) can be proved from the results of [5,9,
17,21,22].

The main purpose of this paper is to study the extinction property for the non-negative solution u(x, t) of problem (1.1),
i.e. there exists a finite time T > 0 such that u(x, t) ≡ 0 for all (x, t) ∈ Ω × [T ,+∞). The first result concerning extinction
of solutions for the general heat equation with absorption was established in [10]. In recent years, there have been many
papers on extinction property for different kinds of evolution equations (see [2–4,6–16,19,20,23–25] and the references
therein). For instance, in [11], the author considered the following p-Laplacian equation with absorption and source⎧⎪⎨

⎪⎩
ut = div

(|∇u|p−2∇u
) − βuq + λur, x ∈ Ω, t > 0,

u(x,0) = u0(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

(1.3)

where 1 < p < 2, q � 1, and β,λ > 0. He proved that if q = 1, then r = p − 1 is the critical extinction exponent for the
weak solution, but if q < 1, extinction can always occur when 0 < q � r < 1. In the absence of absorption (i.e. β = 0) for
problem (1.3), Tian and Mu [20] proved that r = p − 1 is the critical extinction exponent for the weak solution of the
problem (see also Yin and Jin in [24]). Moreover, in the absence of source (i.e. λ = 0) for problem (1.3), Gu [7] proved that
if p ∈ (1,2) or q ∈ (0,1), then the solutions of the problem vanish in finite time. However, if p � 2 and q � 1, then the
solutions of the problem cannot vanish in finite time.

In [9], the authors studied problem (1.1) without the absorption term (i.e. α = 0) and showed that r = m(p − 1) is the
critical extinction exponent for the weak solution of the problem (see also Zhou and Mu in [25]). Moreover, when the critical
case r = m(p − 1) is concerned, they also proved that the parameter λ plays an important role. Namely, when λ belongs
to different interval (0, λ1) or (λ1,+∞), where λ1 is the first eigenvalue of the p-Laplacian equation with homogeneous
Dirichlet boundary-value condition, the weak solution has completely different properties.

To the best of our knowledge, no such result seems to be presented in the literature about problem (1.1). In this paper,
by using an energy approach which was introduced in [1] and Lemma 1 in [18], Lemmas 3 and 4 in [11], we obtain our
main results as follows.

Theorem 1.1. If q = 1 and r > m(p − 1), then the weak solution of problem (1.1) vanishes in finite time provided that the initial data
u0(x) is sufficiently small.

Theorem 1.2. If q = 1 and r < m(p − 1), then the weak solution of problem (1.1) cannot vanish in finite time for any non-negative
initial data u0(x).

Remark 1.1. For the case of q = 1, according to Theorems 1.1 and 1.2, we know that r = m(p − 1) is the critical extinction
exponent of problem (1.1).

Let λ1 be the first eigenvalue of the p-Laplacian equation with homogeneous Dirichlet boundary-value condition and φ(x)
is the eigenfunction corresponding to the first eigenvalue λ1. In this paper, we choose φ(x) that it satisfies 0 < φ(x) � 1
in Ω . For convenience, let ‖ · ‖p denote the L p(Ω) norm, 1 � p � +∞.

Theorem 1.3. For the case q = 1 and r = m(p − 1).

(i) If λ < λ1 , then the weak solution of problem (1.1) goes to zero in the sense of ‖u(·, t)‖m+1 as t → +∞;
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(ii) If Nm+N
Nm+m+1 � p < 1 + 1

m and λ < λ1 or 1 < p < Nm+N
Nm+m+1 and λ <

(Nm+N−Nmp−p)mp−1 p2p−1

[(N−p)(m+1−mp)]p λ1 , then the weak solution of
problem (1.1) vanishes in finite time for any non-negative initial data u0(x).

Remark 1.2. When 1 < p < Nm+N
Nm+m+1 , it is easy to show that (Nm+N−Nmp−p)mp−1 p2p−1

[(N−p)(m+1−mp)]p < 1.

Remark 1.3. For the case 1 < p < Nm+N
Nm+m+1 , when λ ∈ [ (Nm+N−Nmp−p)mp−1 p2p−1

[(N−p)(m+1−mp)]p λ1, λ1), we do not know whether the solution
u(x, t) of problem (1.1) possesses the property of extinction or non-extinction.

Theorem 1.4. For the case q = 1 and r = m(p − 1), if one of the following cases holds:

(i) λ > λ1 , and for any non-negative initial data u0(x);
(ii) λ = λ1 , and for any identically positive initial data u0(x),

then the weak solution of problem (1.1) cannot vanish in finite time.

Remark 1.4. For the case q = 1, according to our above results and [9] (see also [25]), it is not difficult to obtain that
the critical extinction exponent of problem (1.1) is independent of the linear absorption. In fact, let v(x, t) = u(x, t)eαt , we
obtain from (1.1)

⎧⎪⎨
⎪⎩

vt = e(1−m(p−1))αt div
(∣∣∇vm

∣∣p−2∇vm
) + λe(1−r)αt vr, x ∈ Ω, t > 0,

v(x,0) = u0(x), x ∈ Ω,

v(x, t) = 0, x ∈ ∂Ω, t > 0.

(1.4)

Next, introduce the self-similar variables

w(x, τ ) = v(x, t), x ∈ Ω, t > 0, where τ = 1

(1 − m(p − 1))α
e(1−m(p−1))αt .

Then it follows from (1.4) that

⎧⎪⎨
⎪⎩

wτ = div
(∣∣∇wm

∣∣p−2∇wm
) + λe(m(p−1)−r)αt wr, x ∈ Ω, τ > 0,

w(x,0) = u0(x), x ∈ Ω,

w(x, τ ) = 0, x ∈ ∂Ω, τ > 0.

(1.5)

Combining problem (1.5) and the results of [9] (see also [25]), it is easy to obtain Theorems 1.1–1.3 and 1.4(i). The proofs of
Theorems 1.1–1.4 are rather lengthy and not essential to this paper, therefore, for the reader’s convenience, the proofs are
deferred to Appendix A.

Theorem 1.5. For q < 1, m � 1 and r = m(p − 1). If Nm+N
Nm+m+1 � p < 1 + 1

m and λ < λ1 or 1 < p < Nm+N
Nm+m+1 and λ <

lmp−1(
p

l+m(p−1)
)pλ1 , where l > (Nm + N − Nmp − p)/p, then the weak solution of problem (1.1) vanishes in finite time for any

non-negative initial data.

Theorem 1.6. For q < 1 and m � 1. If Nm+N
Nm+m+1 � p < 1 + 1

m and r >
pq(m+1)+N(mp−m−q)
p(m+1)+N(mp−m−q)

or 1 < p < Nm+N
Nm+m+1 and r >

pq(l+1)+N(mp−m−q)
p(l+1)+N(mp−m−q)

, where l > (Nm + N − Nmp − p)/p, then the weak solution of problem (1.1) vanishes in finite time for the initial
data u0(x) is sufficiently small.

Remark 1.5. When q � m(p − 1), the conditions of Theorem 1.6 imply r > m(p − 1).

Remark 1.6. Unfortunately, for q < 1 and m � 1, when Nm+N
Nm+m+1 � p < 1 + 1

m and r � pq(m+1)+N(mp−m−q)
p(m+1)+N(mp−m−q)

or 1 < p < Nm+N
Nm+m+1

and r � pq(l+1)+N(mp−m−q)
p(l+1)+N(mp−m−q)

, where l > (Nm + N − Nmp − p)/p, we have to leave open the question whether the solution of
problem (1.1) possesses the property of extinction or non-extinction.

This paper is organized as follows. In the next section, we consider the case q < 1 and prove Theorems 1.5 and 1.6. The
proofs of Theorems 1.1–1.4 are given in Appendix A.



432 C. Mu et al. / J. Math. Anal. Appl. 391 (2012) 429–440
2. Proofs of the main results

In this section, we consider the case q < 1 and give the proofs of Theorems 1.5 and 1.6.

Proof of Theorem 1.5. For q < 1 and r = m(p − 1). We consider the first case Nm+N
Nm+m+1 � p < 1 + 1

m and λ < λ1. Multiplying
both sides of (1.1) by um and integrating over Ω , we arrive at the equality

1

m + 1

d

dt

∫
Ω

um+1 dx +
∫
Ω

∣∣∇um
∣∣p

dx + α

∫
Ω

um+q dx = λ

∫
Ω

um+r dx. (2.1)

Note that λ1
∫
Ω

ump dx �
∫
Ω

|∇um|p dx and r = m(p − 1) and λ < λ1, then we have

1

m + 1

d

dt

∫
Ω

um+1 dx +
(

1 − λ

λ1

)∫
Ω

∣∣∇um
∣∣p

dx + α

∫
Ω

um+q dx � 0. (2.2)

According to Lemma 1 of [18] and m � 1, we obtain

‖u‖m+1 � κ1
∥∥∇um

∥∥ ν1
m

p ‖u‖1−ν1
m+q , (2.3)

where

ν1 = m

(
1

m + q
− 1

m + 1

)(
1

N
− 1

p
+ m

m + q

)−1

= mNp(1 − q)

(m + 1)[(p − N)(m + q) + Nmp]
and κ1 is a positive constant independent of q and ν1.

Since Nm+N
Nm+m+1 � p < 1 + 1

m and q < 1, it is not difficult to show that ν1 ∈ (0,1). Then using Young’s inequality with ε,
from (2.3) we derive

‖u‖h1
m+1 � κ

h1
1

∥∥∇um
∥∥ h1ν1

m
p ‖u‖h1(1−ν1)

m+q

� κ
h1
1

(
ε1

∥∥∇um
∥∥p

p + C(ε1)‖u‖
h1mp(1−ν1)

mp−h1ν1
m+q

)
, (2.4)

where ε1 > 0 and h1 > 0 are to be determined later. We choose

h1 = (m + q)mp

mp(1 − ν1) + (m + q)ν1
= (m + 1)[p(m + q) + N(mp − m − q)]

(m + 1)p + N(mp − m − q)
.

After a simple computation, we get h1 ∈ (m,m + 1) and h1mp(1−ν1)
mp−h1ν1

= m + q. Thus, from (2.4) we obtain

κ
−h1
1

C(ε1)
‖u‖h1

m+1 � ε1

C(ε1)

∥∥∇um
∥∥p

p + ‖u‖m+q
m+q. (2.5)

Combining (2.2) and (2.5), we derive

1

m + 1

d

dt

∫
Ω

um+1 dx +
(

1 − λ

λ1
− ε1α

C(ε1)

)∫
Ω

∣∣∇um
∣∣p

dx + κ
−h1
1 α

C(ε1)

(∫
Ω

um+1 dx

) h1
m+1

� 0. (2.6)

Since λ < λ1, we can choose ε1 small enough such that 1 − λ
λ1

− ε1β
C(ε1)

� 0. Once ε1 is fixed, let K1 = κ
−h1
1 α

C(ε1)
> 0. Thus,

from (2.6) we obtain

1

m + 1

d

dt

∫
Ω

um+1 dx + K1

(∫
Ω

um+1 dx

) h1
m+1

� 0. (2.7)

Integrating this inequality, we derive

(∫
um+1 dx

)m+1−h1
m+1

�
(∫

um+1
0 dx

)m+1−h1
m+1

− K1(m + 1 − h1)t. (2.8)
Ω Ω
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Since h1 < m + 1, there exists a positive constant T , such that∫
Ω

um+1 dx ≡ 0, t ∈ [T ,+∞),

which implies u(x, t) vanishes in finite time.
Next, we study the case 1 < p < Nm+N

Nm+m+1 and λ < lmp−1(
p

l+m(p−1)
)pλ1. Multiplying both sides of (1.1) by ul , where

l >
N(m+1)−(Nm+1)p

p > m, and integrating over Ω , we conclude

1

l + 1

d

dt

∫
Ω

ul+1 dx + lmp−1
(

p

l + m(p − 1)

)p ∫
Ω

∣∣∇u
l+m(p−1)

p
∣∣p

dx + α

∫
Ω

ul+q dx = λ

∫
Ω

ul+r dx. (2.9)

Since r = m(p − 1) and λ < lmp−1(
p

l+m(p−1)
)pλ1, we obtain

1

l + 1

d

dt

∫
Ω

ul+1 dx +
(

lmp−1
(

p

l + m(p − 1)

)p

− λ

λ1

)∫
Ω

∣∣∇u
l+m(p−1)

p
∣∣p

dx + α

∫
Ω

ul+q dx � 0. (2.10)

According to Lemma 1 of [18] and m � 1, we have

‖u‖l+1 � κ2
∥∥∇u

l+m(p−1)
p

∥∥ ν2 p
l+m(p−1)

p ‖u‖1−ν2
l+q , (2.11)

where

ν2 = l + m(p − 1)

p

(
1

l + q
− 1

l + 1

)(
1

N
− 1

p
+ l + m(p − 1)

p(l + q)

)−1

= N(1 − q)(l + m(p − 1))

(l + 1)[p(l + q) − N(q − m(p − 1))]
and κ2 is a positive constant independent of q and ν2.

Since l >
N(m+1)−(Nm+1)p

p and q < 1, it is not difficult to show that ν2 ∈ (0,1). Then using Young’s inequality with ε, we
derive from (2.11)

‖u‖h2
l+1 � κ

h2
2

∥∥∇u
l+m(p−1)

p
∥∥ ph2ν2

l+m(p−1)

p ‖u‖h2(1−ν2)

l+q

� κ
h2
2

(
ε2

∥∥∇u
l+m(p−1)

p
∥∥p

p + C(ε2)‖u‖
h2(1−ν2)(l+m(p−1))

l+m(p−1)−h2ν2
l+q

)
, (2.12)

where ε2 > 0 and h2 > 0 are to be determined later. We choose

h2 = (l + q)(l + m(p − 1))

(l + m(p − 1))(1 − ν2) + (l + q)ν2
= (l + 1)[p(l + q) − N(q − m(p − 1))]

(l + 1)p − N(q − m(p − 1))
.

After a simple computation, we get h2 ∈ (l, l + 1) and h2(1−ν2)(l+m(p−1))
l+m(p−1)−h2ν2

= q + l. Thus, from (2.12) we have

κ
−h2
2

C(ε2)
‖u‖h2

l+1 � ε2

C(ε2)

∥∥∇u
l+m(p−1)

p
∥∥p

p + ‖u‖l+q
l+q. (2.13)

Combining (2.10) and (2.13), we derive

1

l + 1

d

dt

∫
Ω

ul+1 dx +
(

lmp−1
(

p

l + m(p − 1)

)p

− λ

λ1
− ε2α

C(ε2)

)∫
Ω

∣∣∇u
l+m(p−1)

p
∣∣p

dx + κ
−h2
2 α

C(ε2)

(∫
Ω

ul+1 dx

) h2
l+1

� 0.

(2.14)

Since λ < lmp−1(
p

l+m(p−1)
)pλ1, we can choose ε2 small enough such that lmp−1(

p
l+m(p−1)

)p − λ
λ1

− ε2α
C(ε2)

� 0. Once ε2 is

fixed, let K2 = κ
−h2
2 α

C(ε2)
> 0. Then from (2.14) we get

1

l + 1

d

dt

∫
Ω

ul+1 dx + K2

(∫
Ω

ul+1 dx

) h2
l+1

� 0. (2.15)

Integrating this inequality, we obtain
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(∫
Ω

ul+1 dx

) l+1−h2
l+1

�
(∫

Ω

ul+1
0 dx

) l+1−h2
l+1 − K2(l + 1 − h2)t.

Since h2 < l + 1, we obtain the desired result. The proof of Theorem 1.5 is complete. �
Proof of Theorem 1.6. We will divide the proof into two cases: r � 1 and r > 1.

In the first case r � 1. For Nm+N
Nm+m+1 � p < 1 + 1

m . Combining (2.5) and applying the same computation as for (2.1) and by
Hölder’s inequality, we conclude

1

m + 1

d

dt

∫
Ω

um+1 dx +
(

1 − ε1α

C(ε1)

)∫
Ω

∣∣∇um
∣∣p

dx + κ
−h1
1 α

C(ε1)

(∫
Ω

um+1 dx

) h1
m+1

� λ|Ω| 1−r
m+1

(∫
Ω

um+1 dx

) m+r
m+1

. (2.16)

Choosing ε1 small enough such that 1 − ε1α
C(ε1)

� 0, and by a direct calculation, we obtain

1

m + 1 − h1

d

dt

(∫
Ω

um+1 dx

)m+1−h1
m+1

� λ|Ω| 1−r
m+1

(∫
Ω

um+1 dx

)m+r−h1
m+1

− κ
−h1
1 α

C(ε1)
. (2.17)

To simplify, we denote

f
(
u(t)

) = λ|Ω| 1−r
m+1

(∫
Ω

um+1 dx

)m+r−h1
m+1

− κ
−h1
1 α

C(ε1)
. (2.18)

Assume that f (u0) < 0, so

(∫
Ω

um+1
0 dx

)m+r−h1
m+1

<
κ

−h1
1 α

λC(ε1)
|Ω| r−1

m+1 .

We claim that f (u(t)) is decreasing with t . The proof is almost identical to the corresponding proof in [25], for the con-
venience of the readers, we give the proof. If the claim is not correct, we say that there exists some time T > 0 such that
d
dt f (u(t))|t=T � 0. Since f (u0) < 0, so from (2.17) we can obtain d

dt (
∫
Ω

um+1 dx)|t=0 < 0. Then, using

r >
pq(m + 1) + N(mp − m − q)

p(m + 1) + N(mp − m − q)
= h1 − m

and (2.18), it is easy to show that d
dt f (u(t))|t=0 < 0. So there exist time T ∗ ∈ (0, T ] such that f (u(T ∗)) < f (u0) < 0 and

d
dt f (u(t))|t=T ∗ = 0. If u(x, T ∗) = 0, we complete our proof. If u(x, T ∗) �= 0, we have d

dt (
∫
Ω

um+1 dx)|t=T ∗ = 0. Then from
(2.17), we derive

0 = 1

m + 1 − h1

d

dt

(∫
Ω

um+1 dx

)m+1−h1
m+1

∣∣∣∣
t=T ∗

� f
(
u
(
T ∗)) < 0.

So we get a contradiction.
Therefore, we arrive at the inequality

1

m + 1 − h1

d

dt

(∫
Ω

um+1 dx

)m+1−h1
m+1

� λ|Ω| 1−r
m+1

(∫
Ω

um+1
0 dx

)m+r−h1
m+1

− κ
−h1
1 α

C(ε1)
. (2.19)

Integrating (2.19), we derive

(∫
Ω

um+1 dx

)m+1−h1
m+1

�
(∫

Ω

um+1
0 dx

)m+1−h1
m+1

+ f (u0)(m + 1 − h1)t.

Since h1 ∈ (m,m + 1) and f (u0) < 0, we obtain our result.
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For 1 < p < Nm+N
Nm+m+1 . Combining (2.13) and applying the same computation as for (2.9) and by Hölder’s inequality, we

arrive at the inequality

1

l + 1

d

dt

∫
Ω

ul+1 dx +
(

lmp−1
(

p

l + m(p − 1)

)p

− ε2α

C(ε2)

)∫
Ω

∣∣∇u
l+m(p−1)

p
∣∣p

dx + κ
−h2
2 α

C(ε2)

(∫
Ω

ul+1 dx

) h2
l+1

� λ|Ω| 1−r
l+1

(∫
Ω

ul+1 dx

) l+r
l+1

. (2.20)

Choosing ε2 small enough such that lmp−1(
p

l+m(p−1)
)p − ε2α

C(ε2)
� 0, we get

1

l + 1 − h2

d

dt

(∫
Ω

ul+1 dx

) l+1−h2
l+1

� λ|Ω| 1−r
l+1

(∫
Ω

ul+1 dx

) l+r−h2
l+1 − κ

−h2
2 α

C(ε2)
. (2.21)

We denote

ψ
(
u(t)

) = λ|Ω| 1−r
l+1

(∫
Ω

ul+1 dx

) l+r−h2
l+1 − κ

−h2
2 α

C(ε2)
.

Assume that ψ(u0) < 0 and using r >
pq(l+1)+N(mp−m−q)
p(l+1)+N(mp−m−q)

= h2 − l, we claim that ψ(u(t)) is decreasing with t . The proof is
similar to above, so we omit it here. Therefore, we have

1

l + 1 − h2

d

dt

(∫
Ω

ul+1 dx

) l+1−h2
l+1

� λ|Ω| 1−r
l+1

(∫
Ω

ul+1
0 dx

) l+r−h2
l+1 − κ

−h2
2 α

C(ε2)
. (2.22)

Integrating (2.22), and applying h2 ∈ (l, l + 1), it is easy to show that there exists a positive constant T , such that∫
Ω

ul+1 dx ≡ 0 for any t � T ,

which implies u(x, t) vanishes in finite time.
In the second case r > 1, by the comparison principle (see [9,20,24,25]), for sufficiently small d > 0, if u0(x) � dφ(x) in Ω ,

where φ(x) is the first eigenfunction of the p-Laplacian equation with homogeneous Dirichlet boundary-value condition, it
can be easily verified that dφ(x) is a supersolution of problem (1.1), and thus that u(x, t) < d in Ω × (0,+∞). Therefore,
(2.16) and (2.20) can be rewritten as (see for example (2.16))

1

m + 1

d

dt

∫
Ω

um+1 dx +
(

1 − ε1α

C(ε1)

)∫
Ω

∣∣∇um
∣∣p

dx + κ
−h1
1 α

C(ε1)

(∫
Ω

um+1 dx

) h1
m+1

� λdr−1
∫
Ω

um+1 dx. (2.23)

So the above argument can also be applied. The proof of Theorem 1.6 is complete. �
Acknowledgments

We are very grateful to the anonymous reviewers for their valuable suggestions and fruitful comments. This work is supported in part by NSF of China
(11071266) and in part by Natural Science Foundation Project of CQ CSTC (2010BB9218).

Appendix A. Proofs of Theorems 1.1–1.4

In this appendix, for the case q = 1, we prove Theorems 1.1–1.4. Note that the proof of Theorem 1.3(i) is almost identical
to the corresponding proof in [9] (see also [25]), so we omit the proof.

Proof of Theorem 1.1. We will prove the theorem by two cases: r � 1 and r > 1.
In the first case r � 1. For Nm+N

Nm+m+1 � p < 1 + 1
m , multiplying both sides of (1.1) by um and integrating over Ω , we arrive

at the equality
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1

m + 1

d

dt

∫
Ω

um+1 dx +
∫
Ω

∣∣∇um
∣∣p

dx + α

∫
Ω

um+1 dx = λ

∫
Ω

um+r dx. (A.1)

By Hölder’s inequality and the Sobolev embedding theorem (N > p), we obtain

∫
Ω

um+1 dx � |Ω|1− (m+1)(N−p)
mNp

(∫
Ω

u
mNp
N−p dx

) (m+1)(N−p)
mNp

� C |Ω|1− (m+1)(N−p)
mNp

(∫
Ω

∣∣∇um
∣∣p

dx

)m+1
mp

, (A.2)

where C is the embedding constant.
Combining (A.1) and (A.2) and applying Hölder’s inequality, we get

d

dt

∫
Ω

um+1 dx + (m + 1)C− mp
m+1 |Ω| N−p

N − mp
m+1

(∫
Ω

um+1 dx

) mp
m+1

+ α(m + 1)

∫
Ω

um+1 dx

� λ(m + 1)|Ω| 1−r
m+1

(∫
Ω

um+1 dx

) m+r
m+1

. (A.3)

From (A.3) and Lemma 4 in [11], we know there exists a σ > (m + 1)α such that

0 �
∫
Ω

um+1 dx �
(∫

Ω

um+1
0 dx

)
e−σ t, t � 0,

provided that

(∫
Ω

um+1
0 dx

)m+r−mp
m+1

< λ−1C− mp
m+1 |Ω| N−p

N − mp+1−r
m+1 .

Since r > m(p − 1), there exists a T ∗ , when t ∈ [T ∗,+∞), we have

C− mp
m+1 |Ω| N−p

N − mp
m+1 − λ|Ω| 1−r

m+1

(∫
Ω

um+1 dx

)m+r−mp
m+1

� C− mp
m+1 |Ω| N−p

N − mp
m+1 − λ|Ω| 1−r

m+1

[(∫
Ω

um+1
0 dx

)
e−σ t

]m+r−mp
m+1

= C1 > 0. (A.4)

Substituting (A.4) into (A.3), we obtain

d

dt

∫
Ω

um+1 dx + (m + 1)C1

(∫
Ω

um+1 dx

) mp
m+1

+ α(m + 1)

∫
Ω

um+1 dx � 0. (A.5)

Combining (A.5) and Lemma 3 in [11], we derive

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
Ω

um+1 dx �
(((∫

Ω

um+1
0 dx

)m+1−mp
m+1

+ C1

α

)
e(mp−m−1)αt − C1

α

) m+1
m+1−mp

, t ∈ [0, T1),

∫
Ω

um+1 dx ≡ 0, t ∈ [T1,+∞),

where

T1 = 1

α(m + 1 − mp)
ln

(
1 + α

C1

(∫
um+1

0 dx

)m+1−mp
m+1

)
.

Ω
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For 1 < p < Nm+N
Nm+m+1 . Multiplying both sides of (1.1) by us , where s = N(m+1)−(Nm+1)p

p > m, and integrating over Ω , we
arrive at the equality

1

s + 1

d

dt

∫
Ω

us+1 dx + smp−1
(

p

s + m(p − 1)

)p ∫
Ω

∣∣∇u
s+m(p−1)

p
∣∣p

dx + α

∫
Ω

us+1 dx

= λ

∫
Ω

us+r dx. (A.6)

Applying the Sobolev embedding theorem (N > p) and inserting our choice of s, we derive

(∫
Ω

us+1 dx

) s+m(p−1)
p(s+1)

=
(∫

Ω

u
Ns+Nm(p−1)

N−p dx

) N−p
Np

� C

(∫
Ω

∣∣∇u
s+m(p−1)

p
∣∣p

dx

) 1
p

. (A.7)

Combining (A.6) and (A.7) and applying Hölder’s inequality, we conclude

d

dt

∫
Ω

us+1 dx + C−p(s + 1)smp−1 pp

(s + m(p − 1))p

(∫
Ω

us+1 dx

) s+m(p−1)
s+1

+ α(s + 1)

∫
Ω

us+1 dx

� λ(s + 1)|Ω| 1−r
1+s

(∫
Ω

us+1 dx

) s+r
s+1

. (A.8)

Applying (A.8) and Lemma 4 in [11], we know there exists a ς > (s + 1)α such that

0 �
∫
Ω

us+1 dx �
(∫

Ω

us+1
0 dx

)
e−ςt, t � 0,

provided that

(∫
Ω

us+1
0 dx

)m+r−mp
s+1

< λ−1C−p|Ω| r−1
s+1 smp−1

(
p

s + m(p − 1)

)p

.

Since r > m(p − 1), there exists a T ′ , when t ∈ [T ′,+∞), we have

C−p smp−1
(

p

s + m(p − 1)

)p

− λ|Ω| 1−r
s+1

(∫
Ω

us+1 dx

)m+r−mp
s+1

� C−p smp−1
(

p

s + m(p − 1)

)p

− λ|Ω| 1−r
s+1

[(∫
Ω

us+1
0 dx

)
e−ςt

]m+r−mp
s+1

= C2 > 0. (A.9)

Combining (A.8) and (A.9), we have

d

dt

∫
Ω

us+1 dx + (s + 1)C2

(∫
Ω

us+1 dx

) s+m(p−1)
s+1

+ α(s + 1)

∫
Ω

us+1 dx � 0. (A.10)

Applying (A.10) and Lemma 3 in [11], we obtain
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
Ω

us+1 dx �
(((∫

Ω

us+1
0 dx

)m+1−mp
s+1

+ C2

α

)
e(mp−m−1)αt − C2

α

) s+1
m+1−mp

, t ∈ [0, T2),

∫
Ω

us+1 dx ≡ 0, t ∈ [T2,+∞),

where

T2 = 1

α(m + 1 − mp)
ln

(
1 + α

C2

(∫
um+1

0 dx

)m+1−mp
s+1

)
.

Ω
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In the second case r > 1, since dφ(x) is a supersolution of problem (1.1). Therefore, (A.1) and (A.6) can be rewritten as
(see for example (A.1))

1

m + 1

d

dt

∫
Ω

um+1 dx +
∫
Ω

∣∣∇um
∣∣p

dx + α

∫
Ω

um+1 dx � λdr−1
∫
Ω

um+1 dx,

to which the above argument can be applied. The proof of Theorem 1.1 is complete. �
Proof of Theorem 1.2. For q = 1, let Y (x, t) = C0k(t)φ(x), where C0 > 0 is to be determined later and k(t) satisfies⎧⎪⎨

⎪⎩
k′(t) = −λ1km(p−1)(t) − αk(t) + λkr(t), t � 0,

k(t) > 0, t > 0,

k(0) = 0.

(A.11)

Then we have

t∫
0

∫
Ω

(
Yτ ϕ + ∣∣∇Y m

∣∣p−2∇Y m∇ϕ + αYϕ − λY rϕ
)

dx dτ

=
t∫

0

∫
Ω

[
C0ϕφ

(−λ1km(p−1) + λkr) + λ1Cm(p−1)
0 km(p−1)φm(p−1)ϕ − λCr

0krφrϕ
]

dx dτ

=
t∫

0

∫
Ω

[
λ1km(p−1)

(
Cm(p−1)

0 φm(p−1) − C0φ
) − λkr(Cr

0φ
r − C0φ

)]
ϕ dx dτ .

Since r < m(p − 1) and 0 < φ(x) � 1, we can choose C0 sufficiently small such that

λ1km(p−1)
(
Cm(p−1)

0 φm(p−1) − C0φ
)
� λkr(Cr

0φ
r − C0φ

)
. (A.12)

Let F (x) = xr−x
xm(p−1)−x

, it is easy to check that F (x) is decreasing in (0,1), and limx→0+ F (x) = +∞. In addition, it is not difficult
to show that k(t) is a bounded function from (A.11) (see [11]). Thus we can choose a sufficiently small C0 > 0 such that
(A.12) holds.

Moreover, Y (x,0) = C0k(0)φ(x) = 0 � u0(x) in Ω , and Y (x, t) = 0 in ∂Ω × (0,+∞). Therefore, by the comparison princi-
ple (see [9,20,24,25]), we have u(x, t) � Y (x, t) > 0 in Ω × (0,+∞). The proof of Theorem 1.2 is complete. �
Proof of Theorem 1.3. (ii) For q = 1 and r = m(p − 1). We consider the first case Nm+N

Nm+m+1 � p < 1 + 1
m and λ < λ1. Applying

(A.1) and λ1
∫
Ω

ump dx �
∫
Ω

|∇um|p dx, we get

1

m + 1

d

dt

∫
Ω

um+1 dx +
(

1 − λ

λ1

)∫
Ω

∣∣∇um
∣∣p

dx + α

∫
Ω

um+1 dx � 0. (A.13)

It follows from (A.2) and (A.13) that

d

dt

∫
Ω

um+1 dx + (m + 1)C3

(∫
Ω

um+1 dx

) mp
m+1

+ α(m + 1)

∫
Ω

um+1 dx � 0, (A.14)

where

C3 = C− mp
m+1

(
1 − λ

λ1

)
|Ω| N−p

N − mp
m+1 > 0.

From (A.14) and Lemma 3 in [11], we obtain
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
Ω

um+1 dx �
(((∫

Ω

um+1
0 dx

) 1−r
m+1

+ C3

α

)
e(r−1)αt − C3

α

)m+1
1−r

, t ∈ [0, T3),

∫
um+1 dx ≡ 0, t ∈ [T3,+∞),
Ω
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where

T3 = 1

α(1 − r)
ln

(
1 + α

C3

(∫
Ω

um+1
0 dx

) 1−r
m+1

)
.

Next, we consider the case 1 < p < Nm+N
Nm+m+1 and λ <

(Nm+N−Nmp−p)mp−1 p2p−1

[(N−p)(m+1−mp)]p λ1 = smp−1(
p

s+m(p−1)
)pλ1. Applying (A.6)

and inserting r = m(p − 1), we get

1

s + 1

d

dt

∫
Ω

us+1 dx +
(

smp−1 pp

(s + m(p − 1))p
− λ

λ1

)∫
Ω

∣∣∇u
s+m(p−1)

p
∣∣p

dx + α

∫
Ω

us+1 dx � 0. (A.15)

Combining (A.7) and (A.15), we conclude

d

dt

∫
Ω

us+1 dx + C4(s + 1)

(∫
Ω

us+1 dx

) s+m(p−1)
s+1

+ α(s + 1)

∫
Ω

us+1 dx � 0, (A.16)

where

C4 = C−p
[

smp−1
(

p

s + m(p − 1)

)p

− λ

λ1

]
> 0.

From (A.16) and Lemma 3 in [11], we obtain⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
Ω

us+1 dx �
(((∫

Ω

us+1
0 dx

) 1−r
s+1

+ C4

α

)
e(r−1)αt − C4

α

) s+1
1−r

, t ∈ [0, T4),

∫
Ω

us+1 dx ≡ 0, t ∈ [T4,+∞),

where

T4 = 1

α(1 − r)
ln

(
1 + α

C4

(∫
Ω

um+1
0 dx

) 1−r
s+1

)
.

The proof of Theorem 1.3 is complete. �
Proof of Theorem 1.4. (i) When r = m(p − 1), λ > λ1 and q = 1. Let w(x, t) = g(t)φ(x), and g(t) satisfies⎧⎨

⎩
g′(t) = (λ − λ1)gr(t) − αg(t), t � 0,

g(t) > 0, t > 0,

g(0) = 0.

Since 0 < φ(x) � 1, we obtain

t∫
0

∫
Ω

(
wτ ϕ + ∣∣∇wm

∣∣p−2∇wm∇ϕ + αwϕ − λwrϕ
)

dx dτ

=
t∫

0

∫
Ω

[(
(λ − λ1)gr − αg

)
φϕ + λ1 gm(p−1)φm(p−1)ϕ + αgφϕ − λgrφrϕ

]
dx dτ

=
t∫

0

∫
Ω

(λ − λ1)
(
φ − φr)grϕ dx dτ � 0.

Moreover, w(x,0) = g(0)φ(x) = 0 � u0(x) in Ω , and w(x, t) = 0 in ∂Ω × (0,+∞). Therefore, by the comparison principle
(see [9,20,24,25]), we have u(x, t) � w(x, t) > 0 in Ω × (0,+∞).

(ii) For the case λ = λ1, it is easily proved that u(x, t) = h(t)φ(x) is a solution of problem (1.1), where h(t) = h0e−αt ,
h0 > 0. Then for any positive initial data u0(x), we can choose h0 sufficiently small such that u0(x) � h0φ(x) in Ω and by
the comparison principle (see [9,20,24,25]), u(x, t) is a non-extinction subsolution of problem (1.1). The proof of Theorem 1.4
is complete. �
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