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a b s t r a c t

The initial boundary value problem for a system of viscoelastic wave equations of Kirchhoff
type with the nonlinear damping and the source terms in a bounded domain is considered.
We prove that, under suitable conditions on the nonlinearity of the damping and the source
terms and certain initial data in the stable set and for a wider class of relaxation functions,
the decay estimates of the energy function is exponential or polynomial depending on the
exponents of the damping terms in both equations by using Nakao’s method. Conversely,
for certain initial data in the unstable set, we obtain the blow-up of solutions in finite time
when the initial energy is nonnegative. This improves earlier results in the literature.
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1. Introduction

We consider the initial boundary value problem for the following nonlinear wave equations of Kirchhoff type:

utt − M

∥∇u∥2

2 + ∥∇v∥2
2


1u +

 t

0
g(t − s)1u(s)ds + |ut |

p−1 ut = f1(u, v) inΩ × [0,∞), (1.1)

vtt − M

∥∇u∥2

2 + ∥∇v∥2
2


1v +

 t

0
h(t − s)1u(s)ds + |vt |

q−1 vt = f2(u, v) inΩ × [0,∞), (1.2)

u (x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ Ω, (1.3)
v (x, 0) = v0(x), vt (x, 0) = v1(x), x ∈ Ω, (1.4)
u (x, t) = v (x, t) = 0, x ∈ ∂Ω, t > 0, (1.5)

where Ω is a bounded domain in Rn (n = 1, 2, 3) with a smooth boundary ∂Ω,M(r) is a nonnegative C1 function like
M(s) = m0 + αsγ , with m0 ≥ 0, α ≥ 0, m0 + α > 0, γ > 0, and g, h : R+

→ R+, fi(·, ·) : R2
→ R, i = 1, 2, are given

functions which will be specified later.
To motivate our work, let us recall some results regarding viscoelastic wave equations of Kirchhoff type. The single wave

equation of Kirchhoff type of the form:

utt − M

∥∇u∥2

2


∆u +

 t

0
g(t − s)1u(s)ds + h(ut) = f (u) inΩ × [0,∞), (1.6)
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is the model to describe the motion of deformable solids as hereditary effect is incorporated. Eq. (1.6) was first studied by
Torrejon and Yong [1] who proved the existence of weakly asymptotic stable solution for large analytical datum. Later,
Rivera [2] showed the existence of global solutions for small datum and the total energy decays to zero exponentially
under some restrictions. Then, Wu and Tsai [3] studied (1.6) for h(ut) = −1ut and f is a power like function. The authors
established the global existence and energy decay under the assumption g ′(t) ≤ −rg(t), ∀t ≥ 0 for some r > 0. Recently,
this decay estimate of the energy function was improved byWu in [4] under a weaker condition on g i.e. g ′(t) ≤ 0, ∀t ≥ 0.

When g ≡ 0, problem (1.6) reduces to the following form:

utt − M

∥∇u∥2

2


1u + h(ut) = f (u) inΩ × [0,∞). (1.7)

For the case thatM ≡ 1, it is a nonlinear wave equation which has been extensively studied and several results concerning
existence and nonexistence have been established [5–9]. WhenM is not a constant function, Eq. (1.7) without damping and
the source terms is often called the Kirchhoff type equation; it was first introduced by Kirchhoff [10] in order to describe the
nonlinear vibrations of an elastic string. In this regard, there are numerous results related to global existence, decay result
and blowup properties, we refer the reader to references [11–15].

Concerning the system of wave equations, many authors considered the initial boundary value problem as follows:

utt −1u +

 t

0
g1(t − s)1u(s)ds + h1 (ut) = f1(u, v) inΩ × [0,∞),

vtt −1v +

 t

0
g2(t − s)1u(s)ds + h2 (vt) = f2(u, v) inΩ × [0,∞),

(1.8)

where Ω is a bounded domain in Rn (n = 1, 2, 3) with a smooth boundary ∂Ω . When the viscoelastic terms gi (i = 1, 2)
are absent in (1.8), Agre and Rammaha [16] obtained several results related to local existence and global existence of a weak
solution. By using the same technique as in [5], they showed that any weak solution blow up in finite with negative initial
energy. Later, Said-Houari [17] extended this blow up result to positive initial energy. Conversely, in the presence of the
memory term (gi ≠ 0, i = 1, 2), there are numerous results related to the asymptotic behavior and blow up of solutions of
viscoelastic systems. For example, Liang and Gao [18] studied problem (1.8) with h1 (ut) = −1ut and h2 (vt) = −1vt . They
obtained that, under suitable conditions on the functions gi, fi, i = 1, 2, and certain initial data in the stable set, the decay
rate of the energy function is exponential. On the contrary, for certain initial data in the unstable set, there are solutions
with positive initial energy that blow up in finite time. For h1 (ut) = |ut |

m−1 ut and h2 (vt) = |vt |
r−1 vt , Han and Wang [19]

established several results related to local existence, global existence and finite time blow-up (the initial energy E(0) < 0).
This latter blow-up result has been improved by Messaoudi and Said-Houari [20] by considering a larger class of initial data
for which the initial energy can take positive values. On the other hand, Messaoudi and Tatar [21] considered the following
problem:

utt −1u +

 t

0
g1(t − s)1u(s)ds + f1(u, v) = 0 inΩ × [0,∞),

vtt −1v +

 t

0
g2(t − s)1u(s)ds + f2(u, v) = 0 inΩ × [0,∞),

(1.9)

where the functions f1 and f2 satisfy the following assumptions

|f1(u, v)| ≤ d

|u|β1 + |v|β2


,

|f2(u, v)| ≤ d

|u|β3 + |v|β4


,

for some constant d > 0 and βi ≥ 1, βi ≤
n

n−2 , i = 1, 2, 3, 4. They obtained that the solution goes to zero with an
exponential or polynomial rate, depending on the decay rate of the relaxation functions gi, i = 1, 2. Their result improves
the one in [22] to weaker conditions on the relaxation functions g1 and g2 and more general coupling functions f1 and f2.

Motivated by previous works, it is interesting to investigate the global existence, decay and blow-up of solutions to
problem (1.1)–(1.5). Firstly, we show that, under suitable conditions on the function g, h and fi, i = 1, 2, and certain
initial data in the stable set, the solutions are global in time. After that, we establish the rate of decay of solutions by
a difference inequality given by Nakao [23]. Precisely, we show that the decay rate of energy function is exponential
or polynomial depending on the parameters p and q. Secondly, we intend to study the blow up phenomena of problem
(1.1)–(1.5). By adopting and modifying the methods used in [20], we prove the blow-up of solutions when the energy is
negative or nonnegative at less than the critical value E1 (given in (4.6)). In this way, our results allow a bigger region for
the blow up results and improve the result of Messaoudi and Said-Houari [20], who considered problem (1.1)–(1.5) for the
case of M ≡ 1. Additionally, to the best of our knowledge, the global existence and asymptotic behavior for systems of
viscoelastic wave equations of Kirchhoff type have not been well studied. In [24], Said-Houari considered (1.1)–(1.5) with
M ≡ 1 andwithout imposing thememory terms (g = h = 0). They proved that the rate of decay of the energy is exponential
or polynomial depending on exponents of the damping terms in both equations. In this regard, our decay result extends the
one in [24] to our problem,wherewe considerM is not a cons tan t function andwe havemore dissipations.We also improve
the decay result of [13] to weaker conditions on the relaxation functions.
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The paper is organized as follows. In Section 2, we present the preliminaries and some lemmas. In Section 3, the global
existence and decay property are derived. Finally, the blow-up results of (1.1)–(1.5) are obtained in the case of the initial
energy being nonnegative.

2. Preliminaries

In this section, we shall give some lemmas and assumptions which will be used throughout this work. We use the
standard Lebesgue space Lp(Ω) and Sobolev space H1

0 (Ω)with their usual products and norms. We will use the embedding
H1

0 (Ω) ↩→ Lp(Ω) for 2 ≤ p ≤
2n
n−2 , if n ≥ 3 or 2 ≤ p, if n = 1, 2. In this case, the embedding constant is denoted by c∗, i.e.

∥u∥p ≤ c∗ ∥∇u∥2 . (2.1)

Next, we give the assumptions for problem (1.1)–(1.5).

(A1) M(s) is a nonnegative C1 function for s ≥ 0 satisfying

M(s) = m0 + αsγ , m0 > 0, α ≥ 0 and γ > 0.

(A2) The relaxation functions g and h are of class C1 and satisfy, for s ≥ 0,

g(s) ≥ 0, m0 −


∞

0
g(s)ds = l > 0,

h(s) ≥ 0, m0 −


∞

0
h(s)ds = k > 0,

and

g ′(s) ≤ 0, h′(s) ≤ 0.

Concerning the functions f1(u, v) and f2(u, v), we take (see [20])

f1(u, v) = (m + 1)

a |u + v|m−1 (u + v)+ b |u|

m−3
2 |v|

m+1
2 u


, (2.2)

f2(u, v) = (m + 1)

a |u + v|m−1 (u + v)+ b |v|

m−3
2 |u|

m+1
2 v


, (2.3)

with a, b > 0. One can easily verify that

uf1(u, v)+ vf2(u, v) = (m + 1)F(u, v), ∀(u, v) ∈ R2,

where

F(u, v) = a |u + v|m+1
+ 2b |uv|

m+1
2 .

(A3) For the nonlinearity, we suppose that

m > 1, if n = 1, 2 or 1 < m ≤ 3, if n = 3. (2.4)

and

p, q ≥ 1, if n = 1, 2 or 1 ≤ p, q ≤ 5, if n = 3. (2.5)

As in [20], we still have the following results.

Lemma 2.1. There exist two positive constants c0 and c1 such that

c0

|u|m+1

+ |v|m+1
≤ F(u, v) ≤ c1


|u|m+1

+ |v|m+1 , ∀(u, v) ∈ R2.

Lemma 2.2. Suppose that (2.4) holds. Then there exists η > 0 such that for any (u, v) ∈ H1
0 (Ω)× H1

0 (Ω), we have

∥u + v∥m+1
m+1 + 2 ∥uv∥

m+1
2

m+1
2

≤ η

l ∥∇u∥2

2 + k ∥∇v∥2
2

m+1
2 .

We also need the following technical lemma in the course of the investigation.

Lemma 2.3 ([20]). For any g ∈ C1 and φ ∈ H1 (0, T ), we have

−2
 t

0


Ω

g(t − s)φφtdxds =
d
dt


(g � φ) (t)−

 t

0
g(s)ds ∥φ∥

2
2


+ g(t) ∥φ∥

2
2 −


g ′

� φ

(t),



S.-T. Wu / J. Math. Anal. Appl. 394 (2012) 360–377 363

where

(g � φ)(t) =

 t

0
g(t − s)


Ω

|φ(s)− φ(t)|2 dxds.

Now,we are in a position to state the local existence result to problem (1.1)–(1.5), which can be established by combining
arguments of [13,15,16,19].

Theorem 2.4. Let u0, v0 ∈ H1
0 ∩ H2(Ω) and u1, v1 ∈ H1

0 (Ω) be given. Assume that (A1)–(A3) are satisfied, then there exists a
couple solution (u, v) of problem (1.1)–(1.5) such that

u, v ∈ C([0, T ],H2(Ω) ∩ H1
0 (Ω)),

ut ∈ C

[0, T ],H1

0 (Ω)

∩ Lp+1(Ω), vt ∈ C


[0, T ],H1

0 (Ω)

∩ Lq+1(Ω),

for some T > 0.

We conclude this section by stating Nakao’s Lemma, which will be used in establishing the decay rate of solutions to
problem (1.1)–(1.5).

Lemma 2.5 ([23]). Let φ(t) be a nonincreasing and nonnegative function on [0, T ], T > 1, such that

φ(t)1+r
≤ ω0 (φ(t)− φ(t + 1)) on [0, T ],

where ω0 > 1 and r ≥ 0. Then we have, for all t ∈ [0, T ]

(i) if r = 0, then

φ(t) ≤ φ(0)e−ω1[t−1]+
;

(ii) if r > 0, then

φ(t) ≤

φ(0)−r

+ ω−1
0 r[t − 1]+

− 1
r ,

where ω1 = ln( ω0
ω0−1 ) and [t − 1]+ = max (t − 1, 0).

Remark 2.6. For the sake of simplicity, we take a = b = 1 in (2.2) and (2.3) throughout this paper.

3. Global existence and energy decay

In this section, we focus our attention to the global existence and decay rate of the solutions to problem (1.1)–(1.5). In
order to do so, we first define

I1(t) ≡ I1(u(t), v(t))

=


m0 −

 t

0
g(s)ds


∥∇u∥2

2 +


m0 −

 t

0
h(s)ds


∥∇v∥2

2

+ (g � ∇u) (t)+ (h � ∇v) (t)− (m + 1)

Ω

F(u, v)dx, (3.1)

I2(t) ≡ I2(u(t), v(t))

=


m0 −

 t

0
g(s)ds


∥∇u∥2

2 +


m0 −

 t

0
h(s)ds


∥∇v∥2

2 + α

∥∇u∥2

2 + ∥∇v∥2
2

γ+1
+ (g � ∇u) (t)

+ (h � ∇v) (t)− (m + 1)

Ω

F(u, v)dx, (3.2)

J(t) ≡ J(u(t), v(t))

=
1
2


m0 −

 t

0
g(s)ds


∥∇u∥2

2 +
1
2


m0 −

 t

0
h(s)ds


∥∇v∥2

2

+
α

2(γ + 1)


∥∇u∥2

2 + ∥∇v∥2
2

γ+1
+

1
2
(g � ∇u) (t)+

1
2
(h � ∇v) (t)−


Ω

F(u, v)dx, (3.3)

and define the energy function as

E(t) ≡ E(u(t), v(t)) =
1
2


∥ut∥

2
2 + ∥vt∥

2
2


+ J(t). (3.4)
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Lemma 3.1. Suppose that (A1), (A2) and (2.4) hold. Let (u, v) be the solution of problem (1.1)–(1.5), then E(t) is a nonincreasing
function, that is,

d
dt

E(t) = −∥ut∥
p+1
p+1 − ∥vt∥

q+1
q+1 +

1
2


g ′

� ∇u

(t)+

1
2


h′

� ∇v

(t)

−
1
2
g(t) ∥∇u∥2

2 −
1
2
h(t) ∥∇v∥2

2 ≤ 0, ∀t ≥ 0. (3.5)

Proof. Multiplying Eq. (1.1) by ut and Eq. (1.2) by vt , integrating overΩ , summing up and then using integration by parts,
we obtain

d
dt


1
2


∥ut∥

2
2 + ∥vt∥

2
2 +


∥∇u∥2

2 + ∥∇v∥2
2


+

α

γ + 1


∥∇u∥2

2 + ∥∇v∥2
2

γ+1


−


Ω

F(u, v)dx


= −∥ut∥
p+1
p+1 − ∥vt∥

q+1
q+1 +

 t

0


Ω

g(t − s)∇u(s) · ∇utdxds +

 t

0


Ω

h(t − s)∇v(s) · ∇vtdxds.

Exploiting Lemma 2.3 on the third term and fourth term on the right hand side of the above equality, we have the result. �

Lemma 3.2. Suppose that (A1), (A2) and (2.4) hold. Let (u, v) be the solution of problem (1.1)–(1.5). Assume further that
I1(0) > 0 and

α1 = (m + 1)η

2(m + 1)
m − 1

E(0)
m−1

2

< 1. (3.6)

Then

I1(t) > 0 for all t ≥ 0. (3.7)

Proof. Since I1(0) > 0, then by continuity, there exists a maximal time tmax > 0 (possibly tmax = T ) such that

I1(t) ≥ 0, for t ∈ [0, tmax],

which implies that, for t ∈ [0, tmax],

J(t) ≥
m − 1

2(m + 1)


m0 −

 t

0
g(s)ds


∥∇u∥2

2 +


m0 −

 t

0
h(s)ds


∥∇v∥2

2


+

m − 1
2(m + 1)

((g � ∇u)(t)+ (h � ∇v)(t))+
1

m + 1
I1(t)

≥
m − 1

2(m + 1)


m0 −

 t

0
g(s)ds


∥∇u∥2

2 +


m0 −

 t

0
h(s)ds


∥∇v∥2

2


+

m − 1
2(m + 1)

((g � ∇u)(t)+ (h � ∇v)(t))

≥
m − 1

2(m + 1)


l ∥∇u∥2

2 + k ∥∇v∥2
2


. (3.8)

Using (3.4), (3.8) and E(t) is nonincreasing by (3.5), we get, for t ∈ [0, tmax],

l ∥∇u∥2
2 + k ∥∇v∥2

2 ≤
2(m + 1)
m − 1

J(t) ≤
2(m + 1)
m − 1

E(t) ≤
2(m + 1)
m − 1

E(0). (3.9)

Employing Lemma 2.2, (3.9), (3.6) and (A2), we obtain, for t ∈ [0, tmax],

(m + 1)

Ω

F(u, v)dx ≤ (m + 1)η

l ∥∇u∥2

2 + k ∥∇v∥2
2

m+1
2

≤ (m + 1)η

2(m + 1)
m − 1

E(0)
m−1

2 
l ∥∇u∥2

2 + k ∥∇v∥2
2


= α1


l ∥∇u∥2

2 + k ∥∇v∥2
2


<


m0 −

 t

0
g(s)ds


∥∇u∥2

2 +


m0 −

 t

0
h(s)ds


∥∇v∥2

2 . (3.10)
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Thus

I1(t) =


m0 −

 t

0
g(s)ds


∥∇u∥2

2 +


m0 −

 t

0
h(s)ds


∥∇v∥2

2 + (g � ∇u) (t)

+ (h � ∇v) (t)− (m + 1)

Ω

F(u, v)dx > 0 on [0, tmax].

By repeating these steps and using the fact that

lim
t→tmax

(m + 1)η

2(m + 1)
m − 1

E(t)
m−1

2

≤ α1 < 1.

This implies that we can take tmax = T . �

Lemma 3.3. Let the assumptions of Lemma 3.2 hold. Then there exists 0 < η1 < 1 such that

(m + 1)

Ω

F(u, v)dx ≤ (1 − η1)


m0 −

 t

0
g(s)ds


∥∇u∥2

2 +


m0 −

 t

0
h(s)ds


∥∇v∥2

2


on [0, T ], (3.11)

where η1 = 1 − α1.

Proof. From (3.10), we have

(m + 1)

Ω

F(u, v)dx ≤ α1

l ∥∇u∥2

2 + k ∥∇v∥2
2


.

Letting η1 = 1 − α1 and using (A2), we obtain (3.11). �

Theorem 3.4. Suppose that (A1), (A2) and (A3) hold. Let u0, v0 ∈ H1
0 (Ω)∩H2(Ω) and u1, v1 ∈ H1

0 (Ω) be given which satisfy
I1(0) > 0 and (3.6). Then the solution of problem (1.1)–(1.5) is global and bounded. Furthermore, if

m0 >
5 + 2η1
2η1

max


∞

0
g(s)ds,


∞

0
h(s)ds


, (3.12)

then we have the following decay estimates:

(i) if p = q = 1, then, for all t ≥ 0,

E(t) ≤ E(0)e−τ1t .

(ii) If max (p, q) > 1, then, for all t ≥ 0,

E(t) ≤


E(0)−max


p−1
2 ,

q−1
2


+ τ2 max


p − 1
2

,
q − 1
2


[t − 1]+

−
2

max(p,q)−1

,

where τ1 = τ1 (m0, α, γ ) and τ2 = τ2 (m0, α, γ , E(0)) are positive constants given in the proof.

Proof. First, we prove T = ∞, it is sufficient to show that ∥ut∥
2
2 + ∥vt∥

2
2 + l ∥∇u∥2

2 + k ∥∇v∥2
2 is bounded independently

of t . Thanks to (3.4) and (3.8), we have

E(0) ≥ E(t) =
1
2


∥ut∥

2
2 + ∥vt∥

2
2


+ J(t)

≥
1
2


∥ut∥

2
2 + ∥vt∥

2
2


+

m − 1
2(m + 1)


l ∥∇u∥2

2 + k ∥∇v∥2
2


.

Therefore

∥ut∥
2
2 + ∥vt∥

2
2 + l ∥∇u∥2

2 + k ∥∇v∥2
2 ≤ α2E(0),

where α2 is a positive constant which depends only onm. Thus, we obtain the global existence result.
Following, we will derive the decay rate of the energy function for problem (1.1)–(1.5) by Nakao’s method [23]. For this

purpose, we have to show that the energy function defined by (3.4) satisfies the hypothesis of Lemma 2.5. By integrating
(3.5) over [t, t + 1], we have

E(t)− E(t + 1) = D1(t)p+1
+ D2(t)q+1, (3.13)
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where

D1(t)p+1
=

 t+1

t
∥ut∥

p+1
p+1 ds −

1
2

 t+1

t


g ′

� ∇u

(s)ds +

1
2

 t+1

t
g(s) ∥∇u∥2

2 ds, (3.14)

D2(t)q+1
=

 t+1

t
∥vt∥

q+1
q+1 ds −

 t+1

t

1
2


h′

� ∇v

(s)ds +

1
2

 t+1

t
h(s) ∥∇v∥2

2 ds. (3.15)

By virtue of (3.14), (3.15) and Hölder inequality, we observe that t+1

t


Ω

|ut |
2 dxdt +

 t+1

t


Ω

|vt |
2 dxdt ≤ c1(Ω)D1(t)2 + c2(Ω)D2(t)2, (3.16)

where c1(Ω) = vol(Ω)
p−1
p+1 and c2(Ω) = vol(Ω)

q−1
q+1 . Applying the mean value theorem, there exist t1 ∈ [t, t +

1
4 ] and

t2 ∈ [t +
3
4 , t + 1] such that

∥ut(ti)∥2
2 + ∥ut(ti)∥2

2 ≤ 4c1(Ω)D1(t)2 + 4c2(Ω)D2(t)2, i = 1, 2. (3.17)

Next, multiplying Eq. (1.1) by u, Eq. (1.2) by v, integrating overΩ × [t1, t2], using integration by parts, Hölder inequality
and adding them together, we obtain t2

t1
I2(t)dt ≤

2
i=1

∥ut(ti)∥2 ∥u(ti)∥2 +

2
i=1

∥vt(ti)∥2 ∥v(ti)∥2 +

 t2

t1


∥ut∥

2
2 + ∥vt∥

2
2


dt

−

 t2

t1


Ω


|ut |

p−1 utu + |vt |
q−1 vtv


dxdt +

 t2

t1
((g � ∇u)(t)+ (h � ∇u)(t)) dt

+

 t2

t1


Ω

 t

0
g(t − s)∇u(t) · [∇u(s)− ∇u(t)] dsdxdt

+

 t2

t1


Ω

 t

0
h(t − s)∇v(t) · [∇v(s)− ∇v(t)] dsdxdt. (3.18)

Since 
Ω

 t

0
g(t − s)∇u(t) · [∇u(s)− ∇u(t)] dsdx

=
1
2

 t

0
g(t − s)


∥∇u(t)∥2

2 + ∥∇u(s)∥2
2


ds −

 t

0
g(t − s) ∥∇u(t)− ∇u(s)∥2

2 ds


−


Ω

 t

0
g(s) |∇u(t)|2 dsdx

= −
1
2


Ω

 t

0
g(s) |∇u(t)|2 dsdx +

1
2

 t

0
g(t − s) ∥∇u(s)∥2

2 ds −
1
2
(g � ∇u) (t),

and 
Ω

 t

0
h(t − s)∇v(t) · [∇v(s)− ∇v(t)] dsdx

= −
1
2


Ω

 t

0
h(s) |∇v(t)|2 dsdx +

1
2

 t

0
h(t − s) ∥∇v(s)∥2

2 ds −
1
2
(h � ∇v) (t),

hence (3.18) takes the form t2

t1
I2(t)dt ≤

2
i=1

∥ut(ti)∥2 ∥u(ti)∥2 +

2
i=1

∥vt(ti)∥2 ∥v(ti)∥2 +

 t2

t1


∥ut∥

2
2 + ∥vt∥

2
2


dt

−

 t2

t1


Ω


|ut |

p−1 utu + |vt |
q−1 vtv


dxdt +

1
2

 t2

t1
((g � ∇u)(t)+ (h � ∇u)(t)) dt

+
1
2

 t2

t1

 t

0
g(t − s) ∥∇u(s)∥2

2 dsdt +
1
2

 t2

t1

 t

0
h(t − s) ∥∇v(s)∥2

2 dsdt. (3.19)
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Now, we will estimate the right-hand side of (3.19). First, by (3.17), (2.1) and (3.9), we have

∥ut(ti)∥2 ∥u(ti)∥2 ≤ c∗

4c1(Ω)D1(t)2 + 4c2(Ω)D2(t)2 sup

t1≤s≤t2
∥∇u(s)∥2

≤ c∗


2(m + 1)
l(m − 1)

 1
2 

4c1(Ω)D1(t)2 + 4c2(Ω)D2(t)2 sup
t1≤s≤t2

E(s)
1
2

≤ c∗


2(m + 1)
β(m − 1)

 1
2 

4c1(Ω)D1(t)2 + 4c2(Ω)D2(t)2E(t)
1
2 , (3.20)

and

∥vt(ti)∥2 ∥v(ti)∥2 ≤ c∗


2(m + 1)
β(m − 1)

 1
2 

4c1(Ω)D1(t)2 + 4c2(Ω)D2(t)2E(t)
1
2 , (3.21)

where

β = min (l, k) .

Using Hölder inequality, (2.1), (2.5) and (3.9), we have t2

t1


Ω

|ut |
p−1 utudxdt

 ≤

 t2

t1

∥ut(t)∥
p
p+1 ∥u∥p+1 dt

≤ c∗

 t2

t1

∥ut(t)∥
p
p+1 ∥∇u∥2 dt

≤ c∗


2(m + 1)
l(m − 1)

 1
2

sup
t1≤s≤t2

E(s)
1
2

 t2

t1

∥ut(t)∥
p
p+1 dt

≤ c∗


2(m + 1)
β(m − 1)

 1
2

E(t)
1
2 D1(t)p, (3.22)

and similarly t2

t1


Ω

|vt |
q−1 vtvdxdt

 ≤ c∗


2(m + 1)
β(m − 1)

 1
2

E(t)
1
2 D2(t)q. (3.23)

Employing Young’s inequality for convolution ∥φ ∗ ψ∥q ≤ ∥φ∥r ∥ψ∥s, with 1
q =

1
r +

1
s − 1, 1 ≤ q, r, s ≤ ∞, noting that

if q = 1, then r = 1 and s = 1, we get t2

t1

 t

0
g(t − s) ∥∇u(s)∥2

2 dsdt ≤

 t2

t1
g(t)dt

 t2

t1

∥∇u(t)∥2
2 dt

≤ (m0 − l)
 t2

t1

∥∇u(t)∥2
2 dt

≤ (m0 − β)

 t2

t1

∥∇u(t)∥2
2 dt, (3.24)

and  t2

t1

 t

0
h(t − s) ∥∇v(s)∥2

2 dsdt ≤

 t2

t1
h(t)dt

 t2

t1

∥∇v(t)∥2
2 dt

≤ (m0 − β)

 t2

t1

∥∇v(t)∥2
2 dt. (3.25)

Adding (3.24) and (3.25) together and noting that

l ∥∇u∥2
2 + k ∥∇v∥2

2 ≤
1
η1

I2(t) (3.26)
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from (3.11) and the definition of I2(t) by (3.2), we have

1
2

 t2

t1

 t

0
g(t − s) ∥∇u(s)∥2

2 dsdt +

 t2

t1

 t

0
h(t − s) ∥∇v(s)∥2

2 dsdt


≤
m0 − β

2β

 t2

t1


l ∥∇u(t)∥2

2 + k ∥∇v(t)∥2
2


dt

≤
m0 − β

2βη1

 t2

t1
I2(t)dt. (3.27)

To estimate the last two terms on the right-hand side of (3.19), we exploit (3.24)–(3.26) to obtain

1
2

 t2

t1
((g � ∇u)(t)+ (h � ∇v)(t)) dt =

1
2

 t2

t1

 t

0
g(t − s)


∥∇u(s)− ∇u(t)∥2

2


dsdt

+
1
2

 t2

t1

 t

0
h(t − s)


∥∇v(s)− ∇v(t)∥2

2


dsdt

≤

 t2

t1

 t

0
g(t − s)


∥∇u(s)∥2

2 + ∥∇u(t)∥2
2


dsdt

+

 t2

t1

 t

0
h(t − s)


∥∇v(s)∥2

2 + ∥∇v(t)∥2
2


dsdt

≤
2(m0 − β)

β

 t2

t1


l ∥∇u(t)∥2

2 + k ∥∇v(t)∥2
2


dt

≤
2(m0 − β)

βη1

 t2

t1
I2(t)dt. (3.28)

Therefore, from (3.16), (3.20)–(3.23), (3.27) and (3.28), (3.19) becomes t2

t1
I2(t)dt ≤ c1(Ω)D1(t)2 + c2(Ω)D2(t)2

+ 4c3

4c1(Ω)D1(t)2 + 4c2(Ω)D2(t)2E(t)

1
2 + c3E(t)

1
2

D1(t)p + D2(t)q


+ c4

 t2

t1
I2(t)dt, (3.29)

where c3 = c∗


2(m+1)
β(m−1)

 1
2
and c4 =

5(m0−β)
2βη1

. Then, rewriting (3.29), we have

β2

 t2

t1
I2(t)dt ≤ c1(Ω)D1(t)2 + c2(Ω)D2(t)2

+ 4c3

4c1(Ω)D1(t)2 + 4c2(Ω)D2(t)2E(t)

1
2 + c3E(t)

1
2

D1(t)p + D2(t)q


,

with β2 = 1−
5(m0−β)

2βη1
. Observing that the assumptionm0 >

5+2η1
2η1

max


∞

0 g(s)ds,


∞

0 h(s)ds

given in (3.12) is equivalent

to β2 > 0. Thus, t2

t1
I2(t)dt ≤ c5


4c1(Ω)D1(t)2 + 4c2(Ω)D2(t)2E(t)

1
2 + D1(t)2 + D2(t)2 + E(t)

1
2

D1(t)p + D2(t)q


, (3.30)

where c5 =
max(c1(Ω),c2(Ω),4c3)

β2
.

On the other hand, from the definition of E(t) by (3.4) and I2(t) = I1(t) + α

∥∇u∥2

2 + ∥∇v∥2
2

γ+1
by (3.1) and (3.2),

we have

E(t) =
1
2


∥ut∥

2
2 + ∥vt∥

2
2


+

m − 1
2(m + 1)


m0 −

 t

0
g(s)ds


∥∇u∥2

2

+


m0 −

 t

0
h(s)ds


∥∇v∥2

2


+

m − 1
2(m + 1)

((g � ∇u)(t)+ (h � ∇v)(t))

+
α

2(γ + 1)


∥∇u∥2

2 + ∥∇v∥2
2

γ+1
+

1
m + 1

I1(t)
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≤
1
2


∥ut∥

2
2 + ∥vt∥

2
2


+

m − 1
2(m + 1)


m0 −

 t

0
g(s)ds


∥∇u∥2

2

+


m0 −

 t

0
h(s)ds


∥∇v∥2

2


+

m − 1
2(m + 1)

((g � ∇u)(t)+ (h � ∇v)(t))

+


1

m + 1
+

1
2(γ + 1)


I2(t). (3.31)

Hence, integrating (3.31) over (t1, t2) and then utilizing (3.16), (3.26), (3.28) and (3.30), we deduce that t2

t1
E(t)dt ≤

1
2

 t2

t1


∥ut∥

2
2 + ∥vt∥

2
2


dt +

m − 1
2(m + 1)

 t2

t1


m0 −

 t

0
g(s)ds


∥∇u∥2

2

+


m0 −

 t

0
h(s)ds


∥∇v∥2

2


dt +

m − 1
2(m + 1)

 t2

t1
((g � ∇u)(t)

+ (h � ∇v)(t)) dt +


1

m + 1
+

1
2(γ + 1)

 t2

t1
I2(t)dt

≤ c1(Ω)D1(t)2 + c2(Ω)D2(t)2 + c6

 t2

t1
I2(t)dt

≤ c7


4c1(Ω)D1(t)2 + 4c2(Ω)D2(t)2E(t)
1
2 + D1(t)2 + D2(t)2

+ E(t)
1
2

D1(t)p + D2(t)q


, (3.32)

where c6 =
1

m+1 +
1

2(γ+1) +
m−1

2(m+1)η1
+

2(m−1)(m0−β)
(m+1)βη1

and c7 = max (c1(Ω), c2(Ω), c6c5). Moreover, integrating (3.5) over
(t, t2) and using (3.14), (3.15) and the fact that

E(t2) ≤ 2
 t2

t1
E(t)dt

due to t2 − t1 ≥
1
2 , we obtain

E(t) = E(t2)+

 t2

t
∥ut∥

p+1
p+1 ds −

1
2

 t2

t


g ′

� ∇u

(s)ds +

1
2

 t2

t
g(s) ∥∇u∥2

2 ds +

 t2

t
∥vt∥

q+1
q+1 ds

−

 t2

t

1
2


h′

� ∇v

(s)ds +

1
2

 t2

t
h(s) ∥∇v∥2

2 ds

≤ 2
 t2

t1
E(t)dt + D1(t)p+1

+ D2(t)q+1. (3.33)

Consequently, combining (3.33) with (3.32), we obtain

E(t) ≤ c8


4c1(Ω)D1(t)2 + 4c2(Ω)D2(t)2E(t)
1
2 + D1(t)2 + D2(t)2

+E(t)
1
2 D1(t)p + E(t)

1
2 D2(t)q + D1(t)p+1

+ D2(t)q+1

.

Then, a simple application of Young’s inequality gives, for all t ≥ 0,

E(t) ≤ c9

D1(t)2 + D2(t)2 + D1(t)2p + D2(t)2q + D1(t)p+1

+ D2(t)q+1 , (3.34)

where c8 and c9 are some positive constants.
Therefore, we have the following decay estimate:
(i) p = q = 1
From (3.34) and (3.13), we get

E(t) ≤ c10 [E(t)− E(t + 1)] ,

here we choose c10 > 1. Thus, by Lemma 2.5, we obtain

E(t) ≤ E(0)e−τ1t for t ≥ 0,

with τ1 = ln c10
c10−1 .
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(ii) If max(p, q) > 1, it follows from (3.34) that, for all t ≥ 0,

E(t) ≤ c9

1 + D1(t)p−1

+ D1(t)2p−2D1(t)2 +

1 + D2(t)q−1

+ D2(t)2q−2D2(t)2

.

As D1(t) ≤ E(t)
1

p+1 ≤ E(0)
1

p+1 and D2(t) ≤ E(t)
1

q+1 ≤ E(0)
1

q+1 by (3.13) and (3.5), we have, for all t ≥ 0,

E(t) ≤ c9


1 + E(0)
p−1
p+1 + E(0)

2p−2
p+1

D1(t)2 +


1 + E(0)

q−1
q+1 + E(0)

2q−2
q+1

D2(t)2


≤ c9


1 + E(0)

p−1
p+1 + E(0)

2p−2
p+1 + E(0)

q−1
q+1 + E(0)

2q−2
q+1
 

D1(t)2 + D2(t)2


= c10(E(0))

D1(t)2 + D2(t)2


,

where limE(0)→0 c10(E(0)) = c9. Setting ρ = max
 p−1

2 ,
q−1
2


, then, we obtain

E(t)1+ρ ≤

c10(E(0))


D1(t)2 + D2(t)2

1+ρ
≤ c11(E(0))


D1(t)2ρ+2

+ D2(t)2ρ+2 ,
= c11(E(0))


D1(t)2ρ−p+1D1(t)p+1

+ D2(t)2ρ−q+1D2(t)q+1
≤ c11(E(0))


E(0)

2ρ−p+1
p+1 D1(t)p+1

+ E(0)
2ρ−q+1

q+1 D2(t)q+1


≤ c12(E(0))

D1(t)p+1

+ D2(t)q+1
= c12(E(0)) (E(t)− E(t + 1)) , (3.35)

where c11(E(0)) = 2ρ · (c10(E(0)))1+ρ and c12(E(0)) = c11(E(0))max

E(0)

2ρ−p+1
p+1 , E(0)

2ρ−q+1
q+1


. The application of

Lemma 2.5 to (3.35) yields

E(t) ≤

E(0)−ρ + τ2ρ[t − 1]+

− 1
ρ for t ≥ 0,

with τ2 = c−1
12 (E(0)). The proof of Theorem 3.4 is completed. �

Remark 3.5. If the condition I1(0) > 0 in Lemma 3.2 and Theorem 3.4 is replaced by I2(0) > 0, we need the assumption
m > 2γ + 1 to prove Theorem 3.4. Hence, the condition I1(0) > 0 provides the decay result to problem (1.1)–(1.5) without
imposingm > 2γ + 1, but at the expense of restricting the initial data by a strong condition.

4. Blow-up of solutions

In this section, we investigate the blow up properties of solutions for a kind of problem:

utt − M

∥∇u∥2

2 + ∥∇v∥2
2


1u +

 t

0
g(t − s)1u(s)ds + |ut |

p−1 ut = f1(u, v), inΩ × [0,∞), (4.1)

vtt − M

∥∇u∥2

2 + ∥∇v∥2
2


1v +

 t

0
h(t − s)1u(s)ds + |vt |

q−1 vt = f2(u, v), inΩ × [0,∞), (4.2)

whereM(s) = 1 + αsγ , with α > 0, γ > 0, s ≥ 0. In order to state our result, we make an extra assumption on g and h:

max


∞

0
g(s)ds,


∞

0
h(s)ds


< min


2(m − 1)
2m − 1

,
2(m + 1) (E1 − E(0))

2(m − 1)λ21


, (4.3)

where λ1 and E1 are given in (4.5) and (4.6), respectively.
Next, we define a functional Gwhich helps in establishing desired results. Setting

G(x) =
1
2
x2 − ηxm+1, x > 0, (4.4)

where η is the constant appeared in Lemma 2.2.

Remark 4.1. (i) We can verify that the functionalG is increasing in (0, λ1), decreasing in (λ1,∞) , G(λ) → −∞ asλ → ∞

and G has a maximum value at

λ1 =


1

η(m + 1)

 1
m−1

(4.5)
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with the maximum value

E1 = G(λ1) =
m − 1

2(m + 1)
λ21. (4.6)

(ii) We observe from (3.4), Lemma 2.2 and (4.4) that

E(t) ≥ J(t) =
1
2
w(t)2 −


Ω

F(u, v)dx

≥
1
2
w(t)2 − η


l ∥∇u∥2

2 + k ∥∇v∥2
2

m+1
2

≥
1
2
w(t)2 − ηw(t)m+1

= G (w(t)) , t ≥ 0, (4.7)

where

w(t) =


l ∥∇u(t)∥2

2 + k ∥∇v∥2
2 +

α

γ + 1


∥∇u∥2

2 + ∥∇v∥2
2

γ+1
+ (g � ∇u) (t)+ (h � ∇v) (t)

 1
2

. (4.8)

Before we state and prove our main result, we need the following lemma, and it is similar to a lemma used firstly by
Vitillaro [9] to study some classes of a single equation.

Lemma 4.2. Assume that (A2) and (2.4) hold, u0, v0 ∈ H1
0 (Ω) ∩ H2(Ω) and u1, v1 ∈ H1

0 (Ω). Let (u, v) be a solution
of (4.1)–(4.2), (1.3)–(1.5) with initial data satisfying E(0) < E1 andw(0) > λ1, i.e.

l ∥∇u0∥
2
2 + k ∥∇v0∥

2
2 +

α

γ + 1


∥∇u0∥

2
2 + ∥∇v0∥

2
2

(γ+1)
 1

2

> λ1. (4.9)

Then there exists λ2 > λ1 such that, for all t ≥ 0

w(t) ≥ λ2. (4.10)

Proof. From Remark 4.1 (i), we see that G is increasing for 0 < λ < λ1, decreasing for λ > λ1 and G(λ) → −∞ as λ → ∞.
Thus, as E(0) < E1, there exist λ′

2 < λ1 < λ2 such that G

λ′

2


= G (λ2) = E(0), which together with w(0) > λ1 and (4.7)

infer that

G (w(0)) ≤ E(0) = G (λ2) .

This implies thatw(0) ≥ λ2.
To establish (4.10), we argue by contradiction. Suppose that (4.10) does not hold, then there exists t∗ > 0 such that

w(t∗) < λ2.

Case 1: If λ1 < w(t∗) < λ2, then

G

w(t∗)


> G(λ2) = E(0) ≥ E(t∗).

This contradicts (4.7).
Case 2: Ifw(t∗) ≤ λ1, then by continuity of the functionw(t), there exists 0 < t1 < t∗ such that

λ1 < w(t1) < λ2,

then

G (w(t1)) > G(λ2) = E(0) ≥ E(t1).

This is also a contradiction of (4.7). Thus, we have proved (4.10). �

Theorem 4.3. Suppose that (A2), (2.4) and (4.3) hold. Assume further that m > max (p, q) and γ < max
m−1

2 , κ

with

κ =


(2m − 1) (1 − k)

4
, if l > k,

(2m − 1) (1 − l)
4

, if l < k.
(4.11)
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If one of the following is satisfied

(i) E(0) < 0,
(ii) 0 ≤ E(0) < E1 andw(0) > λ1.

Then any solution of problem (4.1)–(4.2), (1.3)–(1.5) blows up at a finite time T . The lifespan T is estimated by

0 < T ≤
1 − σ

c23σA(0)
σ

1−σ
,

where A(t) and c23 are given in (4.15) and (4.30) respectively. σ is a constant given in (4.22).

Proof. (I) For case 0 ≤ E(0) < E1
We suppose that the solution exists for all time and we reach to a contradiction. For this purpose, we set

H(t) = E2 − E(t), t ≥ 0, (4.12)

where E2 =
E1+E(0)

2 . By (3.5), we see that H ′(t) ≥ 0. Thus, we obtain

H(t) ≥ H(0) = E2 − E(0) > 0, t ≥ 0. (4.13)

Moreover, from (4.7), (4.10) and (4.6), we see that

H(t) = E2 − E(t)

≤ E1 −
1
2
w(t)2 +


Ω

F(u, v)dx

≤ E1 −
1
2
λ21 + ∥u + v∥m+1

m+1 + 2 ∥uv∥
m+1
2

m+1
2

= −
λ21

m + 1
+ ∥u + v∥m+1

m+1 + 2 ∥uv∥
m+1
2

m+1
2
.

Then, by (4.13) and Lemma 2.1, we have

0 < H(0) ≤ H(t) ≤ ∥u + v∥m+1
m+1 + 2 ∥uv∥

m+1
2

m+1
2

≤ c1

∥u∥m+1

m+1 + ∥v∥m+1
m+1


, for all t ≥ 0. (4.14)

Let

A(t) = H1−σ (t)+ ε


Ω

(uut + vvt) dx, (4.15)

where ε and σ are positive constants to be specified later. By taking a derivative of (4.15) and using Eqs. (4.1) and (4.2),
we get

A′(t) = (1 − σ)H(t)−σH ′(t)+ ε

∥ut∥

2
2 + ∥vt∥

2
2


− ε


∥▽u∥2

2 + ∥▽v∥2
2


− εα


∥▽u∥2

2 + ∥▽v∥2
2

γ+1
+ ε


Ω

 t

0
g(t − s)∇u(s) · ∇u(t)dsdx

+ ε


Ω

 t

0
h(t − s)∇v(s) · ∇v(t)dsdx − ε


Ω

(u |ut |
p−1 ut + v |vt |

q−1 vt)dx

+ ε(m + 1)

Ω

F(u, v)dx. (4.16)

Exploiting Hölder inequality and Young’s inequality, we observe that
Ω

 t

0
g(t − s)∇u(s) · ∇u(t)dsdx

=


Ω

 t

0
g(t − s)∇u(t) · (∇u(s)− ∇u(t)) dsdx +

 t

0
g(t − s)ds ∥∇u(t)∥2

2

≥ −(g � ∇u)(t)+
3
4

 t

0
g(s)ds ∥▽u(t)∥2

2 , (4.17)
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and 
Ω

 t

0
h(t − s)∇v(s) · ∇v(t)dsdx ≥ −(h � ∇v)(t)+

3
4

 t

0
h(s)ds ∥▽v(t)∥2

2 . (4.18)

Taking (4.17)–(4.18) into account, using (4.12) and the definition of E(t) by (3.4) to substitute for

Ω
F(u, v)dx, (4.16)

becomes

A′(t) ≥ (1 − σ)H(t)−σH ′(t)+ εa1

∥ut∥

2
2 + ∥vt∥

2
2


+ εa2 ((g � ∇u) (t)+ (h � ∇u) (t))

+ εa3
α

(γ + 1)


∥▽u∥2

2 + ∥▽v∥2
2

γ+1
+ εa4


∥▽u∥2

2 + ∥▽v∥2
2


− ε


Ω

(u |ut |
p−1 ut + v |vt |

q−1 vt)dx + (m + 1)εH(t)− (m + 1)εE2,

where a1 =
m+3
2 , a2 =

m−1
2 , a3 =

m−1−2γ
2 and a4 =

m−1
2 −

2m−1
4 max


∞

0 g(s)ds,


∞

0 h(s)ds

. By (4.3), we observe that

a4 > 0 and then by the restriction on γ and the definition ofw(t) by (4.8), we have

A′(t) ≥ (1 − σ)H(t)−σH ′(t)+ εa1

∥ut∥

2
2 + ∥vt∥

2
2


+ εa4 ((g � ∇u) (t)+ (h � ∇u) (t))

+ εa4
α

(γ + 1)


∥▽u∥2

2 + ∥▽v∥2
2

γ+1
+ εa4


l ∥▽u∥2

2 + k ∥▽v∥2
2


− ε


Ω

(u |ut |
p−1 ut + v |vt |

q−1 vt)dx + (m + 1)εH(t)− (m + 1)εE2

= (1 − σ)H(t)−σH ′(t)+ εa1

∥ut∥

2
2 + ∥vt∥

2
2


+ εa4w(t)2 + (m + 1)εH(t)

− ε


Ω

(u |ut |
p−1 ut + v |vt |

q−1 vt)dx − (m + 1)εE2.

Asw(t) ≥ λ2 by (4.10) and λ2 > λ1 by Lemma 4.2, we note that

a4w(t)2 − (m + 1)E2 = a4
λ22 − λ21

λ22
w(t)2 + a4λ21

w(t)2

λ22
− (m + 1)E2

≥ c2w(t)2 + c3,

where c2 = a4
λ22−λ

2
1

λ22
> 0 and c3 = a4λ21 − (m + 1)E2. Further, employing the definition of E1 by (4.6), E2 =

E1+E(0)
2 and the

assumption (4.3), we see that

c3 = a4λ21 − (m + 1)E2

=


m − 1

2
−

2m − 1
4

max


∞

0
g(s)ds,


∞

0
h(s)ds


λ21 − (m + 1)E2

=
(m + 1) (E1 − E(0))

2
−
(2m − 1) λ21

4
max


∞

0
g(s)ds,


∞

0
h(s)ds


> 0.

Therefore, based on above arguments, we conclude that

A′(t) ≥ (1 − σ)H(t)−σH ′(t)+ εa1

∥ut∥

2
2 + ∥vt∥

2
2


+ εc2w(t)2

− ε


Ω

(u |ut |
p−1 ut + v |vt |

q−1 vt)dx + (m + 1)εH(t). (4.19)

To proceed further, by Hölder inequality and Young’s inequality, we have
Ω

|ut |
p−1 utudx

 ≤
δ
p+1
1

p + 1
∥u∥p+1

p+1 +
pδ

−
p+1
p

1

p + 1
∥ut∥

p+1
p+1 ,

and 
Ω

|vt |
q−1 vtvdx

 ≤
δ
q+1
2

q + 1
∥v∥

q+1
q+1 +

qδ
−

q+1
q

2

q + 1
∥vt∥

q+1
q+1 ,
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where δ1 and δ2 are positive constants depending on t and will be specified later. Then, inserting the last two inequalities
into (4.19), we obtain

A′(t) ≥ (1 − σ)H(t)−σH ′(t)+ εa1

∥ut∥

2
2 + ∥vt∥

2
2


+ εc2w(t)2

− ε

 δ
p+1
1

p + 1
∥u∥p+1

p+1 +
pδ

−
p+1
p

1

p + 1
∥ut∥

p+1
p+1 +

δ
q+1
2

q + 1
∥v∥

q+1
q+1 +

qδ
−

q+1
q

2

q + 1
∥vt∥

q+1
q+1

+ (m + 1)εH(t).

At this point, choosing δ1 and δ2 such that

δ
−

p+1
p

1 = M1H(t)−σ and δ
−

q+1
q

2 = M2H(t)−σ ,

and using H ′(t) = −E ′(t) by (4.12) and E ′(t) ≤ −


∥ut∥

p+1
p+1 + ∥vt∥

q+1
q+1


by (3.5), we get that

A′(t) ≥ (1 − σ − Mε)H(t)−σH ′(t)+ εa1

∥ut∥

2
2 + ∥vt∥

2
2


+ εc2w(t)2 − εM−p

1 H(t)σp ∥u∥p+1
p+1 − εM−q

2 H(t)σq ∥v∥
q+1
q+1 + (m + 1)εH(t), (4.20)

where M1, M2 are positive constants and M =
pM1
p+1 +

qM2
q+1 . It follows from (4.14) that

M−p
1 H(t)σp ≤ M−p

1 cσp1


∥u∥m+1

m+1 + ∥v∥m+1
m+1

σp
,

M−q
2 H(t)σq ≤ M−q

2 cσq1


∥u∥m+1

m+1 + ∥v∥m+1
m+1

σq
.

A substitution of these two inequalities into (4.20) yields

A′(t) ≥ (1 − σ − Mε)H(t)−σH ′(t)+ εa1

∥ut∥

2
2 + ∥vt∥

2
2


+ εc2w(t)2 − εM−p

1 cσp1


∥u∥m+1

m+1 + ∥v∥m+1
m+1

σp
∥u∥p+1

p+1

− εM−q
2 cσq1


∥u∥m+1

m+1 + ∥v∥m+1
m+1

σq
∥v∥

q+1
q+1 + (m + 1)εH(t).

Since p < m and q < m, we note that

∥u∥p+1
p+1 ≤ c4 ∥u∥p+1

m+1 ≤ c4

∥u∥m+1 + ∥v∥m+1

p+1
,

∥v∥
p+1
p+1 ≤ c5 ∥v∥

q+1
m+1 ≤ c5


∥u∥m+1 + ∥v∥m+1

q+1
,

where c4 = vol (Ω)
m−p
m+1 and c5 = vol (Ω)

m−q
m+1 . Thus,

A′(t) ≥ (1 − σ − Mε)H(t)−σH ′(t)+ εa1

∥ut∥

2
2 + ∥vt∥

2
2


+ εc2w(t)2 − εM−p

1 cσp1 c4

∥u∥m+1

m+1 + ∥v∥m+1
m+1

σp 
∥u∥m+1 + ∥v∥m+1

p+1

− εM−q
2 cσq1 c5


∥u∥m+1

m+1 + ∥v∥m+1
m+1

σq 
∥u∥m+1 + ∥v∥m+1

q+1
+ (m + 1)εH(t)

≥ (1 − σ − Mε)H(t)−σH ′(t)+ εa1

∥ut∥

2
2 + ∥vt∥

2
2


+ εc2w(t)2

− εM−p
1 cσp1 c7


∥u∥m+1 + ∥v∥m+1

σp(m+1)+p+1
+ (m + 1)εH(t)

− εM−q
2 cσq1 c8


∥u∥m+1 + ∥v∥m+1

σq(m+1)+q+1
, (4.21)

where the last inequality is derived by
∥u∥m+1

m+1 + ∥v∥m+1
m+1

σp
≤ 2c6


∥u∥m+1 + ∥v∥m+1

σp(m+1)
,

∥u∥m+1
m+1 + ∥v∥m+1

m+1

σq
≤ 2c6


∥u∥m+1 + ∥v∥m+1

σq(m+1)
,

because of

(x + y)λ ≤ c6

xλ + yλ


, x, y ≥ 0, λ > 0, c6 > 0,

and the constants c7 = 2c6c4 and c8 = 2c6c5.
Now, letting

0 < σ < min


m − p
p(m + 1)

,
m − q

q(m + 1)
,

m − 1
2(m + 1)


, (4.22)
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then

2 ≤ σp(m + 1)+ p + 1 ≤ m + 1 and 2 ≤ σq(m + 1)+ q + 1 ≤ m + 1,

hence, by the following inequality,

∥v∥s
m+1 ≤ c(vol(Ω),m)


∥∇v∥2

2 + ∥v∥m+1
m+1


, ∀v ∈ H1

0 (Ω) , 2 ≤ s ≤ m + 1, (4.23)

we have

∥u∥σp(m+1)+p+1
m+1 ≤ c9


∥∇u∥2

2 + ∥u∥m+1
m+1


, (4.24)

∥v∥
σq(m+1)+p+1
m+1 ≤ c10


∥∇v∥2

2 + ∥v∥m+1
m+1


, (4.25)

where c9 and c10 are some positive constants. Taking (4.24)–(4.25) into consideration and using the definition of w(t) by
(4.8), (4.21) takes the form

A′(t) ≥ (1 − σ − Mε)H(t)−σH ′(t)+ εa1

∥ut∥

2
2 + ∥vt∥

2
2


+ ε


c2l − M−p

1 cσp1 c11

∥▽u∥2

2

+ ε

c2k − M−q

2 cσq1 c12

∥▽v∥2

2 + εc2 ((g � ∇u) (t)+ (h � ∇u) (t))

+ εc2
α

(γ + 1)


∥▽u∥2

2 + ∥▽v∥2
2

γ+1
+ (m + 1)εH(t)

− ε

M−p

1 cσp1 c11 ∥u∥m+1
m+1 + M−q

2 cσq1 c12 ∥v∥m+1
m+1


, (4.26)

where c11 = c7 · c9 and c12 = c8 · c10. At this moment, setting a5 = min{c2l, c2k, m+1
2 }, decomposing ε(m+ 1)H(t) in (4.26)

by ε(m + 1)H(t) = 2a5εH(t)+ (m + 1 − 2a5)εH(t), using H(t) = E2 − E(t) by (4.12) and F(u, v) ≥ c0

|u|m+1

+ |v|m+1
by Lemma 2.1, we obtain

A′(t) ≥ (1 − σ − Mε)H(t)−σH ′(t)+ ε (a1 − a5)

∥ut∥

2
2 + ∥vt∥

2
2


+ ε (c2 − a5) ((g � ∇u) (t)+ (h � ∇u) (t))
+ ε


c2l − M−p

1 cσp1 c11 − a5

∥▽u∥2

2 + ε

c2k − M−q

2 cσq1 c12 − a5

∥▽v∥2

2

+ ε (c2 − a5)
α

(γ + 1)


∥▽u∥2

2 + ∥▽v∥2
2

γ+1
+ (m + 1 − 2a5)εH(t)

+ ε

2a5c0 −


M−p

1 cσp1 c11 + M−q
2 cσq1 c12

 
∥u∥m+1

m+1 + ∥v∥m+1
m+1


.

ChoosingM1 andM2 large enough such that

c2l − M−p
1 cσp1 c11 − a5 >

c2l − a5
2

,

c2k − M−q
2 cσq1 c12 − a5 >

c2k − a5
2

,

2a5c0 −

M−p

1 cσp1 c11 + M−q
2 cσq1 c12


> a5c0.

Hence,

A′(t) ≥ (1 − σ − Mε)H(t)−σH ′(t)+ εc13

∥ut∥

2
2 + ∥vt∥

2
2


+ εc14 ((g � ∇u) (t)+ (h � ∇u) (t))+ εc15


∥▽u∥2

2 + ∥▽v∥2
2


+ εc16


∥▽u∥2

2 + ∥▽v∥2
2

γ+1
+ εc17H(t)+ εc18


∥u∥m+1

m+1 + ∥v∥m+1
m+1


,

for some positive constants ci, i = 13, 14, . . . , 18. OnceM1 andM2 are fixed, we pick ε > 0 small enough such that

1 − σ − Mε ≥ 0

and

A(0) = H1−σ (0)+ ε


Ω

(u0u1 + v0v1) dx > 0. (4.27)

Thus, there exists K > 0 such that

A′(t) ≥ εK

∥u∥m+1

m+1 + ∥v∥m+1
m+1 + ∥ut∥

2
2 + ∥vt∥

2
2 + H(t)+ ∥▽u∥2

2 + ∥▽v∥2
2


, (4.28)

which together with (4.27) implies that

A(t) ≥ A(0) > 0, for t ≥ 0.
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On the other hand, we have by Hölder inequality, Young’s inequality, (4.22) and (4.23) that
Ω

(utu + vtv) dx
 1

1−σ

≤ 2
σ

1−σ


∥ut∥

1
1−σ
2 ∥u∥

1
1−σ
2 + ∥vt∥

1
1−σ
2 ∥v∥

1
1−σ
2


≤ c19


∥ut∥

1
1−σ
2 ∥u∥

1
1−σ
m+1 + ∥vt∥

1
1−σ
2 ∥v∥

1
1−σ
m+1


≤ c20


∥u∥

2
1−2σ
m+1 + ∥v∥

2
1−2σ
m+1 + ∥ut∥

2
2 + ∥vt∥

2
2


≤ c21


∥u∥m+1

m+1 + ∥v∥m+1
m+1 + ∥∇u∥2

2 + ∥∇v∥2
2 + ∥ut∥

2
2 + ∥vt∥

2
2


,

which implies that

A(t)
1

1−σ =


H1−σ (t)+ ε


Ω

(uut + vvt) dx
 1

1−σ

≤ 2
σ

1−σ


H(t)+


Ω

(uut + vvt) dx
 1

1−σ


≤ c22

H(t)+ ∥u∥m+1

m+1 + ∥v∥m+1
m+1 + ∥∇u∥2

2 + ∥∇v∥2
2 + ∥ut∥

2
2 + ∥vt∥

2
2


, t ≥ 0, (4.29)

where ci, i = 19, 20, 21, 22, are some positive constants. Combining (4.28) with (4.29), we get

A′(t) ≥ c23A(t)
1

1−σ , t ≥ 0, (4.30)

here c23 =
εK
c22

. An integration of (4.30) over (0, t) then yields

A(t) ≥


A(0)

−σ
1−σ −

σ c23
1 − σ

t
−

1−σ
σ

.

Since A(0) > 0, (4.30) shows that A becomes infinite in a finite time T with 0 < T ≤
1−σ

c23σA(0)
σ

1−σ
.

(II) For E(0) < 0, we set H(t) = −E(t), instead of (4.12). Then, applying the same arguments as in part (I), we have our
result. �

Remark 4.4. WhenM ≡ 1, problem (1.1)–(1.5) reduces to the sameproblemwithMessaoudi and Said-Houari [20], inwhich
they obtained a blow-up result for solutions with initial energy E(0) < E2 =

 1
k −

1
m+1


λ21, 2 < k < m + 1. However,

based on Theorem 4.3, we established a blow-up result with initial energy E(0) <
 1
2 −

1
m+1


λ21 = E1, which is bigger than

E2. Hence, our results extend the one in [20] to our problem, where we consider more general form.
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